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Antigen-induced stimulation of the immune system can generate
heterogeneity in CD41 T cell division rates capable of explaining
the temporal patterns seen in the decay of HIV-1 plasma RNA levels
during highly active antiretroviral therapy. Posttreatment in-
creases in peripheral CD41 T cell counts are consistent with a
mathematical model in which host cell redistribution between
lymph nodes and peripheral blood is a function of viral burden.
Model fits to patient data suggest that, although therapy reduces
HIV replication below replacement levels, substantial residual
replication continues. This residual replication has important con-
sequences for long-term therapy and the evolution of drug resis-
tance and represents a challenge for future treatment strategies.

The advent of highly active antiretroviral therapy (HAART) has
provided a wealth of information on the interaction between

HIV and the human immune system and is continuing to stimulate
the debate on the basic mechanisms of viral pathogenesis (1–3).
Posttherapy patterns of viral load decline, and changes in CD41 T
cell population structure inform our knowledge of heterogeneity in
within-host viral replication and immune system reconstitution. A
central paradox remains, however. How does HIV cause immune
system failure while infecting only a small overall proportion of
CD41 T cells? We address this question by placing the within-host
dynamics of HIV replication within the context of an immune
system that is heterogeneously structured in terms of the distribu-
tion of cell turnover rates by diverse and repeated antigenic
stimulation. We use a model of antigen-driven T cell proliferation
(4–8) to show that HIV infection can reduce the ability of a single
antigen-specific activated CD41 T cell subpopulation to help
antigen clearance. The proliferation rate distribution of the entire
CD41 T cell population then emerges naturally from a consider-
ation of the effect of constant immune system stimulation by
multiple antigens. Inclusion of such population heterogeneity
within a model of HIV replication in the lymph nodes is then shown
to provide a conceptual framework capable of explaining the
following key observations: a rapid multiphase decline in HIV
RNA levels after treatment (9–15); a rapid initial rise in CD41 T
cells after treatment, followed by a phase of slower recovery
(16–18); a low prevalence of HIV-infected CD41 T cells in the
peripheral blood and lymph nodes, as measured by HIV DNA
levels (19–24); an increase in viral load after antigenic stimulation
induced by vaccination (25–30); and faster CD41 T cell replication
after therapy than before treatment (31).

One key point arising from this framework is that the CD41
T cell population itself—not other cell classes—can provide the
main reservoir (32–35) of long-lived infected cells, which have
been shown by earlier models (36, 37) to be necessary to describe
the observed multiphase posttreatment decline in HIV RNA
levels. The hypothesis that long-lived CD41 T cells are the
dominant infected cell reservoir has recently received support
from the results of studies (35, 38–40) of the effect of IL-6, tumor
necrosis factor-a, and IL-2 on infected cell populations. Other

cells (3, 36, 41, 42), such as macrophages (32) and follicular
dendritic cells (24), are not precluded from playing a role, but for
simplicity are ignored in the analyses described below.

We assume that CD41 T cell susceptibility to HIV infection,
infected cell life time, and viral production rates increase as a
function of cell proliferation rate, an assumption supported by
observations that CD41 T cells are most susceptible to viral entry
when dividing and that progress via the postinfection virus life cycle
is slowed within resting cells (5–7, 43). The proportion of resting
CD41 T lymphocytes with integrated HIV DNA (some of which
can produce infectious virus) is reported to be limited, but their
numbers are higher than the number of infected macrophages (32).
Furthermore, although the precise role of CD41 T cells with
unintegrated HIV DNA remains unclear, such cells may also
provide another slowly replicating HIV reservoir.

Unlike earlier work (36, 37, 41, 44), our analysis does not assume
that drug treatment regimens prevent all viral replication, thus
allowing for comparisons between different treatment protocols.
We illustrate how estimation of the absolute degree to which drugs
inhibit viral replication is complicated by the dependence of the
posttreatment rate of viral decay on the pretreatment reproductive
potential of HIV. Another distinct aspect of our analysis is that
parameters are estimated by simultaneously fitting the model to
observed posttreatment measures of viral load and CD41 T cell
counts from a number of patients.

