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Abstract

Background: Dendritic cells (DCs) play major roles in mediating immune responses to mycobacteria. A crucial aspect of this
is the priming of T cells via chemokines and cytokines. In this study we investigated the roles of chemokines RANTES and IP-
10 in regulating protective responses from Mycobacterium tuberculosis (M. tb) 10 kDa Culture Filtrate Protein-10 (CFP-10)
differentiated DCs (CFP10-DCs).

Methods and Findings: Infection of CFP10-DCs with mycobacteria down-modulated RANTES and IP-10 levels. Pathway
specific microarray analyses showed that in addition to RANTES and IP-10, mycobacteria infected CFP10-DCs showed
reduced expression of many Th1 promoting chemokines and chemokine receptors. Importantly, T cells co-cultured with
RANTES and IP-10 conditioned CFP10-DCs mediated killing of mycobacteria from infected macrophages. Similarly, T cells
recruited by RANTES and IP-10 conditioned CFP10-DCs mediated significant killing of mycobacteria from infected
macrophages. IFN-gamma treatment of CFP10-DCs restored RANTES and IP-10 levels and T cells activated by these DCs
mediated significant killing of virulent M. tb inside macrophages. Adoptive transfer of either RANTES and IP-10 or IL-12 and
IFN-gamma conditioned CFP10-DCs cleared an established M. tb infection in mice. The extent of clearance was similar to
that obtained with drug treatment.

Conclusions: These results indicate that chemokine and cytokine secretion by DCs differentiated by M. tb antigens such as
CFP-10 play major roles in regulating protective immune responses at sites of infection.

Citation: Salam N, Gupta S, Sharma S, Pahujani S, Sinha A, et al. (2008) Protective Immunity to Mycobacterium tuberculosis Infection by Chemokine and Cytokine
Conditioned CFP-10 Differentiated Dendritic Cells. PLoS ONE 3(8): e2869. doi:10.1371/journal.pone.0002869

Editor: Edwin Robertson, Harvard Medical School, United States of America

Received May 19, 2008; Accepted July 11, 2008; Published August 6, 2008

Copyright: � 2008 Salam et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by grants from the Department of Biotechnology Government of India and the Tropical Diseases Research of WHO to KN.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: natrajan@icgeb.res.in

Introduction

Mycobacterium tuberculosis (M. tb) continues to cause over 2 million

deaths annually. This problem is further complicated by the

emergence of multi-drug resistant strains and the variable efficiency

of protection offered by vaccination with M. bovis BCG (hereafter

BCG) [1]. Therefore, this underscores the need to elucidate factors

that regulate protective immune responses against this pathogen.

Among the antigen presenting cells of the immune system,

Dendritic Cells (DCs) play critical roles in initiating protective

responses to pathogens [2] and act as a bridge between the innate

and the acquired arm of the immune system. This is largely

attributed to their ability to stimulate naı̈ve quiescent T cells and

thereby initiate a primary immune response. Following sensing of

infection, DCs are recruited to sites of infection, where they take-up

antigens/pathogens and initiate T cell responses. Depending upon

the activation status, DCs initiate either inflammatory or regulatory

responses that determine clearance of infection [3].

Although macrophages are the preferred hosts for mycobacte-

ria, M. tb infects DCs as well that are crucial to prime T cells and

regulate mycobacterial survival in the host [4]. Among the factors

that regulate protective immunity are cytokines and chemokines

[5]. Cytokines such as Interferon (IFN)-c and Interleukin (IL)-12

are known to offer protective immune responses to M. tb [6].

Likewise chemokines such as Regulated upon Activation Normal

T cell Expressed and Secreted (RANTES) and Interferon-

Inducible Protein (IP)-10 play major roles in mediating protective

responses in addition to mediating chemotaxis [6].

Previously we showed that 10 kDa M. tb Culture Filtrate

Protein-10 (CFP-10, also known as MTSA-10) and many other M.

tb antigens like ESAT-6, Ag85B and MPT64 induce the

differentiation and maturation of DCs [7,8]. DCs differentiated

with CFP-10 (hereafter CFP10-DCs) are very similar to DCs

differentiated conventionally with GM-CSF (hereafter GM-CSF-

DCs), in terms of phenotype, morphology and maturation status

based on the density and profile of surface markers [7]. The two

DCs express similar levels of costimulatory and MHC molecules

and are essentially immature. However, a challenge of CFP10-

DCs with mycobacterial extract downregulates the expression of

IL-12p40 and T cells co-cultured with these DCs induce
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suppressor responses with high levels of IL-10 and low levels of IL-

2 and IFN-c [8,9]. In contrast, a similar challenge of GM-CSF-

DCs upregulates IL-12p40 and co-culture with T cells induces

pro-inflammatory responses with high levels of IFN-c and low

levels of IL-10. These results indicate that while CFP10-DCs and

GM-CSF-DCs share phenotypic similarities; their functional

responses are quite different. Further, these results also indicate

that DC-differentiation by antigens such as CFP-10 could be a

strategy by mycobacteria to induce suppressor responses.

In order to characterize the mechanisms by which CFP10-DCs

induce suppressor responses, in this study, we examined the roles

played by chemokines RANTES and IP-10 in regulating pro-

inflammatory responses from CFP10-DCs. We report that

challenging CFP10-DCs with live BCG downregulates the

expression of RANTES and IP-10 and many other chemokines

that induce pro-inflammatory responses. Conditioning CFP10-

DCs with RANTES or IP-10 induced Th1 responses. Importantly,

conditioning CFP10-DCs with either RANTES and IP-10 or IFN-

c and IL-12 mediates effective clearance of an established M. tb

infection in mice, thereby giving functional relevance to the above

observations.

Results

Stimulation of CFP10-DCs with BCG downregulates
RANTES and IP-10 levels

To begin with we investigated the levels of RANTES and IP-10

in CFP10-DCs and GM-CSF-DCs upon BCG infection. Com-

pared to unstimulated GM-CSF-DCs, unstimulated CFP10-DCs

secreted high levels of both RANTES and IP-10 (Figure 1). This

indicated that secretion of RANTES from DCs requires a

microbial stimulus [6] that was provided by CFP-10 during DC-

differentiation. BCG stimulation of GM-CSF-DCs boosted the

levels of RANTES and IP-10 by 500-fold. On the other hand

BCG stimulated CFP10-DCs showed a 95% decrease in

RANTES, while IP-10 levels were undetectable, when compared

with uninfected CFP10-DCs. These results indicated that CFP10-

DCs downregulate expression of pro-inflammatory chemokines

following their interactions with live mycobacteria. We confirmed

that BCG infection induced a similar level of maturation of GM-

CSF-DCs and CFP10-DCs based on the increase in the surface

densities of a number of markers that are reflective of mature DCs

(Figure S1, panel A). In addition, the two DCs showed a similar

uptake of labeled BCG [10] (Figure S1, panel B). This indicated

that lower production of RANTES and IP-10 by BCG infected

CFP10-DCs did not result from reduced bacterial uptake. Further,

to rule out the possibility that downregulation of RANTES and IP-

10 by CFP10-DCs following BCG infection is not because the DCs

were refractory to additional stimulation, we treated both GM-

CSF-DCs and CFP10-DCs with LPS and looked at the levels of

RANTES and IP-10. As shown in Figure S2, LPS addition of both

GM-CSF-DCs and CFP10-DCs upregulated the levels of both

RANTES and IP-10, indicating that LPS induced activation of

both DCs. Importantly, this also indicated that CFP10-DCs were

not refractory to additional stimulation. Further, this also

suggested that CFP10-DCs downregulate RANTES and IP-10

expression specifically following mycobacterial stimulation.

