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Abstract: The re-expression of multiple cell cycle markers representing various cell cycle phases in postmitotic 
pyramidal neurons suggests that neurons in Alzheimer disease (AD) attempt to re-enter the cell cycle. Entry into 
the cell cycle requires activation of G1 to S phase cell cycle proteins, among which retinoblastoma protein (pRb) is 
a key regulator. pRb inhibits the transcription of cell cycle proteins in the nucleus of healthy cells by interaction 
and consequent blocking of the active site of E2F, dependent upon the phosphate stoichiometry and combination 
of the locations of their 16 potential phosphorylation sites on pRb. Therefore, to determine whether pRb is 
involved in the aberrant cell cycle phenotype in AD neurons, a systematic immunocytochemical evaluation of the 
phosphorylation status of pRb protein using antibodies specific for multiple phosphorylation sites (i.e., 
pSpT249/252, pS612, pS795, pS807, pS811 and pT821) was carried out in the hippocampal regions of brains 
from AD patients. Increased levels of phospho-pRb (ppRb) for all these phosphorylation sites were noted in the 
brains of AD patients as compared to control cases. More importantly, redistribution of ppRb from the nucleus to 
the cytoplasm of susceptible neurons, with significant localization in neurofibrillary tangles and neuritic plaques, 
was observed. Additional studies revealed extensive co-localization between phospho-p38 and ppRb, implicating 
that p38 activation may contribute to cell cycle abnormalities through pRb phosphorylation. Taken together, these 
data supports the concept of neuronal cell cycle re-entry in AD and indicates a crucial role for pRb in this process. 
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Introduction 
 
Alzheimer disease (AD) is a progressive and 
fatal neurodegenerative disease that is 
characterized by deterioration in memory and 
cognitive abilities, disturbances in behavior 
and gradual loss of the ability to communicate 
and carry out activities of daily living. The 
disease affects an estimated 4-5 million 
Americans and more than 30 million people 
worldwide [1]. Despite decades of extensive 
research, the cause of AD is not yet fully 
understood. Nonetheless, recent findings 
support the notion of mechanistic parallels 
between neurogenesis during normal 
development and neurodegeneration during 

AD [2, 3]. Although adult neurons are generally 
thought of as being in a quiescent, non-
proliferative state, it is becoming increasingly 
apparent that degenerating neurons in AD 
brains exhibit activation in cell cycle apparatus 
and are characteristic of cells re-entering the 
cell division process [4]. Evidence of this 
aberrant re-entry into the cell cycle in AD 
includes the abnormal reexpression of various 
cyclins, cyclin-dependent kinases (CDKs), and 
cyclin dependant kinase inhibitors (CDKIs) that 
potentially lead to the active expression of 
growth promoting genes [5-21]. 
 
pRb, the tumor suppressor product of the 
retinoblastoma susceptibility gene, is involved 
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in a number of cellular functions, including cell 
division, differentiation, senescence, and 
apoptosis [22]. It was the first of the three 
tumor suppressor proteins to be identified in 
the Retinoblastoma family [23]. Additional 
studies have revealed that pRb acts together 
with two other “pocket” proteins, p107 and 
p130, to inhibit proliferation in most, if not all 
cell types [24]. pRb and other pocket proteins 
exert their inhibitory effects in part by binding 
to and inhibiting the activity of critical 
regulatory proteins and transcription factors, 
including those of the E2F family, whose 
activation is necessary for the G1-S transition 
[25]. The pRb/E2F complex inhibits 
transcription of cell cycle proteins in the 
nucleus of healthy cells by blocking the active 
site of E2F promoters [26], and recent data 
suggests that this complex also participates in 
cell death via transcription-dependent or 
independent mechanisms [27]. pRb is a 
nuclear phospho-protein containing 16 
potential phosphorylation sites spanning the 
entire sequence. The binding and interacting 
ability of pRb with E2F and other transcription 
factors is governed by its phosphorylation 
state which fluctuates as the cell passes 
through different phases of the cell division 
cycle: pRb is found in a hypophosphorylated 
state (1-2 mol of phosphate per mol of pRb) in 
G0 and much of G1, is converted into a 
hyperphosphorylated state (about 10 mol of 
phosphate per mol of pRb) as the cell 
approaches the end of G1 phase and persists 
in this state through the remainder of the cell 
cycle, finally it is converted back to 
hypophosphorylated state during late M phase 
[28]. Hypophosphorylated pRb is the active 
form of pRb which binds to E2F and other 
transcription factors and inhibits cell cycle 
progression [29]. Hyperphosphorylation of pRb, 
presumably by the sequential action of various 
cyclin-CDK pairs and potentially other kinases 
such as p38 or ERK [30], causes it to 
dissociate from E2F, leading to the expression 
of E2F target genes [31] which is critical for 
cell cycle progression through the restriction 
point. Since pRb remains in its 
hyperphosphorylated state throughout the 
remainder of the cycle [32], it may also play a 
role in guiding the cell through S, G2, and M. 
During late M phase, the active 
hypophosphorylated pRb is reconstituted by 
dephosphorylation catalyzed by protein 
phosphatase 1. 
 