We start with the description of a simple model of T cell
proliferation via antigenic stimulation, before turning to the
dynamics of cell infection and death. The complexity of explicitly
modeling quiescent and activated naı̈ve and memory cell pools
is avoided by describing all cells in an antigen-specific CD41 T
cell population, xi (using dimensionless state variables), in terms
of their mean activity (proportional to proliferation rate), «(ai).
This variable is assumed to be a simple logistic function of
antigen density, ai, such that

dxi

dt
5 m«~ai!xiF1 2

xi

g«~ai!
G

dai

dt
5 hai 2 sxiai

«~ai! 5 «min 1 ~1 2 «min!
ai

ai 1 amax
. [1]

Abbreviations: HAART, highly active antiretroviral therapy; RTI, reverse transcriptase in-
hibitor; AZT, 39-azido-39-deoxythymidine.
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The form of relationship between « and ai is chosen such that
activity increases linearly at low antigen densities but saturates
to one for high antigen densities, giving a maximum proliferation
rate of m per day. The population size of the antigen-specific T
cell population is regulated through a logistic death rate such
that the maximum population size increases proportionally with
activity, «(ai), up to a maximum size of g (typically up to 1% of
the total T cell population size, ignoring cases of superantigens
such as cytomegalovirus). This formulation captures the rapid
die-away of activated proliferating cells after antigen clearance
(45) without the need to explicitly model apoptotic mechanisms
and memoryyeffector cell type differentiation. Antigen clear-
ance occurs at a rate proportional to the density of antigen-
specific CD41 T cells. The model has three types of behavior
depending on the replication rate, h, of the antigen (i.e., a
pathogen). If h , sg«min, antigen will eventually be eliminated
completely, and the antigen-specific memory cell population size
will fall to the baseline (quiescent memory cell) level of g«min,
maintained by a ‘‘quiescent’’ proliferation rate m«min. For sg«min
# h , sg, antigen will be controlled but not eliminated, and the
memory cell population size will reach an equilibrium somewhat
above the baseline level. If h . sg, then the immune system is
unable to control antigen growth (i.e., immune failure); thus, sg
represents the threshold replication rate for immune escape.

When HIV is introduced into the system, this threshold is
lowered proportionately to the viral burden induced. More
precisely, if the susceptibility of a maximally active cell to
infection is b (see Eq. 2 below), then the threshold replication
rate for immune escape is reduced by a factor of approximately
1 2 bv

m
, where v is the viral load. The model therefore captures

a key aspect of HIV pathogenesis as well as progressively
decreasing immunocompetence with increasing viral load (46).

Fig. 1A shows the simulated CD41 T cell proliferation
response (in the absence of HIV) to antigenic stimulation for the
case when antigen can be cleared completely. The activity of the
antigen-specific CD41 T cells remains high while the population
expands during the process of antigen clearance, before decaying
(along with the population size) to the slow turnover rate
characteristic of quiescent memory T cells. Fig. 1 B and C shows
how extending this framework to simulate specific CD41 T cell
responses against random exposures to multiple antigens gives
rise to heterogeneity in the proliferation rates of the antigen-
specific CD41 T cell populations, depending on when in the past
they were last challenged by antigen. All CD41 T cells outside
the actively replicating memory populations are assumed to
turnover at the low baseline rate of quiescent cells. By averaging
over all possible antigen-challenge event times, a continuous
distribution can be obtained for the proliferation rate of non-
naı̈ve CD41 T cells. Interestingly, this distribution is bimodal,
with the great majority of cells being quiescent (lowest prolif-
eration rate) and most of the rest being highly active (highest
proliferation rate). Hence, the model—without explicitly mod-
eling CD41 T cell activation processes (47)—effectively gener-
ates quiescent (memoryynaı̈ve) and active T cell pools.