CFP-10 has been shown to dimerize with Early Secretory

Antigenic Target (ESAT6) and immune responses induced by

CFP-10:ESAT6 dimer have been shown to be similar to that

induced by CFP-10 monomer [11,12]. We, therefore, generated

CFP10:ESAT6 dimer (Figure S3) and monitored RANTES and

IP-10 levels from DCs differentiated by CFP10:ESAT6 dimer

(Dimer-DCs). Like CFP10-DCs, Dimer-DCs secreted high levels

of RANTES and IP-10. However, stimulation of Dimer-DCs with

BCG, significantly downregulated RANTES and IP-10 levels

(Figure S4).

It has been reported that the transcription factor NF-kB binding

site at position -67 to -99 in the mouse RANTES promoter is

critical for transcription and expression of RANTES [13].

Likewise, the NF-kB site in IP-10 promoter at position -99 to -

118 is crucial for IP-10 expression [14]. Therefore, we investigated

the recruitment of NF-kB to their respective promoters by EMSA.

BCG infection of GM-CSF-DCs recruited significantly higher

levels of NF-kB to both RANTES and IP-10 promoters (Figure

S5). These results indicate that reduced levels of RANTES and IP-

10 observed in BCG infected CFP10-DCs could result from

reduced NF-kB recruitment to their promoters.

Conditioning CFP10-DCs with RANTES or IP-10 induces
primary pro-inflammatory responses to BCG

To give functional implications to the data obtained in Figure 1,

we investigated if CFP10-DCs induce suppressor in vivo primary

responses to BCG and if conditioning DCs with RANTES or IP-

10 could induce pro-inflammatory responses. As shown in

Figure 2A, uninfected CFP10-DCs gave pro-inflammatory

responses with high levels of IFN-c and IL-12p40 and low levels

of IL-10. However, BCG infected CFP10-DCs resulted in a

complete reversal of pro-inflammatory responses into suppressor

responses with a ,5-fold downregulation of IFN-c levels and ,2-

fold downregulation of IL-12p40 levels, along with a marginal

increase in IL-10 levels. In contrast, BCG infected GM-CSF-DCs

Figure 1. CFP10-DCs downregulate RANTES and IP-10 levels following BCG infection. GM-CSF-DCs or CFP10-DCs were infected with 1
MOI BCG for 24h. RANTES and IP-10 levels in culture supernatants were measured by ELISA. Data from one of five experiments is shown.
doi:10.1371/journal.pone.0002869.g001
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showed a classical pro-inflammatory response with .2-fold

increase in levels of IFN-c and a ,2-fold increase in IL-12p40

levels. These results indicated that CFP10-DCs induce suppressor

primary responses to live mycobacteria.

Next, we investigated if priming CFP10-DCs with RANTES or IP-

10 would induce pro-inflammatory responses to BCG. To this end

CFP10-DCs were conditioned with either RANTES or IP-10 prior to

infection with BCG. Likewise, GM-CSF-DCs were treated with

neutralizing antibodies to RANTES or IP-10 prior to BCG infection.

As shown in Figure 2B, incubating GM-CSF-DCs with neutralizing

antibodies to either RANTES or IP-10 reduced IFN-c levels by

,50% when compared in the absence of neutralization. IL-12p40

levels were also reduced, more significantly upon neutralizing IP-10.

Incubation with isotype matched non-specific antibodies had no

effect (data not shown). In contrast, conditioning CFP10-DCs with

either RANTES or IP-10 now induced pro-inflammatory responses

with a 10-fold increase in IFN-c levels and a 2-fold increase in IL-

12p40 levels when compared in the absence of any treatment.

The results in Figure 2 thus indicate that downregulated levels

of RANTES and IP-10 in CFP10-DCs play a dominant role in

regulating the generation of pro-inflammatory immune responses

to mycobacteria. Further, these results are consistent with the

ability of RANTES and IP-10 to induce pro-inflammatory

responses from DCs in response to a microbial infection [15].

RANTES and IP-10 conditioned CFP10-DCs increase
calcium influx

Stimulation of DCs with a microbial stimulus is known to mobilize

intracellular calcium that favors pro-inflammatory Th1 responses

[16]. We have also shown earlier that calcium influx in CFP10-DCs is

compromised that results in increased survival of mycobacteria in

CFP10-DCs [17]. It was thus of interest to next investigate if

RANTES and IP-10 would modulate calcium influx. As shown in

Figure 3, stimulation of GM-CSF-DCs with BCG induced higher

(392 nM) intracellular calcium (Figure 3 profile a) as compared to

CFP10-DCs that induced a much lower (83 nM) calcium influx

Figure 2. RANTES and IP-10 conditioned CFP10-DCs induce pro-inflammatory in vivo primary immune responses to BCG. For Panel A
GM-CSF-DCs or CFP10-DCs were infected in vitro with 1 MOI BCG for 24h. DCs were extensively washed to remove extracellular bacteria. 56106 DCs
were adoptively transferred into naı̈ve mice. Seven days later the inguinal lymph nodes were removed and 56106 cells/ml were cultured in 10%
RPMI1640 medium with 10% FCS for 48h. Levels of indicated cytokines were measured in culture supernatants. For B, prior to infection with BCG, GM-
CSF-DCs were either untreated or incubated with neutralizing monoclonal antibody to RANTES or IP-10 for 4h, while CFP10-DCs were either
untreated or incubated with 25 ng/ml RANTES or IP-10 for 12h. DCs were extensively washed and then processed as in Panel A. Data from one of
three experiments are shown.
doi:10.1371/journal.pone.0002869.g002
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(Figure 3 profile d), reiterating that calcium responses are suppressed

in CFP10-DCs. However, treatment of GM-CSF-DCs with

neutralizing antibodies to either RANTES or IP-10 (Figure 3 profiles

b and c) significantly attenuated the increase in intracellular calcium.

This indicated that RANTES and IP-10 play direct roles in calcium

mobilization in DCs following mycobacterial challenge. Further,

neutralizing either RANTES or IP-10 alone in GM-CSF-DCs

attenuated calcium influx only partially. This indicated that both

chemokines are equally important in influencing calcium influx in

DCs following mycobacterial stimulation and could play individual

and cooperative roles to this end. These results correlate well with the

results in Figure 2 wherein a reduced but not completely attenuated

levels of IFN-c and IL-12p40 levels were obtained upon neutralizing

either RANTES or IP-10 in BCG infected GM-CSF-DCs.

Conversely, CFP10-DCs treated with either RANTES or IP-10

(Figure 3 profiles e and f) readily increased intracellular calcium

concentration up to 835 nM and 876 nM, respectively, upon BCG

stimulation. These results suggested that RANTES and IP-10,

conditioned CFP10-DCs to be responsive to increase in intracellular

calcium following stimulation by BCG. Further, this also suggested

that increasing intracellular calcium levels could be a possible

mechanism of induction of pro-inflammatory responses from CFP10-

DCs by the two chemokines.

