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C-peptide Prevents Hippocampal Apoptosis
in Type 1 Diabetes
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To explore mechanisms underlying central nervous system
(CNS) complications in diabetes, we examined hippocampal neu-
ronal apoptosis and loss, and the effect of C-peptide replacement
in type 1 diabetic BB/W rats. Apoptosis was demonstrated after
8 months of diabetes, by DNA fragmentation, increased number of
apoptotic cells, and an elevated ratio of Bax/Bcl-xL , accompanied
by reduced neuronal density in the hippocampus. No apoptotic ac-
tivity was detected and neuronal density was unchanged in 2-month
diabetic hippocampus, whereas insulin-like growth factor (IGF) ac-
tivities were impaired. In type 1 diabetic BB/W rats replaced with
C-peptide, no TdT-mediated dUTP nick-end labeling (TUNEL)-
positive cells were shown and DNA laddering was not evident in
hippocampus at either 2 or 8 months. C-peptide administration pre-
vented the preceding perturbation of IGF expression and reduced
the elevated ratio of Bax/Bcl-xL . Our data suggest that type 1 di-
abetes causes a duration-dependent programmed cell death of the
hippocampus, which is partially prevented by C-peptide.
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Clinical and experimental studies have suggested that type 1
diabetes may account for cognitive dysfunction in the absence of
hypoglycemic episodes. A duration-dependent decline in cogni-
tive function was reported in type 1 diabetic patients, who never
experienced hypoglycemic episodes [1], and impaired intellec-
tual and cognitive development has been demonstrated in chil-
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dren with type 1 diabetes [2]. Experimentally, spatial learning
deficits in streptozotocin (STZ)-diabetic rats have been asso-
ciated with altered synaptic integrity of hippocampus, findings
which were modified by low doses of insulin [3]. We recently
demonstrated a duration-related asynchronous apoptosis of hip-
pocampal neurons in the spontaneously type 1 diabetic BB/W rat
[4], which resulted in a 34% loss of CA1 neurons after 8 months
of diabetes. These changes were preceded and accompanied by
a significant down-regulation of the hippocampal insulin-like
growth factor (IGF) system consisting of IGF-1, IGF-2, IGF-1
receptor (IGF-IR), and insulin receptor (IR) [4, 5]. Because both
IGF-1 and insulin exert antiapoptotic effects [6–9], we suggested
that their decreased expression in type 1 diabetic hippocampus
may underlie spatial learning deficits, apoptosis, and neuronal
loss in the BB/W rats [4]. Earlier studies have shown that the in-
sulinomimetic effect of C-peptide [10] prevented the abnormal-
ities of IGF-1, IGF-IR, and IR expressions in peripheral nerve of
the same type 1 diabetic animal model [11, 12], resulting in pre-
vention of early metabolic as well as chronic structural changes
characterizing type 1 diabetic polyneuropathy [13]. We, there-
fore, reasoned that C-peptide replacement of type 1 diabetic
BB/W rats could potentially prevent the early abnormalities in
the expression of the IGF system [5] in the central nervous sys-
tem (CNS) and prevent subsequent hippocampal apoptosis and
neuronal loss.

RESULTS AND COMMENTS
Prediabetic (n= 34) and non–diabetes-prone (n= 17) male

BB/W rats were obtained from Biomedical Research Models
(Rutland, MA). The animals were cared for in accordance with
institutional and National Institute of Health (NIH) guidelines
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(publication no. 85-23, 1995) and monitored as previously de-
scribed [4, 13]. Following detection at 72± 4 days, all diabetic
rats were treated with daily doses of protamine zinc insulin (Blue
Ridge Pharmaceuticals, Greensboro, NC) to maintain blood glu-
cose levels at 20 mmol/L. Half of the diabetic animals (n= 17)
were replaced with rat-II C-peptide (75 nmol/kg/day;>98%
purity by high-performance liquid chromatography [HPLC];
Genosys, Cambridge, UK) delivered via Alzet osmotic pumps
(ALZA Corporation, Palo Alto, CA) from onset of diabetes. The
other half of diabetic rats were sham-operated.

At 2 and 8 months of diabetes, both diabetic and C-peptide–
replaced diabetic rats showed significant weight loss (both
P< .001 versus control rats) and significantly elevated blood
glucose levels (bothP< .001 versus control rats) (Table 1). In
C-peptide–replaced diabetic rats, serum C-peptide levels were
normalized to 75% in 2-month and to 77% in 8-month diabetic
rats (Table 1). The insulin doses required to maintain the de-
sired hyperglycemic levels did not differ between diabetic and
C-peptide–replaced diabetic rats (Table 1).