The effect of this heterogeneity in CD41 proliferation rates
on overall HIV dynamics can be assessed by introducing HIV
into a system consisting of thousands of such antigenic-specific
populations. However, although such an approach may be
necessary to model long-term HIV pathogenesis, a reasonable
description of short-term posttherapy dynamics can be obtained
by neglecting individual antigen responses and activationy
deactivation processes and approximating the dynamically gen-
erated proliferation distribution described above with a static
bimodal parametric form, f(«). Denoting the density of unin-
fected cells with activity « (which varies from «min to 1) by x(«)
and the proportion of infected cells by y(«), our model becomes

dx~«!

dt
5 «mx~«!F1 2

n~«!

f~«!
2 L~v!G

dy~«!

dt
5 p«mx~«!L~v! 1 «my~«!F ~2p 2 1! 2

n~«!

f~«! G
dya

dt
5 ~1 2 p!mE«@L~v!x~«! 1 y~«!#d« 2 dya

dv
dt

5 ldya 2 cv 2 E«mx~«!l~v!d«. [2]

The model incorporates density-dependent proliferation of
CD41 T cell populations, with the equilibrium population size,
n(«) 5 x(«) 1 y(«), of cells with proliferation rate «m being
proportional to f(«). Infection occurs at a rate proportional to
cell turnover, with the saturating form of L(v) 5 vy(v 1 myb)
corresponding to a situation in which the great majority of cell
infection (and consequent viral production) occurs only when a
cell is actively dividing (nonquiescent). This functional form of
L(v) ('bvym for v ,, myb) can be analytically derived from

Fig. 1. (A) Model response of antigen-specific CD41 T cell population to
stimulation by a nonreplicating antigen (h 5 0; e.g., tetanus toxoid). (i) T cell
population size; (ii) changing population proliferation rates during antigen
clearance; (iii) antigen density. Parameter values: Initial dose 5 0.1; s 5 50 per
day; m 5 2 per day; g 5 1024; amax 5 1026; «min 5 0.0005. (B) Schematic
illustration calculated by using stochastic model of how constant random
exposure to multiple antigens leads to a cross-sectional distribution of anti-
gen-specific subpopulation activities at a given time t0, which consists of large
numbers of low activity memory cells (from past antigen exposures) and a few
highly active cells aiding clearance of recently acquired antigens. Curves
shown are from a random multiple antigenic stimulation of a CD41 T cell
population consisting of 1,000 antigen-specific subpopulations with dynamics
described by Eq. 1, assuming that random antigen replication rates are drawn
from an exponential distribution with mean of 0.1 per day. (C) An example of
such a dynamically generated distribution calculated by averaging over 10,000
realizations of the simulation model. The finite width of the low activity side
of the distribution reflects the range of equilibrium memory cell activity levels
required to control replicating antigen. The bimodality of such distributions
can be proved analytically. Other parameters are as described for A.
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more complex models that explicitly describe the quiescent and
active phases of the cell cycle. Once a cell is infected, we assume
either that it immediately starts producing large amounts of virus
(burst size l) and is cleared without further division (the cell
class ya) or that, with a low probability (32), P, it survives the cell
replication cycle and enters a longer-lived pool of ‘‘latently’’
infected cells producing little or no virus until cell replication
occurs once more. For simplicity, we assume here that such
infected cells produce no virus while quiescent, and then reenter
the virus-producing infected cell pool, ya, on next dividing, again
with probability 1 2 P. We are therefore effectively neglecting
the effect of any permanently nonproductive pool of infected
cells (32), because it does not contribute to viral dynamics. Also,
we ignore the nonproductive eclipse period (which might be as
long as 1 day) after cell infection, because this period has little
effect on dynamics occurring on the time scale of weeks to
months. Lastly, note that the population variables in Eq. 2 are
normalized such that the total equilibrium CD41 T cell popu-
lation size is one in the absence of HIV; thus, all state variables
need to be multiplied by N, the (quasi)equilibrium number of
CD41 T cells in 1 ml of plasma, to be compared with data.

The clearance rates of actively infected cells and free virus are
denoted d and c, respectively. We would emphasize that precise
estimation of these parameters from posttherapy declines in viral
load is extremely problematic, because both contribute in similar
ways to the overall decay rate of virus after initiation of
HAART. Furthermore, in fitting to a single patient alone, both
parameters cannot be readily distinguished from the drug effi-
cacy, unless the crude assumption that drugs inhibit 100% of
viral replication is made. However, if data from multiple patients
are fitted simultaneously, drug efficacy can be somewhat better
resolved, under the assumption that the considerable variation
between patients in the rate of decline of viral load is caused by
differences in drug effect. We here model reverse transcriptase
inhibitor (RTI) action through a multiplicative reduction factor
affecting the transmission coefficient, b, and protease inhibitor
action by a reduction in the production rate of infectious virus,
l, and the addition of a class of noninfectious virus.