BCG infected CFP10-DCs express reduced levels of genes
promoting pro-inflammatory responses

We next applied a pathway specific microarray approach to

investigate if stimulation of GM-CSF-DCs and CFP10-DCs with

BCG would differentially alter the expression profiles of other

chemokines and their receptors. As shown in Figure 4, the expression

patterns of most genes were more or less similar in uninfected GM-

CSF-DCs and CFP10-DCs. Some differences were however

observed. For example, the expression of Cmbkr1/1(spot # B2),

IFN-a11(spot # D4), IFNab(spot # D5), PF4(spot # D7) and

Ppbp(spot # D8) were higher in CFP10-DCs as compared to GM-

CSF-DCs. Interestingly, however, compared to protein levels,

message levels of RANTES in uninfected CFP10-DCs and GM-

CSF-DCs were similar. This could be attributed to the fact that

CFP10-DCs secrete high levels of RANTES even during the DC-

differentiation process (data not shown). Since the message levels were

analyzed in fully differentiated DCs, this could be due to a feedback

regulation at the transcript level or differences in the half-life and/or

the translational rates in the two DCs.

Importantly, infection with BCG displayed significant differences

in the expression of a number of chemokines and their receptors.

Many genes were weakly expressed, while the expression of many

genes [Ppbp(spot # D8), MIP 1a(spot # F7) and MIP-1(spot # H3)]

was nearly equal. Significant differences in the expression levels of 15

genes were however observed. As seen from the Table appended

under Figure 4, based on the densitometric values the expression

levels of 10 genes were higher in BCG infected GM-CSF-DCs

(represented as bold), while the expression levels of 5 genes were

higher in BCG infected CFP10-DCs (represented as italics). The

expression of genes that favor pro-inflammatory responses such as

RANTES, Gro1, SDF-1, MIP-1c, CXCL16 [15] showed higher

expression in BCG infected GM-CSF-DCs when compared with

BCG infected CFP10-DCs. Interestingly, however, IP-10 message

levels were not detectable in any group perhaps reflecting a tight

regulation at the transcriptional or post-transcriptional levels. The

chemokine CXCL16 plays a very important role in the recruitment of

activated effector and memory CD4+ T cells [18,19]. In addition, the

expression levels of a number of chemokine receptors such as CCR1,

CCR2, CCR5 and CCR7 was lower in BCG infected CFP10-DCs

when compared with BCG infected GM-CSF-DCs. The increased

expression of these receptors e.g. CCR5 may increase the avidity of

the interaction of RANTES with CCR5 and/or CCR1 (another

receptor for RANTES). Increased expression of CCR7 might also aid

in faster migration of bacteria containing GM-CSF-DCs to T cell

areas and mediate T cell priming.

The expression levels of Thymocyte Activated and Regulated

Chemokine (TARC)(spot # E5) and Eotaxin(spot # E3) that

promote suppressor responses [6], were also weakly increased in

both uninfected and BCG infected CFP10-DCs, while their

expression was below detectable levels in GM-CSF-DCs.

Figure 3. RANTES and IP-10 elevate intracellular calcium in BCG stimulated CFP10-DCs. FLUO-3-AM labeled GM-CSF-DCs (profile a–c) or
CFP10-DCs (profile d–f) were stimulated with 1 MOI BCG and real-time increase in intracellular calcium was monitored over a period of 5 min. For
profiles b and c GM-CSF-DCs were incubated with 5 mg/ml neutralizing monoclonal antibody to RANTES and IP-10, respectively, for 2h, prior to BCG
stimulation. For profiles e and f, CFP10-DCs were incubated with 5 ng/ml recombinant RANTES and IP-10, respectively, for 12h, prior to BCG
stimulation. DCs were extensively washed prior to flow cytometry. Data from one of three experiments are shown.
doi:10.1371/journal.pone.0002869.g003

Clearing M. tb Infection by DC

PLoS ONE | www.plosone.org 4 August 2008 | Volume 3 | Issue 8 | e2869



More significantly the expression levels of type 1 interferons

(IFNs)-IFN ab and IFN a11- were highly expressed in uninfected

CFP10-DCs and increased further following BCG infection. It has

been reported that exposure of DCs to IFN-b prior to T cell

engagement and during CD40-CD40L cross-talk inhibits Th1 cell

polarization and promotes the generation of IL-10 producing T

cell subsets [20,21]. Thus, BCG infection of GM-CSF-DCs

induces the selective expression of pro-inflammatory and T cell

recruiting chemokines, along with increase in the expression of

their receptors that might increase the avidity of the interaction. In

contrast, BCG infected CFP10-DCs increase the expression of

chemokines that favor suppressor responses.

T cells cultured with RANTES and IP-10 conditioned BCG
infected CFP10-DCs mediate enhanced killing of
mycobacteria

An important function of DCs is to prime T cells that

subsequently activate infected macrophages to kill/restrict intra-

cellular pathogens including M. tb [22]. To this end we first

investigated whether T cells co-cultured with RANTES or IP-10

conditioned BCG infected CFP10-DCs have a Th1 phenotype. As

shown in Figure 5, T cells from BCG immunized mice co-cultured

with BCG infected GM-CSF-DCs secreted high levels of IFN-c as

compared to IL-10, whereas T cells from BCG immunized mice

co-cultured with BCG infected CFP10-DCs displayed a Th0

phenotype with low levels of IFN-c and IL-10. However,

neutralizing either RANTES or IP-10 in GM-CSF-DCs reduced

IFN-c secretion by 4-fold. On the other hand, treating CFP10-

DCs with either RANTES or IP-10 induced a characteristic Th1

response with high levels of IFN-c as compared to IL-10. These

results indicated that conditioning CFP10-DCs with RANTES or

IP-10 induced pro-inflammatory Th1 responses to BCG.

Next, in order to give functional relevance to the above

observations we looked at the ability of T cells co-cultured with

RANTES or IP-10 conditioned BCG infected CFP10-DCs in

mediating killing of BCG inside macrophages. As shown in

Figure 6A, T cells co-cultured with BCG infected CFP10-DCs

displayed higher bacterial burden when compared to control

(BCG infected macrophages), thereby inhibiting killing of BCG by

macrophages. These results are concurrent with our earlier

Figure 5. RANTES and IP-10 conditioned CFP10-DCs induce
Th1 responses. Either GM-CSF-DCs (GMCSF) or CFP10-DCs (CFP10)
were infected with 1 MOI BCG for 24h and co-cultured for 48h with T
cells enriched from BCG immunized mice. For some groups GM-CSF-
DCs were incubated with 5 mg/ml neutralizing monoclonal antibody to
RANTES and IP-10, respectively, for 2h, prior to BCG stimulation. CFP10-
DCs were incubated with 5 ng/ml recombinant RANTES or IP-10 for 12h,
prior to BCG stimulation. Data from one of three independent
experiments are shown.
doi:10.1371/journal.pone.0002869.g005

Figure 4. BCG infected CFP10-DCs show reduced expression of
pro-inflammatory chemokines. Total RNA was enriched from either
GM-CSF-DCs (upper panels) or CFP10-DCs (lower panels) following
infection with 1 MOI BCG (upper right and lower right panels) for 24h.
1 mg RNA was processed for microarray analyses using the GEArray Q
Series mouse chemokine and receptor gene array from SuperArray
strictly following the manufacturer’s instructions. Rows A–I contains
genes for various chemokines and their receptors while rows M and N
contain house-keeping genes. Rows J–L represents negative controls.
The Table below the figure depicts genes, their position and
densitometric units of spots from blots of BCG infected GM-CSF-DCs
and BCG infected CFP10-DCs. Data from one of two experiments are
shown.
doi:10.1371/journal.pone.0002869.g004
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observations on increased bacterial loads in CFP10-DCs [17].