Prior studies demonstrated higher levels of 

pRb phosphorylated at Ser795 [ppRb(S795)] 
in AD compared to controls with ppRb(S795) 
predominantly located in the nucleus of cells 
in proximity to neurofibrillary tangles (NFT) or 
plaques but rarely colocalized with NFT 
markers [33]. It was also absent in the 
dystrophic neurites around plaques. Indeed, 
amyloid-β (Aβ) induced phosphorylation of pRb 
at serine 795 in the nucleus in vitro [34]. 
However, given that ppRb(S795) is also 
present in the hypophosphorylated form of 
pRb [35] and phosphorylation at this site alone 
does not necessarily release E2F [36], it would 
be premature to conclude, based on these 
studies, that pRb becomes hyper-
phosphorylated and cell cycle repression is 
lifted without examining the phosphorylation 
status of other phosphorylation sites. 
Therefore, in the present study, we carried out 
a systematic examination of the 
phosphorylation state of pRb using a battery of 
pRb antibodies specific for multiple 
phosphorylation sites (i.e., pSpT249/252, 
pS612, pS795, pS807, pS811 and pT821) in 
the hippocampal regions in AD brains. 
Consistent to the previous findings, we found 
an increased level of ppRb immunoreactivity in 
AD brains compared to control cases. More 
importantly, we noticed redistribution of ppRb 
to the cytoplasm of susceptible neurons with 
significant localization in NFTs and neuritic 
plaques, which suggests not only elevated 
hyperphosphorylation but also aberrant 
distribution of ppRb contributes to the 
abnormal neuronal re-entry into cell cycle in 
AD. 
 
Material and Methods 
 
Brain tissue 
 
Paraffin embedded tissue sections of 
hippocampus and neocortex were obtained 
from 12 AD cases and nine non-demented 
age-matched controls and fixed with either 
routine formalin or in methacarn (methanol; 
chloroform; acetic acid; 6:3:1). All human 
tissues were obtained from the Alzheimer 
Disease Research Center at Case Western 
Reserve University with appropriate 
Institutional Review Board approval. AD cases 
were confirmed pathologically and met the 
Consortium to Establish a Registry for Alzheimer's 
Disease (CERAD) criteria for neuropathologic 
diagnosis of AD [37, 38]. The average age at 
death was 85 years for AD cases (ages range 
from 79-91) and 69 years for controls (ages 
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Figure 1 Localization of ppRb(S795) recognizes nuclei in both pyramidal neurons and granule neurons in control 
cases (A and inset, respectively) as well as in more nuclei in both pyramidal neurons and granule neurons in AD 
cases (B and inset, respectively). In some AD cases, neuronal cytoplasm also contains ppRb(S795) (C), yet never 
in control cytoplasm. Scale bar = 50 μm.  
 
 
range from 57-81 years). The average post-
mortem interval was 29 hours for AD cases 
(range of 3-55 hours) and 25 hours for control 
cases (range of 4-46 hours). Control cases 
were also assigned by CERAD criteria and, in 
some cases, showed only age-related 
pathological structures identified with 
phosphorylated tau (AT8). 
 