Redistribution between the lymph nodes and peripheral blood
is one explanation for the observed increases in peripheral
CD41 T cell numbers in the first 3–4 weeks of HAART (16–18),
the suggestion being that HIV-induced cell retention in lym-
phoid tissues is reduced as viral load declines. We model these
transport processes by denoting the total CD41 T cell popula-
tions in these compartments as TL and TP respectively. Then,

dTL

dt
5 2

dTP

dt
5 fPTP 2 fLTL f TP <

fL

fP
TL, [3]

where, fL and fP are, respectively, the transport rates from
lymphoid tissues to the peripheral blood and vice versa, and the
second equality holds so long as these rates are large compared with
those of other dynamical processes. HIV-induced cell retention can
be modeled by expressing fL as a decreasing function of viral load.
A simple suitable functional form is fLyfP 5 0.02y[1 1 (b 2 1)y(1
1 d log(vy106)], where b measures the degree of cell retention in the
lymph induced by a viral load of 106 per ml, and d determines how
retention declines with viral load. When v 5 0, fLyfP ' 0.02,
corresponding to an assumption that 2% of CD41 T cells reside in
the peripheral blood for an uninfected individual. In this context,
Eq. 2 then reflects HIV dynamics in the lymph, with N being the
equilibrium number of CD41 T cells in 0.02 ml of lymph. This
model of adherence empirically captures trends in CD41 T cell
numbers well but offers little insight into the processes controlling
adherence. More mechanistic models are therefore one topic of
ongoing research.

For model validation and parameter estimation, we used maxi-
mum likelihood methods to fit to posttherapy peripheral blood HIV

RNA levels and CD41 T cell numbers from nine patients—three
in each of three HAART treatment groups (see Appendix). Fur-
thermore, we coupled the model to a single antigen-specific CD41
T cell population with dynamics as described by Eq. 1 (but with the
addition of HIV), to allow fitting to averaged viral load data from
10 patients who were given a booster dose of tetanus toxoid (30).
The model was fitted to results from the nine patients and the
averaged viral load data after immunization simultaneously, allow-
ing most parameters to be common to all patients and only a few
to vary between patients. The results presented here use a discrete
form of the model with two proliferation rate classes corresponding
to the two peaks of the dynamically generated proliferation rate
distribution (Fig. 1B). Better fits can be obtained with finer
stratification of the cell activity spectrum but at a high computa-
tional cost.

Fig. 2 shows the good correspondence between model fits and
posttherapy viral load and CD41 data obtained, and Tables 1–3
give the corresponding maximum likelihood parameter esti-
mates (e.g., viral half-life and infected cell half-lives). The figure
should be regarded as demonstrating model validation rather
than being the primary goal of this work, but Tables 1–3 present
the key numerical results arising from the conceptual framework
developed. For all patients, between 1.5 and 3.5% of CD41 T
cells are estimated to be proliferating at the fastest rate of one
division per 16 h. The infected fraction of this population is
responsible for over 99% of virus production at the start of
therapy, and its clearance occurs during the first rapid phase of
viral load decline. Constraining model fits to give the low
proportion of cells infected suggested by measured HIV DNA
levels (under 0.1%; refs. 20, 21, and 39) gives parameter esti-
mates indicating that such cells produce hundreds of virions (24,
31) before dying in under a day (net clearance rate of .3 per
day). Our estimates of infected cell clearance rates for highly
productive cells differ significantly from previous estimates (9,
10, 41), largely because earlier work has always assumed that
antiretroviral therapy prevents 100% of viral replication in vivo.
The great majority of CD41 T cells are estimated to be quiescent
(with an interdivision time of approximately 500 days), and the
small proportion of these cells that are infected are estimated to
produce the very small amounts of virus responsible for the
second, slower phase of viral load decline. Free virus clearance
rates are estimated to be very large (,2-h lifetime), but the lack
of high temporal resolution data on primary viral load decline
means that we had limited information with which to estimate
this parameter. The model fit to postimmunization data illus-
trates how a relatively small antigen-induced, highly activated
cell population can increase the susceptible target cell pool
sufficiently to reproduce the sizeable postvaccination fluctua-
tions in viral load seen in many studies (25–30), providing further
support for this conceptual framework.