However, T cells co-cultured with BCG infected RANTES or IP-

10 conditioned CFP10-DCs mediated effective killing of intracel-

lular BCG in macrophages and reduced bacterial loads by 10-fold.

In fact, the bacterial loads in these groups were similar to groups

where macrophages were conditioned with recombinant IFN-c
prior to BCG infection, indicating that enhanced killing could be

mediated by increased secretion of IFN-c by T cells. This

indicated that lower production of RANTES or IP-10 in

mycobacteria infected CFP10-DCs contributed towards defective

killing of intracellular mycobacteria by interacting T cells.

T cells recruited by RANTES and IP-10 conditioned
CFP10-DCs mediate effective killing of BCG

We extended the above observations to see if T cells recruited

by RANTES and IP-10 would mediate killing of mycobacteria

inside macrophages. We first investigated the activation status of T

cells recruited by BCG infected CFP10-DCs and GM-CSF-DCs.

BCG infected GM-CSF-DCs recruited a higher percentage of

CD69+CD4+ T cells as compared with BCG infected CFP10-DCs

(Figure S6). This indicated that CFP10-DCs are impaired in their

ability to recruit activated T cells. These results correlated well

with the results obtained in Figure 6A, wherein T cells co-cultured

with BCG infected CFP10-DCs promoted higher bacterial burden

in macrophages. Therefore, we next investigated whether, T cells

recruited by supernatants of RANTES and IP-10 conditioned DCs

would mediate effective killing of mycobacteria inside macro-

phages. As shown in Figure 6B T cells recruited by either

RANTES or IP-10 conditioned BCG infected CFP10-DCs

mediated significant reduction in the bacterial loads inside

macrophages. These results indicated that RANTES and IP-10

play a direct role in the recruitment of effector T cells that have the

ability to kill mycobacteria inside macrophages.

RANTES and IP-10 conditioned CFP10-DCs mediate
effective clearance of M. tb infection in mice

We next investigated whether RANTES and IP-10 conditioned

CFP10-DCs could provide protective immune responses to M. tb

infection in vivo. To this end, we first established an infection with

M. tb H37Ra in mice and then adoptively transferred CFP10-DCs

conditioned with both RANTES and IP-10 together (in order to

boost their effects) into infected mice. Bacterial burden in the lungs

and spleen were subsequently monitored. In parallel, we also

induced chemotherapy with drugs following established protocols

(see Materials and Methods). As shown in Figure 7, bacterial burden in

the lungs and spleen of mice that received CFP10-DCs were

similar to the bacterial burden in control mice that received PBS

alone, indicating that CFP10-DCs on their own are unable to clear

Figure 6. T cells co-cultured with or recruited by RANTES or IP-10 conditioned CFP10-DCs mediate clearance of BCG from
macrophages. For A, BCG infected CFP10-DCs (CFP10), conditioned or not with either 25 ng/ml RANTES or IP-10 were co-cultured for 48h with BCG
primed T cells. From this, T cells were enriched and cultured with BCG infected macrophages (Mph) for 48h. A separate group wherein macrophages
conditioned with 2 ng/ml IFN-c (IFN-g) for 4h prior to infection with BCG was also included as a control. For B, T cells migrated into the lower
chamber of a transwell apparatus in response to supernatants of BCG infected CFP-DCs, conditioned or not with 25 ng/ml RANTES or IP-10, were
cultured with BCG infected macrophages (Mph) for 48h. A separate group wherein macrophages conditioned with 2 ng/ml IFN-c (IFN-g) for 4h prior
to infection with BCG was also included as a control. Cells from both Panels were lysed and plated in serial dilutions on 7H11 agar plates. CFU were
counted 2–3 week later. Data are the mean6s.d. of three experiments. For A, P,0.002 (Mph vs CFP10+BCG+RANTES), P,0.004 (Mph vs
CFP10+BCG+IP10). For B, P,0.02 (Mph vs CFP10+BCG+RANTES), P,0.01 (Mph vs CFP10+BCG+IP10).
doi:10.1371/journal.pone.0002869.g006
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M. tb infection. However, transfer of RANTES and IP-10

conditioned CFP10-DCs induced effective and significant reduc-

tion in the bacterial loads in both lungs and spleen. In fact, the

extent of clearance was similar to that obtained with drug

treatment indicating similar kinetics of clearance. These results

indicate a direct role for RANTES and IP-10 in mediating

clearance of an established M. tb infection.

Treatment with IFN-c rescues RANTES and IP-10 levels in
BCG infected CFP10-DCs

We had earlier shown that conditioning CFP10-DCs with IFN-

c induced Th1 responses to mycobacteria [9]. We, therefore,

investigated if IFN-c could also reverse the decrease in the levels of

RANTES and IP-10 in CFP10-DCs following BCG infection. As

shown in Figure 8, treatment of CFP10-DCs with IFN-c increased

RANTES and IP-10 levels from CFP10-DCs following BCG

infection. Expectedly, treatment of GM-CSF-DCs with IFN-c
further enhanced the levels of the two chemokines.

IFN-c and IL-12 conditioned CFP10-DCs clear M. tb
infection in mice

We next investigated whether, similar to RANTES and IP-10,

conditioning CFP10-DCs with IFN-c and/or IL-12 would offer

protective immunity to M. tb infection both in vitro and in vivo.

We first investigated whether, T cells activated by IFN-c and IL-

12 conditioned BCG infected CFP10-DCs would mediate killing

of M. tb H37Rv inside macrophages. As shown in Figure 9, IFN-c
and IL-12 conditioned BCG infected CFP10-DCs significantly

killed M. tb H37Rv inside macrophages. In fact, the bacterial loads

were 3 fold lower than IFN-c treated macrophages. Similar results

were obtained when CFP10-DCs were transformed with retrovi-

ruses expressing IFN-c or IL-12. Recombinant retrovirus

transformed CFP10-DCs induced 3-fold lower CFU than IFN-c
treated macrophages, indicating a better effect of conditioned DCs

in mediating killing of M. tb inside macrophages than that

observed with IFN-c.

We further extended the above observations to in vivo infection

in mice. Mice were first infected with M. tb H37Ra followed by

adoptive transfer of IFN-c and IL-12 conditioned CFP10-DCs.

CFU in lungs and spleen were recorded at the end of the

experiment. As shown in Figure 10, similar to RANTES and IP-10

conditioned CFP10-DCs, IFN-c and IL-12 conditioned CFP10-

DCs mediated effective clearance of an established M. tb infection

from both lungs and spleen. In fact, the extent of clearance was

similar to that observed following chemotherapy with drugs, once

again indicating similar kinetics of clearance. These results

indicate the potential of IFN-c and IL-12 conditioned antigen

specific DCs to clear an established M. tb infection.