Immunocytochemistry 
 
Immunocytochemistry was performed on the 
tissue sections using the peroxidase-anti-
peroxidase protocol as described previously 
[39]. Briefly, the slides were immersed in 
xylene to remove the paraffin, and then 
hydrated through graded ethanol solutions 
and the endogenous peroxidase activity 
removed with 3% H2O2 for 30 minutes. The 
sections were then incubated with 10% normal 
goat serum (NGS) in TBS at room temperature 
for 30 min to prevent non-specific binding, 
then overnight at 4°C with primary antibodies. 
Antibodies used were mouse monoclonal anti-
retinoblastoma (unphosphorylated) KAM-
CP124 (Stressgen Biotechnology, Ann Arbor, 
MI at 1:40 dilution); rabbit polyclonal 
antibodies against phosphoretinoblastoma 
protein (ppRb) pS807 , pS811, pS612, pSpT 
249/252 and pT821 (BioSource International, 
Camarillo, CA at 1:100 dilution); monoclonal 
antiserum to phosphorylated tau (AT8, Pierce 
Endogen at 1:1000 dilution; PHF1, gift of 
Sharon Greenberg at 1:1000 dilution; 12E8, 
gift of Elan Pharmaceuticals at 1:1000 
dilution); and rabbit polyclonal antibodies 
against phospho-p38 (pp38) (Cell Signaling, 
Danvers, MA, at 1:100 dilution). Following 

incubation with species specific secondary 
antibodies and peroxidase-anti-peroxidase 
complexes, the antibodies were detected with 
3, 3’-diaminobenzidine (DAB) as the 
chromogen. Some sections were pretreated 
with trypsin (400μg/mL for 10 minutes at 
room temperature) prior to application of 
primary antibodies to visualize nuclear 
localization. 
 
The specificity of ppRb(S807) antibody was 
confirmed following adsorption with the 
specific antigen (Abgent, 50μg/mL). The 
immunocytochemical procedure was repeated 
with absorbed antibody prepared by the 
overnight incubation of anti-phosphorylated 
retinoblastoma primary antibody with its 
immunizing peptide. 
 
Double staining was performed on some 
sections to directly compare the localization of 
ppRb(S807) and phosphorylated tau (12E8 or 
PHF-1), as previously described [40]. Briefly, 
the ppRb was detected with DAB using the 
peroxidase anti-peroxidase method, and the 
12E8 or PHF-1 was detected on the same 
section using the Fast Blue as chromogen 
following the alkaline phosphatase anti-
alkaline phosphatase method. Sections were 
mounted with crystal mount. 
 
Results 
 
To systematically evaluate the phosphory-
lation status of pRb protein in AD, a battery of 
pRb antibodies specific for seven phosphory-
lation sites (i.e., pSpT249/252, pS612, pS795, 
pS807, pS811 and pT821) were used. 
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Figure 2 A. Schematic representation of the pRb protein showing known phosphorylation sites. Those epitopes 
examined in this study are denoted with an (*). Epitopes found to be present in AD pathology in the present study 
are denoted in the dashed box. B. An overview of the pathological structures revealed by antisera specific for 
different phosphorylation sites spanning pRb. 
 
 
Consistent with a previous report [33], 
antisera specific for ppRb(S795) labeled 
nuclei of pyramidal neurons and granular cells 
in dentate gyrus in both control cases (Figure 
1A and inset) and some AD cases (Figure 1B 
and inset) following trypsin pretreatment. 
However, in other AD cases, the cytoplasm of 
pyramidal neurons in the hippocampus (Figure 
1C) showed some ppRb(S795) 
immunoreactivity, while in all control cases the 
cytoplasm remained unstained. Most notably, 
although ppRb(S795) was rarely associated 
with neurofibrillary pathology in AD [33], 
antibodies specific for other pRb 
phosphorylation sites demonstrated strong 
labeling of pathological structures (a 
schematic of phosphorylation sites and 
overview of staining patterns is shown in 
Figure 2). Immunolabeling with anti-
phosphoretinoblastoma protein S807 
[ppRb(S807)] antibody revealed intense 
staining of pathology in all cases of AD 
examined, specifically both intracellular and 
extracellular NFT in pyramidal neurons, 

neuropil threads, dystrophic neurites 
accumulating around amyloid plaques, and 
granulovacuolar degeneration (GVD) (Figure 
3A), while non-diseased aged patients without 
any pathology showed little immunoreactivity 
(Figure 3B). To demonstrate the specificity of 
ppRb(S807) antibody, adsorption with its 
immunizing peptide, greatly reduced the 
immunostaining (Figure 3D), compared to the 
non-adsorbed antibody on adjacent sections 
(Figure 3C). During the process of optimizing 
detection condition, there was no effect of 
different fixative (i.e., formalin or methacarn) 
on staining pattern, while, as anticipated, 
pretreatment with trypsin greatly enhanced the 
nuclear staining. 
 