Model results are consistent with the view that initial post-
therapy CD41 T cell increases are largely due to cell redistri-
bution (16–18) between lymph nodes and peripheral blood,
though proliferation can also play some role, particularly if a
wider range of T cell activities are modeled. Changing prolifer-
ation rates certainly do play an important role in CD41 T cell
kinetics after the initiation of therapy. As HIV RNA levels
decline, so does the proportion of rapidly proliferating (highly
activated) cells that are infected, allowing that population to
increase in size significantly within a few weeks—though while
remaining a small proportion of the entire CD41 T cell popu-
lation. An increase in the mean rate of CD41 T cell replication
is therefore induced by the initiation of HAART, in line with
recent observations of CD41 T cell kinetics (31). However,
redistribution may explain part of this effect, given that HIV-
induced retentionyadherence of activated CD41 T cells in the
lymphoid tissues is greater than it is for quiescent cells.
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Of key clinical importance is the potential of this mathematical
framework to give insight into the degree to which different drug
regimes inhibit viral replication. For all the patients considered
here, drug action is estimated to be effective in the sense of
reducing the basic reproduction number (average number of
infected cells produced by one initially infected cell), R0, of HIV
(44, 48) within the host to below the critical threshold of one
required for sustained viral persistence (49). However, our
estimates indicate that the effect of drugs is often to push R0 only
slightly below this critical threshold, perhaps reflecting the
implicit use of this criterion in defining the minimum inhibitory
concentration and hence in determining dosage. These estimates
imply that significant residual viral replication does occur under

HAART (50, 51), with steeper and deeper first-phase declines
indicating lower levels of replication. Caution is required; esti-
mates of drug effect are confounded with the death rate of
virus-producing cells and somewhat depend on the detail with
which the CD41 T cell activity distribution is modeled (such that
assigning more activity levels can increase drug inhibition esti-
mates). However, even allowing for structural and parameter
uncertainty, residual viral replication still has important conse-
quences for the evolution of drug resistance. Because the key
factor determining the frequency of emergence of de novo
resistance is the posttherapy value of R0 (44), our results suggest
that clinical treatment should not only be aimed at reducing viral
load to below detectable limits but at doing so as rapidly as
possible so as to minimize residual replication.

Some caution should also be exercised in interpreting the
estimates of pretherapy viral b, because the model (although
capturing many aspects of pathogenesis) has been constructed to
equilibrate at the values of viral load and CD41 count corre-
sponding to patient measurements before the initiation of
therapy. In reality, these estimates may therefore more reflect
the stage of pathogenesis reached by the patient than differences
in viral virulence between patients.

Model predictions and their agreement with observed pattern
give insight into the possible effects of drug-induced activation
of CD41 T cell populations (35, 38) as a therapeutic intervention
for eliminating otherwise long-lived reservoirs of infected cells.
By activating a large proportion of all CD41 T cells, such
treatment would be expected to result in a short burst of viral
production where the previously quiescent and long-lived in-
fected cells are eliminated in a matter of days (39). Repeated
courses of drugs that stimulate CD41 T cell activation should
therefore enhance the likelihood of viral elimination from the
host. However, we predict that the outcome of such therapy
critically depends on the level of residual viral replication under
the accompanying antiretroviral therapy. If R0 is just under one
before this kind of treatment, the effect of massively increased
cell activation may push R0 above one during treatment, thereby
potentially maintaining (or even increasing) the proportion or
number of cells infected with HIV (52). Ongoing clinical studies
together with increasing experimental data on the relationships
between HIV infection, antigen responses, and T cell kinetics
will allow testing of both these predictions and many of the basic
immunological and virological assumptions underlying our
model framework.