Discussion

A number of studies document the use of M. tb antigens in

diagnostics and as potential ‘vaccine candidates’ [23]. We have

been characterizing the interactions of some of these antigens with

DCs and have observed that many antigens induce the

differentiation and maturation of DCs [7,8]. These DCs, however,

Figure 7. RANTES and IP-10 conditioned CFP10-DCs mediate
clearance of M. tb infection in vivo in mice. Groups of mice were
infected with 16106 M. tb H37Ra intravenously via the tail vein. Seven
days post-infection, 106106 unconditioned CFP10-DCs or CFP10-DCs
conditioned with both RANTES and IP-10 together (25 ng/ml each) for
12h (conditioned CFP10-DCs) were injected into the tail vein of mice. A
repeat injection was given 7 days following the first transfer. Seven
days following the 2nd transfer, mice were sacrificed and lung and
spleen homogenates were plated onto 7H11 agar plates in serial
dilutions for CFU monitoring. In parallel, infected mice were injected
with anti-TB drugs as given in Materials and Methods. Control represents
mice infected with M. tb H37Ra followed by intravenous injection of
PBS. Data are the mean6s.d. of three experiments. For lungs, P,0.02
(Control vs Conditioned CFP10-DCs), P,0.009 (CFP10-DCs vs condi-
tioned CFP10-DCs). For spleen, P,0.006 (Control vs Conditioned CFP10-
DCs), P,0.01 (CFP10-DCs vs conditioned CFP10-DCs).
doi:10.1371/journal.pone.0002869.g007

Figure 8. Treatment with IFN-c restores RANTES and IP-10
levels from BCG infected CFP10-DCs. Either GM-CSF-DCs or CFP10-
DCs were incubated with 2 ng/ml IFN-c for 1h and washed. DCs were
infected with 1 MOI BCG for 24h. Expression of RANTES and IP-10 was
measured in culture supernatants. Data from one of three experiments
are shown.
doi:10.1371/journal.pone.0002869.g008
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induce suppressor responses [9]. Since chemokines regulate the

quality of immune responses to bacterial infections, in the present

investigation, we characterized the roles played by two pro-

inflammatory response promoting chemokines RANTES and IP-

10 during interactions of CFP10-DCs with mycobacteria.

A number of studies document changes in chemokine profiles

following infection by M. tb [24–26]. M. tb infection increases

expression of RANTES and its receptor CCR5 [27]. Induction of

RANTES was also observed following stimulation of mononuclear

cells with M. tb HSP70 [28]. It is now well established that distinct

chemokines induce and qualitatively regulate T helper functions

[29]. For example, RANTES is known to induce Th1 responses

[30]. BCG vaccination enhances RANTES expression and Th1

responses in guinea pig models of tuberculosis [31]. Similarly,

expression of IP-10 is associated with pro-inflammatory responses

[32]. In contrast, many chemokines including eotaxin, MDC,

TARC and I-309, induce suppressor responses [33]. Further, the

chemokine expression patterns of DCs have also been extensively

investigated and data suggest that DCs are responsive to various

chemokines that are both stage and activation dependent [34].

In the light of the above, it was of interest to investigate the

expression profiles of RANTES and IP-10 in CFP10-DCs and

their role in influencing immune responses during mycobacterial

infection in vitro and in vivo. Our results indicated that

mycobacteria infected CFP10-DCs downregulate the expression

of RANTES and IP-10 and induce suppressor responses to

mycobacteria. Conditioning CFP10-DCs with RANTES or IP-10

induced pro-inflammatory immune responses to BCG. On the

other hand neutralizing RANTES or IP-10 in GM-CSF-DCs

abolished inflammatory responses, thereby indicating a positive

role of RANTES and IP-10 in influencing the quality of immune

responses from DCs during M. tb infection. Conditioning CFP10-

DCs with RANTES possibly result in increased avidity onto

CCR5 on these DCs following their interactions with BCG

thereby resulting in increased CCR5 mediated effects. Similarly,

conditioning with IP-10 may provide increased ligand density to

CXCR3 with similar effects.

To extend the observations on RANTES and IP-10 to other

chemokines, we analyzed the expression levels of a range of

chemokines and their receptors in GM-CSF-DCs and CFP10-DCs

following infection with BCG using pathway specific microarray.

In concurrence with the results obtained on RANTES and IP-10,

the expression levels of many chemokines and their receptors

known to mediate pro-inflammatory responses were poorly

expressed in BCG infected CFP10-DCs when compared with

BCG infected GM-CSF-DCs. Prominent among them were

CCR5 and CCR1 that attract RANTES [6]. CCR7 that is

important for homing of DCs to T cell rich areas was also

expressed at low levels. This could result in reduced priming of

antigen specific T cells. Further, keeping the chemokine receptor

redundancy in mind (there are about 18–20 receptors for over 50

chemokines) these results suggested that downregulation of

receptor levels could also result in reduced responsiveness to

many other chemokines resulting in decreased avidity of

interactions. In contrast, compared to GM-CSF-DCs, mycobac-

Figure 10. IFN-c or IL-12 conditioned CFP10-DCs mediate
clearance of M. tb infection in vivo in mice. Groups of mice were
infected with 16106 M. tb H37Ra intravenously via the tail vein. Seven
days post-infection, 106106 unconditioned CFP10-DCs or CFP10-DCs
treated with both IFN-c and IL-12 together (2 ng/ml each) for 2h
(conditioned CFP10-DCs) were injected into the tail vein of mice. A
repeat injection with the same number of DCs was given 7 days
following the first transfer. ‘Control’ represents mice infected with M. tb
H37Ra followed by intravenous injection of PBS. Seven days following
the 2nd transfer, mice were sacrificed and lung and spleen homoge-
nates were plated onto 7H11 agar plates in serial dilutions for CFU
monitoring. In parallel, infected mice were injected with anti-TB drugs
as given in Materials and Methods. Data are the mean6s.d. of three
experiments. For lungs, P,0.04 (Control vs Conditioned CFP10-DCs),
P,0.03 (CFP10-DCs vs conditioned CFP10-DCs). For spleen, P,0.02
(Control vs Conditioned CFP10-DCs), P,0.02 (CFP10-DCs vs condi-
tioned CFP10-DCs).
doi:10.1371/journal.pone.0002869.g010

Figure 9. T cells co-cultured with IFN-c or IL-12 conditioned
CFP10-DCs mediate clearance of M. tb H37Rv from macro-
phages. BCG infected CFP10-DCs (CFP10), conditioned or not with
either 2 ng/ml IFN-c (IFNg) or IL-12 or transformed with retroviruses
expressing IFN-c (retroIFNg) or IL-12p40 (retroIL-12), were co-cultured
for 48h with BCG primed T cells. From this, T cells were enriched and
cultured with M. tb H37Rv infected macrophages (Mph) for 48h. A
separate group wherein macrophages conditioned with 2 ng/ml IFN-c,
prior to infection with M. tb H37Rv was also included as a control. Cells
from all the groups were lysed and plated in serial dilutions on 7H11
agar plates for CFU monitoring 2–3 week later. Data are the mean6s.d.
of three experiments. P,0.007 (Mph vs CFP10+IFNg), P,0.007 (Mph vs
CFP10+IL-12); P,0.005 (Mph+IFNg vs CFP10+IFNg), P,0.005
(Mph+IFNg vs CFP10+IL-12); P,0.03 (CFP10 vs CFP10+IFNg), P,0.05
(CFP10 vs CFP10+IL-12).
doi:10.1371/journal.pone.0002869.g009
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teria infected CFP10-DCs showed higher expression of chemo-

kines-TARC and eotaxin-that promote suppressor responses. The

expression of type 1 IFNs that suppress pro-inflammatory

responses during DC:T cell interactions [20,21], was highly

upregulated in CFP10-DCs both prior to and following infection

with BCG.