The localization of ppRb(S807) to pathological 
structures is confirmed by the colocalization 
with 12E8 and PHF-1 positive structures as 
revealed by double immunocytochemistry or by 
comparison of adjacent serial sections. In the 
double staining experiment, comparison of 
ppRb(S807) with 12E8 (Figure 4B), which is 
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Figure 3 Pathological structures in AD hippocampus, namely NFT and neuritic plaques, accumulate 
phosphorylated pRb(S807) (A), while control cases show little staining (B). Adjacent serial sections of AD 
hippocampus stained with antibodies against ppRb(S807) adsorbed with its immunizing peptide (D) almost 
completely eliminated the immunostaining compared with that without adsorption (C). Asterisks indicate 
landmark vessels. Scale bar = 50 μm. 
 
 

 

specific for tau phosphorylated at Ser262 and 
is a relatively early marker for tau pathology, 
revealed some overlap, yet many cells 
contained either only ppRb(S807) or only 
12E8. Comparison of ppRb(S807) with PHF-1 
(Figure 4A), which is specific for tau 
phosphorylated at Ser396 and Ser404 and is 
a relatively late marker for tau pathology, 
revealed significantly more overlap with only a 
few neurons containing only ppRb(S807) or 
PHF-1. This was also confirmed by 
immunostaining in adjacent serial sections 
both in cases of AD (Figure 4C, D) and in aged 
control cases with some pathology (Figure 4E, 
F). 
 
Similar to ppRb(S807), antibodies specific for 
other five sites of phosphorylation along the 
pRb molecule examined in this study also 

showed distinct and strong labeling of 
pathological structures. A series of adjacent 
serial sections demonstrates the pattern of 
localization and the comparison of different 
epitopes within the same structures. Antisera 
specific for the C-terminal phosphorylation 
sites S811 (Figure 5A) and T821 (Figure 5B) 
localize to NFT, dystrophic neurites, neuropil 
threads and GVD. Most of the same neurons, 
marked by arrows, contain pRb 
phosphorylated at both S811 and T821. In 
comparison, while the ppRb(S249T252) 
epitope (Figure 5C) is present in some NFT 
and dystrophic neurites, the amount of overlap 
within the same cells as epitope ppRb(S811) 
on adjacent serial sections (Figure 5D), is not 
as apparent. Consistently, ppRb(S807) was 
found within many more pathological 
structures than these other epitopes. Adjacent 
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Figure 4 Using double-label immunocytochemistry, localization of ppRb(S807), stained brown, was compared with 
PHF-1 (blue, A) and 12E8 (blue, B). Neurons containing both phosphorylated tau and ppRb(S807) were marked by 
*. Neurons containing only ppRb(S807) (arrows), or only phosphorylated tau (arrowheads) were also marked. In 
adjacent sections of other hippocampal regions in AD, there is striking overlap of ppRb(S807) with PHF-1 (C, D 
respectively) as well as with the small number of NFT in an aged control case (E, F). Scale bar = 50 μm. 
 
 
sections show virtually all NFT stained for 
ppRb(S811) (Figure 5F) also contain 
ppRb(S807) (Figure 5E), with a greater 
number of NFT and neuropil threads 

containing ppRb(S807) only. 
 
To visualize the pRb epitopes in nuclei more 
readily, some tissue sections were pretreated 
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Figure 5 Adjacent serial sections from different cases of AD show the relationship among various phosphorylation 
sites within the same pathological structures. A, B. Antisera specific for ppRb(S811) and ppRb(T821) recognized 
pathology in most of the same neurons, arrows. In another case, an antibody recognizing ppRb(S249T 252) (C) is 
present in NFT which also contain ppRb(S811) (arrows), while additional structures contain ppRb(S811) only (D). 
In a third case of AD, ppRb(S807) (E) is present in all, and many other NFT, recognized by anti-ppRb(S811) (F). 
Scale bar = 50 μM. 
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Figure 6 Nuclear localization of ppRb is readily detected in sections of AD and control following pretreatment of 
the tissue sections with trypsin. In this figure, antisera to ppRb(S807) recognize nuclei in pyramidal neurons in a 
section from a control case, throughout the CA3, CA2 and CA1 regions (A, B, C). Conversely, in a single section 
from a representative AD case, pyramidal neuronal nuclei are positive in the CA3 area (D), while nuclei and a few 
NFT stain in the CA2 (E), and pathological structures are positive in the CA1, while the nuclei remain unstained (F). 
Scale bar = 50 μm. 
 