In this article, we have developed a simple conceptual frame-
work that explains changes in viral load and CD41 T cell
abundance in patients undergoing HAART and viral load
fluctuations after immunization. This framework is consistent
with recent observations of CD41 T cell dynamics. Extensions
of this framework that explicitly model multiple antigen and
HIV-specific responses together with CD81 T cell dynamics also
have the potential to give greater insight into the population
processes underlying long-term HIV pathogenesis. Key to the
approach is the incorporation of activation heterogeneity within
CD41 T cell subpopulations caused by past and present expo-
sure to a diverse array of antigens. A simple model of T cell
proliferation under repeated and diverse antigenic exposure
predicts a bimodal distribution in division rates. Thus, the CD41
T cell population essentially consists of one group of fast dividing
cells and one group of slowly replicating cells. The latter provides
a reservoir for HIV-1, whereas the former harbors the majority
of the viral population. By using sophisticated parameter esti-
mation techniques based on fitting to many patients simulta-
neously, viral turnover rates are in reasonable agreement with
earlier estimates (9, 10, 41), but estimates of infected cell lifetime
and of the impact of HAART on viral replication rates differ
significantly, with the apparent precision of earlier estimates
having been shown to be largely due to restrictive model

Fig. 2. Best fit of within-host HIV replication model to observed post-HAART
changes in HIV RNA levels and CD41 T cell counts in 9 patients in three therapy
studies (see text) and to observed postimmunization viral load fluctuations
averaged over 10 patients who received tetanus toxoid. Maximum likelihood
methods were used to simultaneously fit the model to these data, allowing
only a few parameters to vary between patients. Note that, for HIV RNA
measurements, closed and open squares represent measurements above and
below the detectability threshold of the assay.
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assumptions. Of particular clinical significance is the prediction
that HAART may leave a residue of viral replication (51) that
may be important with respect to the evolution of resistance.
Antiretroviral therapy should therefore aim to reduce viral
burden, and hence the net replication rate, as rapidly as possible.

Appendix
All nine patients were initially naı̈ve to antiretroviral agents.
Three patients (20508, 20453, and 20452) were treated with a
combination of RTIs [Zidovudine (AZT) and Lanivudine] and
one protease inhibitor (Ritonavir; ref. 15). Blood was sampled
at 0, 2, 7, 10, and 14 days, then weekly until week 4, and then
monthly from week 6, with HIV RNA being measured by
reverse transcription–PCR (Amplicor HIV monitor, Roche
Molecular Biochemicals) in a standard protocol with an input
of 200 ml of plasma resulting in a lower detection limit of, on
average, 234 (99–670) copies per ml. Two patients (3431 and
3429) were treated with a combination of three RTIs (Nevi-
rapine, AZT, and Didanosine), and one (3419) was treated
with two RTIs (AZT and Didanosine; ref. 53). Blood was
collected at the start of treatment, at weeks 1, 2, and 4, then
every 4 weeks until week 60, and subsequently at 2-monthly
intervals, with the same HIV RNA assay described above,
except that ultracentrifuging was used to obtain a lower
detection limit of 20 copies per ml. The remaining three
patients (era008, era014, and era016) received a combination

of five drugs: four RTIs (AZT, 3TC, Abacavir, and Nevirap-
ine) and one protease inhibitor (Indinavir; ref. 13). HIV RNA
was measured by using the nucleic acid sequence-based RNA
amplification method (NucliSens HIV-1, Organon Teknika–
Cappel) in a protocol with 2 ml of plasma input and a 10-fold
RNA-input increase in the amplification step, resulting in a
lower detection limit of five copies per ml. In all nine patients,
CD41 T cells were enumerated by using immunostaining and
f low cytometry.

HIV RNA and CD41 count data and corresponding model
outputs were scaled to the approximate plasma volumes used
for measurement. The data were assumed to arise from
negative binomial distributions, where the variance was cal-
culated as the Poisson sampling variance for the sample
volume plus measurement errors estimated from earlier stud-
ies (0.5 log for RNA and 50 for CD4; refs. 54 and 55). The best
fitting maximum likelihood parameter set is that which min-
imizes 22 log(likelihood). Nonlinear minimization algorithms
were used (56), with the model being numerically integrated by
using Burlisch–Stoer methods for each point sampled in
parameter space. Approximate univariate 95% confidence
bounds were calculated by random Latin-Hypercube sampling