Total RNA was isolated from hippocampus, frontal cor-
tex, diencephalon, and cerebellum by the acid guanidinium
thiocynate–phenol–chloroform method [14]. The Northern blot
transfer and hybridization were performed as described previ-
ously [4]. The mRNA expressions of IGF-1, IGF-2, IGF-IR,
and IR in the hippocampus of 2-month diabetic rats was re-
duced to 50.1%± 12.6%, 51.0%± 10.7%, 53.4%± 10.9%, and
54.4%± 10.1%, respectively, of control values (allP< .01).
C-peptide replacement partially prevented the decrease in
expression of these genes to 73.3%± 4.9%, 71.9%± 5.8%,
76.0%± 8.9%, and 73.2%± 6.7%, respectively, of control
values (P< .01 for all versus control rats,P< .05 for all ver-

TABLE 1
Clinical data from 2- and 8-month diabetic and C-peptide–replaced BB/W rats and age-matched control rats.

Body weight Blood glucose Insulin dose Serum C-peptide
(g) (mmol/L) (IU/day) concentration (pmol/L)

2-month control 381± 24 4.9± 0.2 — 948± 146
(n= 10)

2-month diabetic 334± 19∗ 20.1± 2.1∗ 2.8± 0.5 23± 19∗

(n= 10)
2-month diabetic+ C-peptide 341± 18∗ 19.7± 2.4∗ 2.7± 0.3 710± 52∗,‡

(n= 10)
8-month control 492± 31 5.0± 0.2 — 997± 102

(n= 7)
8-month diabetic 357± 29∗ 20.7± 2.4∗ 2.3± 0.4 19± 15∗

(n= 7)
8-month diabetic+ C-peptide 359± 23∗ 20.9± 1.7∗ 1.9± 0.3 771± 27∗,‡

(n= 7)

∗P< .001 versus age-matched control rats.‡P< .001 versus duration-matched untreated diabetic rats.

sus diabetic rats) (Figure 1). In peripheral nerve, IGF-1 expres-
sion is decreased, whereas IGF-IR and IR are both increased in
the BB/W rats. Interestingly, although these abnormalities differ
from those in CNS, they are prevented by C-peptide replacement
[11, 12]. These findings suggest that C-peptide, probably via its
insulinomimetic effect [10, 15], modulates the expression of the
IGF system both in the CNS and the peripherial nervous system
(PNS), via as of yet unknown factors.

For demonstration of apoptosis, genomic DNA was extracted
according to Ausbel and coworkers [16]. Nucleosomal DNA
ladder was detected by ligand-mediated polymerase chain reac-
tion (LM-PCR) method following the manufacturer’s instruction
(Clontech, Palo Alto, CA). For amplification of internal control,
we used a primer set for glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) cDNA: 5′-ACCACAGTCCATGCCATCAC
and 5′-TCCACCACCCTGTTGCTGTA[4]. NeuroTACS II kits
(Trevigen, Gaithersburg, MD) were used for TdT-mediated
dUTP nick-end labeling (TUNEL) assays on 6-µm paraffin sec-
tions [4]. TUNEL-positive neurons were expressed as a per-
centage of total neurons per hippocampal region (CA1 to CA4).
Immunoblotting was performed as previously described [15].
Rabbit anti-Bax and anti–Bcl-xL antibodies and horseradish per-
oxidase (HRP)-conjugated secondary antibody were purchased
from Santa Cruz Biotechnology (Santa Cruz, CA). The en-
hanced chemiluminescence (ECL) detection system was from
Amersham Pharmacia Biotech (Piscataway, NJ).

At 2 months of diabetes, none of the animal groups showed
evidence of hippocampal apoptosis, either by LM-PCR DNA
laddering, TUNEL stain, or as indicated by Bax and Bcl-
xL (data not shown). In 8-month non–C-peptide–replaced di-
abetic rats, LM-PCR showed DNA laddering in hippocampus
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FIGURE 1
Northern blot hybridization. The mRNA levels of IGF-I, IGF-II, IGF-IR, and IR were reduced in hippocampus of 2-month
diabetic BB/W rat and were partially reversed with C-peptide replacement (left panels). Ethidium bromide staining of the

corresponding gel showed that approximately equal amounts of RNA were loaded into each lane (middle panels). Quantitation
of mRNA expression (mean±SD) in 3 separate experiments (right panels). Lane 1, control; lane 2, diabetic;

lane 3, C-peptide–replaced diabetic.

and frontal cortex (Figure 2), which was accompanied by an
increased percentage of TUNEL-positive hippocampal neu-
rons (3.9%± 1.0%;P< .001 versus control). The correspond-
ing indices in control and C-peptide–replaced animals were

FIGURE 2
LM-PCR assay showing the effect of C-peptide on DNA

fragmentation in 8-month diabetic BB/W rats (representative
of 3 separate assays). Hip, hippocampus; F.C., Frontal cortex.
DNA ladder was evident in hippocampus and frontal cortex in

8-month diabetic rats. It was faint in hippocampus and
undetectable in frontal cortex in C-peptide replaced rats. Equal
amounts of GAPDH genomic DNA were amplified as shown

in the lower panel.

zero. In 8-month diabetic rats, LM-PCR of DNA fragmen-
tation was substantially prevented by C-peptide replacement
in the hippocampus and fully prevented in frontal cortex
(Figure 2).