Next, to give functional relevance to the above observations we

tested whether increased expression of RANTES or IP-10 in DCs

would contribute towards enhanced clearance of mycobacteria

from infected macrophages. An important function of DCs is to

prime T cells [5] that then mediate effector functions, e.g. activation

of infected macrophages in the case of M. tb infection [22]. Our

results showed that T cells activated by RANTES or IP-10

conditioned CFP10-DCs, harbor a Th1 phenotype and mediate

enhanced killing of BCG from infected macrophages when

compared with untreated CFP10-DCs. In fact, T cells from

unconditioned CFP10-DCs enhanced CFU loads in macrophages

perhaps as a result of enhanced IL-10 production from T cells,

thereby reiterating our earlier observations for a negative role of

CFP10-DCs in mediating protective responses to mycobacteria

[35]. In addition, we also showed that T cells recruited by RANTES

and IP-10 conditioned CFP10-DCs mediate effective killing of

mycobacteria inside macrophages. These results have important

bearings on the ability of chemokines RANTES and IP-10 in

conditioning DCs to prime effector T cell responses both at the level

of recruitment and subsequently at the level of effector functions

leading to elimination of mycobacteria from macrophages.

To test proof of principle, we then tested the ability of RANTES

and IP-10 conditioned CFP10-DCs to clear an established

infection in mice. We showed that while unconditioned CFP10-

DCs were ineffective in clearing M. tb infection, RANTES and IP-

10 conditioned CFP10-DCs mediated effective clearance of M. tb

infection in mice that was as effective as treatment with drugs, thus

giving physiological relevance to the data obtained thus far.

An important aspect that regulates chemokine expression and

effector functions is the cross-regulation by cytokines. Cytokines

such as IFN-c directly induce the expression of chemokines [36].

We therefore explored this aspect in CFP10-DCs and its effects on

clearing M. tb infection. We showed that IFN-c treatment restored

the downregulation of RANTES and IP-10 levels from CFP10-

DCs. We had earlier shown that mycobacterial stimulation of

CFP10-DCs downregulates the expression of IL-12p40 and IFN-c
such that conditioning CFP10-DCs with these cytokines induced

Th1 responses [9]. We extended those observations to the present

experimental set up and showed that T cells activated from IL-

12p40 and IFN-c conditioned CFP10-DCs indeed mediated

killing of virulent M. tb H37Rv inside macrophages. Further, IL-

12 conditioned CFP10-DCs resulted in clearance of in vivo M. tb

infection that was 3 fold better than that obtained following

treatment with drugs.

It has been reported that ligation of IL-12 on the IL-12 receptor

on monocyte derived DCs results in the upregulation of IL-12p40

[37]. Further, IL-12 treatment of DCs also results in the activation

of a number of signaling molecules such as Janus kinase 2, Tyk2

kinases and the recruitment of several tyrosine phosphorylated

proteins to IL-12Rb, together with the activation of Stat3 and

Stat4 transcription factors. In addition, IL-12 conditioning of DCs

also increases the expression of many pro-inflammatory cytokines

such as TNF-a, IL-1b, IL-6 and IFN-c. Grohmann et al [38] also

reported that IL-12 directly acts on DCs to activate the

transcription factor NF-kB resulting in increased secretion of IL-

12 from DCs. This indicates that IL-12 acts on the IL-12 receptor

to program DCs for mounting pro-inflammatory responses. In the

light of the above our data indicate that IL-12 conditioning of

CFP10-DCs would result in the restoration of IL-12p40 levels that

are downregulated following mycobacterial stimulation; further

suggesting that one of the mechanisms of protection offered by IL-

12 conditioned CFP10-DCs, when they come in contact with M. tb

in infected mice, could be the activation of signaling molecules and

increased expression of pro-inflammatory cytokines that would

collectively program CFP10-DCs to induce protective responses.

This would result in better clearance of M. tb from cytokine

conditioned CFP10-DCs as opposed to poor clearance from

unconditioned CFP10-DCs.

The above results emphasize the importance of pro-inflamma-

tory Th1 responses from antigen specific DCs during M. tb

infection. The characterizing of Th1/Th2 profiles during various

stages of tuberculosis infection has exemplified the importance of

the critical balance this ratio exerts in regulating the onset,

progression and clearing of infection. A number of studies in

humans indicate a prevalence of Th2 inducing cytokines at sites of

infection with the progression of disease [40–42]. In addition,

chemotherapy induces a change from a Th0 to Th1 cytokine

profile. [43,44]. It was also observed that when a Th2 response is

superimposed upon a pre-existing Th1 response, the resulting cell-

mediated inflammatory site becomes sensitive to cytokine-

mediated damage. This indicated a role for a Th2 component in

the immune response of tuberculosis patients. Therefore, it has

been proposed that one should aim to switch off this Th2

component [45–47].

The results presented by us in this study in a sense have

achieved a superimposition of pro-inflammatory Th1 responses

over suppressor Th2/Th0 responses that eventually mediated

clearing of the infection. This was made possible by the use of

chemokine (RANTES and IP-10) or by cytokine (IFN-c and IL-12)

conditioned antigen specific CFP10-DCs, that induced pro-

inflammatory responses in a Th2/Th0 environment culminating

in effective clearance of an established infection.

DCs have shown lot of promise in providing protective

immunity to many disease conditions including mycobacterial

infections [48]. Antigen pulsed DCs have been used to monitor

immune responses during M. tb infection [49]. In a monkey model

of tuberculosis, Marino et al. [50] demonstrated the importance of

early sensing of M. tb infection by DCs, their migration to the

lymph nodes and T cell trafficking. It was demonstrated that for

effective protection, an early activation and migration of DCs to

draining lymph nodes is required. This would lead to stimulation

of antigen specific T cells and delays in any of the above could

significantly alter the outcome of mycobacterial infections.

Further, it was emphasized that new and better vaccines should

elicit a fast DC turnover at sites of infection together with strong

DC activation ensuring maximum antigen presentation to T cells

that result in the production of key cytokines required for inducing

protective immunity.

These results emphasize the role of DCs in mediating protective

responses to M. tb. However, studies on the role of DCs offering

protection in the context of an established M. tb infection that is

reminiscent with the physiological scenario have not been

conducted. To this end, our results indicate the potential of antigen

specific conditioned DCs to induce protective immune responses to

an established infection and add support to the observations by

Marino et al [50] who emphasize on the roles of chemokines and

cytokines and T cell activation for achieving the same.

In summary, our results indicate that antigens such as CFP-10

are secreted by M. tb and induce the differentiation of DCs at sites

of infection. Following interactions with mycobacteria, CFP10-

DCs downmodulate the levels of pro-inflammatory chemokines

and cytokines and display changes in the levels of key second
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messengers such as calcium [Figure 11]. This not only leads to the

development of suppressor T cell responses to mycobacteria, but

also results in these DCs serving as a harbor for mycobacterial

survival and multiplication [17,35]. Conditioning CFP10-DCs

with pro-inflammatory chemokines or cytokines reverses these

changes [Figure 11, box]. Conditioned DCs activate T cells that

mediate effective killing of mycobacteria from macrophages.