 

 

with trypsin. Neuronal nuclear localization was 
seen in both control and AD cases with 
antisera specific for ppRb(S807) (shown in 
Figure 6), ppRb(S249T252) and ppRb(T821) 
(not shown). Further distinguishing the AD and 
control cases was the pattern of nuclear 
localization in the CA1- CA4 areas of the 

hippocampus and entorhinal cortex as shown 
in Figure 6, which shows representative areas 
for the CA1, CA2, and CA3 area from the same 
tissue sections. Consistently, in some control 
cases with some pathology, many pyramidal 
neurons throughout the CA1-CA4 readily 
demonstrated nuclear staining for ppRb(S807) 

 
 

 

 
 
Figure 7 Nuclear membranes are often found to contain both ppRb(S807) (A, arrows) and ppRb(T821) (not 
shown). Also, GVD are also found to contain ppRb, most readily detected with antisera to ppRb(S612) (B, arrows) 
and ppRb(S811) (A, inset). Scale bar = 50 μm. 
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Figure 8 On adjacent serial sections, many NFT with ppRb(S807) (A) also contain phospho-p38, in either the NFT 
or GVD structures (B) (arrows). Scale bar = 50 μm. 
 
 

 

(Figure 6A, B, C). However, in most cases of AD, 
the nuclear localization predominantly seen in 
the CA3 (Figure 6D), was gradually replaced by 
in a systematic way by examining seven of the 
sixteen potential phosphorylation sites and 
found that all these phosphorylation sites 
demonstrated disease-specific alterations: 1) 
NFT localization in the CA2 (Figure 6E), and 
finally, in the CA1 (Figure 6F), only NFTs were 
positive, while the nuclei were left virtually 
unstained. Nuclear membranes were 
prominently labeled in some cases of AD by 
antisera specific for ppRb(S807) and 
ppRb(T821) (Figure 7A). Also, in addition to 
NFT, dystrophic neurites and neuropil threads, 
GVD were readily detected by antisera against 
ppRb(S612) (Figure 7B) and ppRb(S811) 
(Figure 7A and inset). 
 
Since p38 can phosphorylate pRb and a prior 
study demonstrated that pp38 does not 
colocalize with ppRb(S795) in AD [41], we 
sought to determine whether pp38 colocalized 
with other phospho-pRb epitopes. Indeed, 
immunostaining of adjacent sections with 
pp38 and ppRb(S807) revealed significant 
colocalization of the two proteins in the same 
neurons (Figure 8 A and B respectively). 
Specifically, some neurons positive for 
ppRb(S807) showed pp38 in the NFT or in 
GVD structures. Following trypsin pretreatment, 
some nuclei also showed pp38 
immunoreactivity. 
 