For neuronal density assessment, serial hemotoxylin-eosin–
stained 6-µm-thick paraffin sections of hippocampus were
used. They were analyzed using an Olympus BH-2 microscope
and Image-Pro Plus 3.0 software (Media Cybemetics, Silver
Spring, MD) [4]. The previously described asynchronous apop-
tosis, particularly affecting CA1 [4], resulted in diabetic rats a
34.1%± 4.3% loss of neurons in CA1 (P< .001 versus con-
trol) and 24.1%± 6.7% loss in CA2 (P< .05 versus control) at
8 months of diabetes. C-peptide–replaced animals showed a par-
tial prevention of hippocampal neuronal loss to 16.1%± 5.2%
in CA1 (P< .05 versus diabetic rats) and to 12.3%± 2.7% in
CA2 (nonsignificant versus control rats) (Figure 3).

These findings were associated with changes in apoptosis-
related proteins in the hippocampus. The apoptosis-facilitating
protein Bax was significantly increased in 8-month diabetic
BB/W rat (P< .01 versus control), whereas the apoptosis-
protecting protein Bcl-xL was unchanged, resulting in a 2.4-fold
(P< .01) increase in the Bax/Bcl-xL ratio as compared to non-
diabetic control rats. C-peptide replacement of diabetic BB/W
rats significantly (P< .05) reduced the Bax expression, with no
effect on Bcl-xL, resulting in a 42% (P< .05) reduction of the
Bax/Bcl-xL ratio compared to non–C-peptide–replaced diabetic
rats (Figure 4).
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FIGURE 3
Effect of C-peptide on neuronal density in diabetic BB/W rats.

Neuronal density was measured from serial 6-µm
hemotoxylin-eosin–stained paraffin sections. The various

hippocampal regions (CA1 to CA4) were calculated separately.
Each bar represents mean±SD from 4 animals.?P< .05;

??P< .001 versus control;‡P< .05 versus diabetic.

These findings are in keeping with earlier reports that IGF
as well as insulin action provide antiapoptotic effects [6–9].
Interestingly, in Alzheimer’s disease, in which apoptosis has
been invoked as a potential mechanism for hippocampal neu-
ronal loss [17], the expression of IGF-1, IGF-IR, and IR are
markedly reduced [18–20]. Because C-peptide shows an insuli-
nomimetic effect [10, 15] mediated via the IR rather than the
IGF-IR [21], the present findings are in keeping with those of
Biessels and colleagues [3], who demonstrated that insulin ther-
apy corrects long-term potentiation of the hippocampal CA1 re-
gion in STZ-diabetic rats. Apoptosis can be induced via several
cellular mechanisms, which most likely is also true for diabetic
hippocampal apoptosis. In human neuroblastoma cells, we have
demonstrated a potentiating effect of C-peptide on activation of
nuclear factor kappa B(NF-κB) and Bcl2 [22], two mechanisms
that have been invoked in apoptosis [23, 24]. Hence, there are
probably multiple apoptotic pathways that are activated under
type 1 diabetic conditions, some of which may not be corrected
by C-peptide. The present data would suggest that this is the
case, because C-peptide replacement only partially, although
significantly, protected against hippocampal programmed cell
death.

From these studies, we conclude that C-peptide replacement
in type 1 diabetic BB/W rats has a protective effect on hippocam-
pal apoptosis and neuronal loss. The duration-related occurrence
of apoptosis is preceded by a down-regulation of the IGF system
and IR, which is prevented by C-peptide replacement, suggesting
that part of programmed neuronal cell death in type 1 diabetes
may be mediated via impaired insulin and C-peptide actions.

FIGURE 4
Western blot analysis of hippocampal Bax and Bcl-xL

(representative of 3 blots). In diabetic animals (n= 3), there
was an increased amount of Bax in the hippocampus, whereas
Bcl-xL was unchanged, resulting in an increased Bax/Bcl-xL

ratio (P< .01 versus control rats [n= 3]). C-peptide–replaced
diabetic BB/W rats (n= 3) showed partial prevention of the
increase in Bax, resulting in a significantly (P< .05 versus
diabetic) lower Bax/Bcl-xL ratio. ?P< .05; ??P< .01 versus
controls;‡P< .05 versus untreated diabetic animals. Lane 1,

control rats; lane 2, diabetic BB/W rats; lane 3,
C-peptide–replaced diabetic rats.
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