Importantly, in vivo transfer of conditioned CFP10-DCs offers

protective immunity to an established M. tb infection in mice thus

offering alternative strategies for vaccine design and the treatment

of tuberculosis. The fact that the extent of protection was similar to

that obtained with drug treatment indicates the potential of

antigen specific conditioned DCs along with drug treatment to get

effective clearance of established M. tb infection.

Materials and Methods

Animals
Female BALB/c mice 4–6 wk of age kept in pathogen free

environment were used following approval from the Institutional

Animal Ethics Committee.

Materials
Recombinant mouse chemokines, cytokines, neutralizing anti-

bodies and ELISA kits were from R&D Systems. Antibodies for

FACS were from BD Pharmingen. Pathway specific chemokine

and chemokine receptor arrays (catalog # MM 005) along with

AmpLabeling kits (cat # L03) were from SuperArray. General

reagents were from Sigma.

Expression and purification of CFP-10
Endotoxin free CFP-10 was recombinantly expressed and

purified from E. coli as described earlier [7]. The endotoxin levels

was ,0.3 EU/mg protein.

Generation of DCs
DCs were differentiated from lymphocyte2 and I-A2 bone

marrow precursors with either 15 ng/ml GM-CSF or 20 mg/ml

CFP-10. This method gives a homogenous population that is 99%

DCs with negligible contaminating monocytes/macrophages [7,17].

Infection of DCs with M. bovis BCG
M. bovis BCG or M. tb H37Rv were grown in Middlebrook 7H9

liquid medium supplemented with OADC (oleic acid/albumin/

dextrose/catalase) with 0.05% Tween 80. DCs were infected with

BCG at a Multiplicity of Infection (MOI) 1 and chemokines and

cytokines were measured by ELISA. For some experiments

macrophages were infected with either 1 MOI BCG or 1 MOI

M. tb H37Rv for indicated times.

Figure 11. Conditioning CFP10-DCs with chemokines or cytokines induces protective responses. Following infection by M. tb and their
sequestration inside alveolar macrophages, antigens such as CFP-10 are secreted. CFP-10 induces the differentiation of DCs. CFP10-DCs secrete high
levels of RANTES and IP-10. Following their interactions with mycobacteria CFP10-DCs reverse their phenotype and secrete low levels of RANTES, IP-
10 and IL-12p40 and display poor calcium influx. This leads to increased survival of mycobacteria and the induction of suppressor T cell responses.
Box, conditioning CFP10-DCs with either RANTES and IP-10 or IL-12 and IFN-c induced pro-inflammatory T cell responses and T cells activated by
these DCs mediate killing of M. tb inside infected macrophages. In addition, adoptive transfer of chemokine and cytokine conditioned CFP10-DCs into
mice harboring an active M. tb infection results in clearance of infection that is commensurate with drug treatment.
doi:10.1371/journal.pone.0002869.g011
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In vivo primary responses with BCG
DCs were infected with 1 MOI BCG for 24h as described

above. Following extensive washes to remove extracellular

bacteria, infected or control uninfected DCs (56106/mouse) were

injected into naı̈ve mice subcutaneously at base of tail. Seven days

later the inguinal lymph nodes were excised and 56106 cells/ml

were cultured in RPMI 1640 medium with 10% FCS for 48h and

cytokines in culture supernatants were scored by ELISA.

Electrophoretic Mobility Shift Assay (EMSA)
20 mg of nuclear extract prepared as described earlier [7] from

DCs stimulated with 1 MOI of BCG for various times was

incubated with either 250 fmol of 32P-end-labeled double stranded

oligonucleotide corresponding to either -67 to -99 in the RANTES

promoter [13] or 32P-end-labeled double stranded oligonucleotide

corresponding to -99 to -118 in the IP-10 promoter [14] for

15 min at 37oC. The incubation mixture included 3 mg of double

stranded poly dI-dC in a binding buffer (25 mM Hepes pH 7.9,

0.5 mM EDTA, 0.5 mM DTT, 1% Nonidet P-40, 5% glycerol,

50 mM NaCl). The DNA-protein complex was separated from

free oligonucleotide on a 5% native polyacrylamide gel using

buffer containing 50 mM Tris, 200 mM glycine (pH 8.5) and

1 mM EDTA. Blots were visualized using a phosphoimager

(Molecular Dynamics, Typhoon (210) and bands were quantified

using the inbuilt ‘IMAGEQUANT TL’ software.

Estimation of intracellular calcium levels
Intracellular calcium levels were monitored as described

recently [17]. Briefly, either 26107/ml GM-CSF-DCs or

CFP10-DCs were loaded with 1 mM FLUO-3-AM for 45 min at

37uC in culture medium. Labeled cells were stimulated with 1

MOI BCG and real time increase in intracellular calcium levels

were monitored immediately over a period of 5 min by flow

cytometry using FACSCalibur (Beckton & Dickinson) and the data

were analyzed employing the CellQuest Pro software. For some

experiments CFP10-DCs were incubated with 5 ng/ml recombi-

nant RANTES or IP-10 for 12h, while GM-CSF-DCs were

incubated with 10 mg/ml neutralizing monoclonal antibody to

RANTES or IP-10 for 2h, prior to stimulation with BCG.

Microarray experiments and analyses
Total RNA was enriched from CFP10-DCs or GM-CSF-DCs

infected for 24h with 1 MOI BCG. GEArray Q Series mouse

chemokine and receptor gene array from SuperArray was employed

along with the Amplabelling kit. These are cDNA arrays containing

a total of 67 chemokines and chemokine receptor genes along with

house keeping genes. All steps were carried out strictly following the

manufacturer’s instructions. Blots were visualized using a phos-

phoimager (Molecular Dynamics, Typhoon 210) and bands

quantified using the inbuilt ‘IMAGEQUANT TL’ software.

Immunization of mice with BCG for T cell enrichment
Mice were immunized subcutaneously at base of tail with 16106

BCG/mouse. Seven days later T cells from the inguinal lymph nodes

were enriched as described before [7]. Briefly, B cells and MHC class

II+ cells were depleted by two rounds of incubation with CD19+ and

I-A+ MACS beads. The purity of the enriched T cells was 98% as

ascertained by FACS. The percentage of I-A+ cells was ,0.05%.

Migration of antigen specific T cells to chemokine
gradients

CFP10-DCs or GM-CSF-DCs were infected for 24h with 1

MOI BCG. Culture supernatants were filtered through 0.2 mM

membrane and 0.6 ml placed in the lower chamber of a Transwell

apparatus (Corning, USA catalog # 3421) fitted with a 6 mm

diameter membrane having a 5 micron pore size. In the upper

chamber, 0.16106 enriched T cells from BCG immunized mice in

0.1 ml culture medium were added. For some groups CFP10-DCs

were conditioned with 5 ng/ml recombinant RANTES or IP-10

for 12h prior to infection with BCG. Following 2h of incubation,

the cells migrated into the lower chamber were harvested and

counted. T cells were then incubated with BCG infected

macrophages as described below.