Discussion 
 
Prior studies demonstrated that Aβ induces 

pRb phosphorylation at Ser795 in neuronal 
cells and ppRb(S795) showed increased 
nuclear immunoreactivity in AD neurons [34, 
33]. However, pRb contains multiple 
phosphorylation sites and its binding to E2F 
and regulation of cell cycle progression is 
regulated by phosphorylation of these sites in 
a cumulative manner [42]. To substantiate the 
potential involvement of pRb in neuronal cell 
cycle abnormalities in AD, it is essential to 
evaluate whether pRb is indeed 
hyperphosphorylated, i.e., phosphorylation at 
multiple sites, in AD neurons. In this study, we 
determined the phosphorylation status of pRb 
phosphorylation at all of these sites is 
increased in AD; 2) increased phosphorylation 
at six sites examined (i.e., pSpT249/252, 
pS612, pS807, pS811 and pT821) spanning 
the majority of the sequence is associated with 
AD pathologies; 3) increased phosphorylation 
at multiple sites is present in the same 
pyramidal neuron; 4) although neuronal nuclei 
staining is noted for five of these sites (i.e., 
pSpT249/252, pS795, pS807, and pT821) in 
both AD and control cases, there is a disease 
specific re-distribution of these phospho-
epitopes in AD cases with a gradual 
replacement by cytoplasmic/pathological 
staining in the order of CA3-CA2-CA1. Based 
on these findings, we concluded that pRb is 
likely hyperphosphorylated and redistributed 
from the nucleus to cytoplasm in vulnerable 
neurons in AD. Since these neurons also 
demonstrate abnormal cell cycle, it is likely 
that aberrant pRb signaling plays an important 
role in this process in AD. 
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As a key G1/S regulator, the ability of pRb to 
control the cell cycle is largely attributed to 
repression of E2F transcription factors. A/B 
pocket and additional C-terminal sequences of 
pRb protein (amino acids 379-870, termed the 
‘larger pocket’) are required in binding of E2F 
and to confer growth suppression through 
pRb/E2F interaction [43]. Phosphorylation/ 
dephosphorylation at the 16 potential 
phosphorylation sites plays a specific 
regulatory role of pRb binding to E2F: 
hypophosphorylated pRb binds and repress 
E2F activity while hyperphosphorylated pRb 
releases E2F and enables cell cycle 
progression. Interestingly, two-dimensional 
phospho-peptide analysis of in vivo hypo-
phosphorylated pRb showed that 13 of the 16 
phosphorylation sites are occupied, suggesting 
that hypophosphorylated pRb is comprised of 
a complex mixture of multiple phospho-
isoforms containing a limited number of 
phosphates per molecule of pRB [35, 29]. 
Nevertheless, this same study also suggested 
the nuclear-bound hypophosphorylated pRb 
lacks phosphorylation at three specific sites 
(pT252, pT356 and pT373) compared to 
hyperphosphorylated pRb [35]. Another group 
demonstrated the binding of pRb to free E2F is 
regulated by dual mechanisms involving 
phosphorylation either at a number of C-
terminal sites or at two serines in the spacer 
domain of pRb [36]. Overall, these 
phosphorylation sites are used to both activate 
pRb by hypophosphorylation and inactivate it 
by hyperphosphorylation, dependent upon the 
phosphate stoichiometry and combination of 
locations. Therefore, it is insufficient to 
evaluate pRb signaling by examining the 
phosphorylation status of only one 
phosphorylation site. Thus, we determined the 
phosphorylation status of pRb at seven of the 
sixteen potential phosphorylation sites: two in 
the N-terminus (i.e., pS249, pT252), one in the 
spacer region (pS612) and four in the C-
terminus (pS795, pS807, pS811 and pS821), 
combination of most of these sites are 
implicated in pRb binding to E2F in prior 
studies [35, 36]. 
 
As previously reported [33], ppRb(S795) 
demonstrated increased nuclear staining in 
some AD cases compared to age-matched 
control cases. However, we also noted that 
more than half of the AD cases only 
demonstrated elevated cytoplasmic staining of 
ppRb(S795). In fact, increased cytoplasmic 
staining in AD neurons was also noted in the 

pRb phosphorylated at the other four sites (i.e., 
pSpT249/252, pS807, and pT821), 
suggesting that this is a general phenomenon 
or these sites are phosphorylated on the same 
molecules. Importantly, although the prior 
study only found a minor portion of ppRb(S795) 
was associated with NFTs which was also 
confirmed in this study, we found that pRb 
phosphorylated at the other six sites (i.e., 
pSpT249/252, pS612, pS807, and pT821) 
also demonstrated increased immuno-
reactivity in AD neurons and more significantly, 
they are associated with various neurofibrillary 
pathologies. Given that these seven 
phosphorylation sites spread throughout the 
entire sequence, our finding indicates that 
increased phosphorylation occurs throughout 
the entire sequence of pRb protein in AD 
neurons. Moreover, we also demonstrated that 
pRb phosphorylated at multiple sites is 
present in the same pyramidal neurons. 
Although the possibility that these 
observations are due to the increase in 
hypophosphorylated pRb mixture of multiple 
phospho-isoforms containing phosphates on 
each of these sites can not be ruled out, it is 
more likely that these findings suggested pRb 
is hyperphosphorylated in susceptible neurons 
in AD because 1) hypophosphorylated pRb 
lacks phosphorylation at three specific sites 
including Thr252 [35]. Our study suggested 
increased phosphorylation at Thr252 in AD 
neurons; 2) hypophosphorylated pRb is tightly 
bound to the nucleus while hyper-
phosphorylated form loosely binds to nucleus 
[44]. Indeed, changes in the subcellular 
distribution of pRb from nucleus to cytoplasm 
accompanied by alterations in its 
phosphorylation state as well as by 
cytoplasmic re-localization of E2F was 
previously reported in neurons in encephalitic 
midfrontal cortex [45]. Therefore, the 
redistribution of various ppRbs from the 
nucleus to the cytoplasm in our study suggests 
that these ppRbs are likely 
hyperphosphorylated forms. Because pRb 
hyperphosphorylation easily translates into 
E2F release and cell cycle progression in 
normal cells, our findings suggest aberrant 
pRb signaling likely contributes to the 
abnormal cell cycle re-entry and progression in 
susceptible neurons in AD. 
 