Table 1. Patient-Specific Fitted Parameters

Patient
Proportion of cells
in most active state

Fraction of viral
replication

prevented by
drug b N

Vaccination 0.016 (0.007, 0.028) N/A 5.11 (2.93, 12.76) 1,089 (668, 1602)
era008 0.015 (0.004, 0.034) 0.63 (0.23, 0.98) 9.95 (3.36, 208.71) 652 (294, 1677)
era014 0.030 (0.007, 0.035) 0.76 (0.24, 0.95) 8.71 (2.46, 58.07) 364 (124, 734)
era016 0.034 (0.008, 0.034) 0.36 (0.14, 0.78) 2.84 (1.98, 11.53) 1,161 (742, 1711)
20452d 0.034 (0.006, 0.035) 0.47 (0.16, 0.83) 3.19 (1.86, 22.05) 587 (323, 858)
20453e 0.031 (0.009, 0.034) 0.54 (0.16, 0.87) 4.39 (2.38, 28.85) 538 (278, 859)
20508e 0.032 (0.006, 0.034) 0.32 (0.08, 0.80) 2.82 (2.09, 30.13) 672 (417, 1019)
3419 0.008 (0.004, 0.034) 0.50 (0.47, 0.52) 13.95 (5.27, 24.52) 744 (389, 1025)
3429 0.027 (0.009, 0.035) 0.52 (0.47, 0.54) 4.36 (2.36, 10.32) 1,108 (753, 1375)
3431 0.007 (0.004, 0.034) 0.50 (0.43, 0.53) 15.97 (3.29, 30.69) 745 (394, 1020)

Parameter estimates and approximate 95% multivariate confidence bounds, together with transmission
variables derived from fitted parameters. Most parameters were fitted to have common values for all patients,
with only a few being patient-specific. Parameter estimates quoted refer to the dimensionless equations given
in the text; all state variables from these equations need to be multiplied by N to give population size
corresponding to 0.02 ml of lymphoid tissue (assuming lymphoid and peripheral blood compartments are of equal
volume).

Table 2. Parameters common to all patients

Parameter Estimate

m 2.00 (1.00, 2.00)
«min 0.0011 (0.0003, 0.0022)
l 185.80 (110, 296)
d 4.00 (0.97, 4.00)
c 11.94 (2.20, 17.80)
p 0.000026 (1026, 0.0006)
b 1.74 (1.38, 2.01)
d 0.11 (0.05, 0.18)
g 0.0075 (0.0004, 0.024)
amax 5.34 3 1024 (10210, 0.036)

See legend to Table 1. Certain parameters are assigned assumed values: h

(replication rate of tetanus toxoid) 5 0; s 5 50 per day, x0 (initial size of
tetanus-specific CD4 1 pool) 5 g«min.

Table 3. Transmission variables calculated from fitted
parameters

Patient Pretreatment R0 Posttreatment k

Ratio of
pretreatment to
posttreatment k

Vaccination 1.34 (1.16, 2.52) 0.034 (0.015, 0.059) 0.86 (0.63, 0.93)
era008 2.46 (1.17, 26.67) 0.032 (0.010, 0.070) 0.64 (0.19, 0.92)
era014 4.11 (1.30, 21.70) 0.062 (0.015, 0.070) 0.49 (0.20, 0.88)
era016 1.54 (1.13, 4.40) 0.070 (0.017, 0.070) 0.81 (0.48, 0.94)
20452d 1.72 (1.09, 5.49) 0.070 (0.015, 0.070) 0.76 (0.43, 0.96)
20453e 2.18 (1.18, 7.67) 0.065 (0.020, 0.070) 0.68 (0.36, 0.92)
20508e 1.44 (1.07, 4.68) 0.066 (0.013, 0.070) 0.83 (0.46, 0.97)
3419 2.01 (1.83, 2.03) 0.019 (0.010, 0.069) 0.70 (0.70, 0.74)
3429 1.88 (1.79, 1.91) 0.056 (0.019, 0.070) 0.73 (0.72, 0.75)
3431 1.98 (1.72, 2.03) 0.016 (0.010, 0.070) 0.71 (0.70, 0.76)

See legend to Table 1. Note that posttreatment k is restricted to be in the
range of 0.015–0.07 per day; d is restricted to be in the range of 0–4 per day;
and m is restricted to be in the range of 1–2 per day.
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of the multidimensional maximum likelihood confidence re-
gion in the vicinity of the best fit point, together with extensive
sensitivity analysis and systematic exploration of parameter
interdependencies. However, some caution should still be
exercised in interpreting these bounds, given that the exact
confidence region may be highly disconnected.
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