In vitro clearance of mycobacteria from macrophages by
DC-activated T cells

CFP10-DCs were conditioned with either 25 ng/ml RANTES

or IP-10 for 12h prior to infection with BCG. Alternatively,

CFP10-DCs were conditioned with 2 ng/ml IFN-c or IL-12p70

for 2h or transformed with retrovirus expressing IFN-c or IL-

12p40 for 12h prior to infection with BCG. Conditioned BCG

infected CFP10-DCs were co-cultured for 48h with BCG specific

T cells enriched from immunized mice. From this DC:T cell co-

culture, DCs were depleted by MACS and T cells were cultured

for 48h with peritoneal macrophages that were earlier infected for

24h with either 1 MOI BCG or 1 MOI M. tb H37Rv. For some

experiments, T cells recruited by RANTES or IP-10 conditioned

BCG infected CFP10-DCs were cultured with BCG infected

macrophages for 48h. Cells were lysed and lysate was plated onto

7H11 agar plates in serial dilutions. Colony Forming Units (CFU)

were determined 2–3 week later.

Infection of mice with M. tb and adoptive transfer of DCs
Groups of naı̈ve mice (5 mice/group) were infected with 16106 M.

tb H37Ra via the tail vein. 24h later one group of mice were sacrificed

and lung homogenates were plated onto 7H11 agar plates for

confirming establishment of infection. Seven days post infection,

106106 uninfected DCs were injected into the tail vein of mice. A

repeat injection with the same number of uninfected DCs was carried

out 7 days following the first transfer. Seven days following the 2nd

transfer, mice were sacrificed and lung and spleen cells were enriched

using a homogenizer. An aliquot of the homogenate was lysed and

plated onto 7H11 agar plates in serial dilutions for CFU monitoring.

Retroviral transformation of DCs
Splenocytes from naı̈ve mice were stimulated with concanavalin

A. mRNA was enriched and used to generate full-length cDNAs for

IL-12p40 and IFN-c by RT-PCR. The cDNAs were then separately

cloned into pLNCX2 retroviral vector (CLONTECH, San Diego).

The recipient cell line PT67 was then transfected with the plasmid

to generate replication incompetent recombinant retroviruses

expressing IL-12p40 or IFN-c. CFP10-DCs were transformed with

IL-12p40 or IFN-c expressing retroviruses for 12h and expression of

cytokines (Figure S7) was monitored by RT-PCR.

Treatment of M. tb infected mice with Drugs
Following 7 days of infection mice were treated with oral

administration of Isoniazid 25 mg/Kg-body-weight, Ethambutol

100 mg/Kg-body-weight and Rifampicin 20 mg/Kg-body-weight

essentially following Nikonenko et al. [51]. A repeat dose was given

7 days after and on every alternate day till mice were sacrificed.

Statistical Analysis
Student’s ‘t test was performed to test the statistical significance

of the differences in means of various groups. In all experiments P

values,0.05 were considered as significant.
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Supporting Information

Figure S1 CFP10-DCs and GM-CSF-DCs show similar matu-

ration and uptake of BCG. For Panel A, BCG infected CFP10-

DCs or GM-CSF-DCs were stained for surface expression of

MHC class II (purple), MHC class I (orange), CD54 (green), CD40

(blue) CD86 (black) and CD80 (red) and analyzed by FACS. Data

are expressed as levels of mean fluorescence intensity (MFI)

relative to uninfected controls. Panel B shows Dil C 18 labeled

BCG infected GM-CSF-DCs (left panel) and CFP10-DCs (right

panel). The thick lines and thin lines in both the panels represent

infected and uninfected DCs, respectively. Data from one of four

independent experiments are shown.

Found at: doi:10.1371/journal.pone.0002869.s001 (0.16 MB TIF)

Figure S2 LPS induces activation of CFP10-DCs and GM-CSF-

DCs. CFP10-DCs or GM-CSF-DCs were either stimulated with

0.5 mg/ml LPS or infected with 1 MOI BCG for 24h. RANTES

and IP-10 levels in supernatants were measured. Data from one of

two independent experiments are shown.

Found at: doi:10.1371/journal.pone.0002869.s002 (0.08 MB TIF)

Figure S3 MTSA and ESAT6 form a tight 1:1 complex. Far UV

Circular Dichroism spectra of MTSA (profile a), ESAT6 (profile b)

and MTSA:ESAT6 heterodimer (profile c). The MTSA and

ESAT6 dimer was generated following Renshaw et al. 2002, J.

Biol. Chem. 277: 21598-21603. The spectrum was generated for

10 mM MTSA or ESAT6 or MTSA:ESAT6 dimer in 25 mM

NaH2PO4 buffer at pH 6.5 using a JASCO spectrometer model

J810 as described by Renshaw et al. 2002. The spectra were

recorded at 250C in a 2 mm path length cell from 190 to 250 nm

at a scan speed of 100 nm/min, with each spectrum representing

an average of 4 accumulations. The spectra for all three proteins

match those reported by Renshaw et al. 2002. While MTSA

displays a unstructured random coiled polypeptide, ESAT6 and

the MTSA:ESAT6 dimer display profiles typical of proteins with a

helical structure

Found at: doi:10.1371/journal.pone.0002869.s003 (0.07 MB TIF)

Figure S4 DCs differentiated with CFP10:ESAT5 dimer

downregulate RANTES and IP-10 expression upon BCG

infection. DCs were differentiated with CFP-10 and ESAT-6

dimer (Dimer-DCs) and subsequently infected with 1 MOI BCG

for 24h. Culture supernatants were screened for the levels of

RANTES or IP-10 by ELISA.

Found at: doi:10.1371/journal.pone.0002869.s004 (0.07 MB TIF)

Figure S5 CFP10-DCs show reduced recruitment of NF-kB to

RANTES and IP-10 promoter. Either CFP10-DCs or GM-CSF-

DCs were infected with 1 MOI BCG for indicated times. 20 mg of

nuclear extracts were incubated with 32P-end-labeled oligonucle-

otide from the RANTES promoter (Panel A) or the IP-10

promoter (Panel B) and EMSA was performed. FP depicts free

probe. Panel C shows a representative of cold competition with

wild-type (wt) and mutant (mut) consensus NF-kB probe in EMSA

with the IP-10 promoter. Numbers below EMSA represent

relative intensities of the bands.

Found at: doi:10.1371/journal.pone.0002869.s005 (0.18 MB TIF)

Figure S6 CFP10-DCs show reduced recruitment of CD69+
CD4+ T cells. GM-CSF-DCs (Upper panel) or CFP10-DCs

(Lower panel) were uninfected (Left panel) or infected (Right

panel) with BCG for 24h. Culture supernatants (0.6 ml) were

placed in the lower chamber of a Transwell apparatus fitted with a

6 mm diameter membrane having a 5.0 micron pore size. In the

upper chamber 0.16106 BCG specific enriched T cells in (0.1 ml)

were added. Following 2h of incubation the cells migrated into the

lower chamber were stained for the surface expression of CD4 and

CD69. One of three independent experiments is shown.

Found at: doi:10.1371/journal.pone.0002869.s006 (0.07 MB TIF)

Figure S7 DCs transformed with retrovirus encoding IFN-

{lower case gamma or IL-12p40 express mRNA of the

transformed cytokines. A, CFP10-DCs were infected with either

a control retrovirus (V) or retrovirus expressing IFN-{lower case

gamma (IFN) or IL-12p40 (IL12) for 12h. Total RNA was

enriched from cells and subjected to RT-PCR for full-length

expression of IFN-c or IL-12p40 mRNA.

Found at: doi:10.1371/journal.pone.0002869.s007 (0.07 MB TIF)
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