Our study demonstrated increased pRb 
phosphorylation at all sites examined. It is 
generally accepted that pRb becomes 
sequentially phosphorylated by the actions of 
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cyclin D-CDK4/6 and cyclin E-CDK2 during the 
G1 phase of the cell cycle [25]. Additional 
phosphorylation occurs by cyclin A-CDK2 
during S-phase and cyclin B-cdc2 during G2/M 
phases [46]. Notably, increased aberrant 
expression of various CDKs (i.e., CdDK, CDK2, 
and cdc2) and cyclins (i.e., cyclin D, cyclin E 
and cyclin B1) were found in AD neurons, 
many of which are also associated with 
neurofibrillary pathologies [6-10, 47]. 
Therefore, hyperphosphorylated pRb in AD 
neurons may be generated by activated cyclin 
D-CDK4, cyclin E-CDK2 and/or cyclin B-cdc2. 
One key question is whether pRb becomes 
hyperphosphorylated in the nucleus or in the 
cytoplasm in these neurons. Given the 
presence of many nuclearly-stained neurons 
for multiple phospho-pRb epitope and their 
gradual replacement by cytoplasmic/ 
pathology-stained neurons in the order of CA3-
2-1, it is likely that pRb becomes 
hyperphosphorylated in the nucleus. Then the 
next relevant question is how ppRb 
translocates to the cytoplasm in these neurons. 
Since pRb is released from its tight nuclear 
tethering once hyperphosphorylated by 
cyclin/CDKs [44] and it also binds to various 
cyclins [46], the presence of these cyclin-CDKs 
in the cytoplasm of these neurons or 
neurofibrillary pathologies implicates that the 
phosphorylation by and binding to cyclin-CDKs 
may play a role in the redistribution of pRb. 
Some CDKs phosphorylate tau in vitro and 
may be involved in tau phosphorylation and 
neurofibrillary tangles formation in vivo [48-
50]. Phosphorylation of pRb at some sites (i.e., 
pS807) and/or its translocation may be a 
relative later event compared to tangle 
formation since it shares more complete 
overlap with PHF-1, a late marker, than 12E8, 
an early marker for neurofibrillary pathology. 
Nevertheless, these likely roles of cyclin-CDKs 
in aberrant pRb signaling do not exclude the 
potential involvement of other kinases that are 
known to phosphorylate pRb such as ERK or 
p38. In fact, ERK and p38 are activated in 
vulnerable neurons in AD [51, 40, 52, 39, 53] 
and our data suggests that p38 also 
demonstrated significant overlap with 
hyperphosphorylated pRb. Given that pRb 
hyperphosphorylation during cell cycle is a 
gradual progressive process which may be 
even more so during the aberrant cell cycle 
events in AD neurons, it is very possible that 
p38 contributes to the phosphorylation of at 
least some of the phosphorylation sites. One 
interesting aspect of our findings is the 

difference in the intensity and structures 
immunolabeled by different phospho-pRb 
antibodies, especially that of ppRb(S795) 
compared to other ppRbs. Given our 
incomplete understanding of how pRb get 
hyperphosphorylated except for the known fact 
that it is a progressive process, by inference, 
this difference may suggest some sites get 
phosphorylated by specific kinases or at an 
earlier time point than other sites. 
 
In conclusion, by systematic examination of 
phosphorylation status of pRb at seven 
potential phosphorylation sites, we 
demonstrated increased phosphorylation at all 
these sites and a translocation of ppRb from 
the nucleus to the cytoplasm in susceptible 
neurons in AD. ppRb demonstrated an 
extensive association with various 
neurofibrillary pathologies and pRb 
phosphorylated at multiple sites is present 
within the same AD neurons. Overall, these 
findings suggest that hyperphosphorylated and 
aberrantly translocated pRb likely contributes 
to the cell cycle abnormalities in AD neurons. 
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