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Abstract The recent accumulation of genomic information
of many representative animals has made it possible to trace
the evolution of the complement system based on the
presence or absence of each complement gene in the
analyzed genomes. Genome information from a few
mammals, chicken, clawed frog, a few bony fish, sea
squirt, fruit fly, nematoda and sea anemone indicate that
bony fish and higher vertebrates share practically the same
set of complement genes. This suggests that most of the
gene duplications that played an essential role in establish-
ing the mammalian complement system had occurred by
the time of the teleost/mammalian divergence around 500
million years ago (MYA). Members of most complement
gene families are also present in ascidians, although they do
not show a one-to-one correspondence to their counterparts
in higher vertebrates, indicating that the gene duplications
of each gene family occurred independently in vertebrates
and ascidians. The C3 and factor B genes, but probably not
the other complement genes, are present in the genome of
the cnidaria and some protostomes, indicating that the
origin of the central part of the complement system was
established more than 1,000 MYA.
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Introduction

Adaptive immunity in which the lymphocyte receptors
and the major histocompatibility complex (MHC) mole-
cules play a central role in the recognition of foreign
molecules, is specific to the jawed vertebrates, suggesting
that its evolutionary origin was around 600 million years
ago (MYA) (Flajnik and Kasahara 2001). The origin of
innate immunity is believed to be even more ancient,
although innate immunity is composed of many heteroge-
neous systems and in most cases their evolutionary origins
are poorly defined. The complement system, one of the
most sophisticated innate immune systems of mammals
(Volanakis 1998; Walport 2001a,b), was studied intensively
from an evolutionary viewpoint because researchers are
keen to know how such a sophisticated biological reaction
system was established. More than 30 years ago, phyloge-
netic studies of the complement system were performed,
mainly using hemolytic activity in body fluids as the
criterion for the presence of the complement system. These
studies identified complement-like hemolytic activities, not
only from various vertebrates but also from invertebrates
(Gigli and Austen 1971). The intrinsic problem with this
approach, however, was that it was difficult to discriminate
hemolytic activity due to the complement system from
hemolytic activities due to other factors. For example, the
complement-like activity once reported from arthropod
hemolymph, which can be rendered hemolytic after
activation by cobra venom factor (Day et al. 1970), turned
out to be lecithin that was converted to lysolecithin by
phospholipase A present in the cobra venom factor
preparations (Hall et al. 1972). Phylogenetic studies of the
complement system were then performed mainly at the
protein level (Nonaka et al. 1981), leading to identification
of complement components from most classes of verte-
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brates, including agnatha (Nonaka et al. 1984). At that time,
it was generally believed that the complement system was a
unique property of the vertebrates because all attempts to
identify complement components from invertebrates had
failed. Over the past 10 years, DNA-level analysis,
including genome analysis and EST analysis, has signifi-
cantly extended our knowledge about the evolutionary
origin of the complement system. The initial phase of DNA
level analysis revealed the presence of the complement
genes in invertebrate deuterostomes such as sea urchins
(Al-Sharif et al. 1998) and ascidians (Ji et al. 1997). In
contrast, no complement gene was found in the genomes of
Drosophila melanogaster (Adams et al. 2000) or Caeno-
rhabditis elegans (The C. elegans Sequencing Consortium
1998), suggesting that the complement system was estab-
lished in the deuterostome lineage. However, recent reports
on the horseshoe crab C3, factor B (Bf) (Zhu et al. 2005),
and coral C3 (Dishaw et al. 2005) and a sea anemone
genome analysis indicate that the complement system is of
a much more ancient origin. In this review, we examine a
current assessment of the evolution of the complement
system revealed mainly by the genome and by other DNA-
level analyses.

Phylogeny of animals

As molecular research proceeds, the evolutionary origin of the
complement system was revealed to be increasingly ancient.
Hence, it is necessary to understand a wider range of animal
phylogeny to follow the evolutionary process of the comple-
ment system. The current view of animal phylogeny and
estimated divergence times among major animal groups based
on the recent molecular clock analyses (Blair and Hedges
2005a,b; Hedges et al. 2004) is summarized in Fig. 1. As
shown in this figure, molecular data suggest that eumetazoa
diverged into Cnidaria and Bilateralia about 1,300 MYA. At
approximately 1,000 MYA, Bilateralia then diverged into
Deuterostomia and Protostomia, and the latter diverged further
into Ecdysozoa and Lophotrochozoa. In the Deuterostomia
lineage, Chordata diverged from Echinodermata/Hemichor-
data around 900 MYA. Among three Chordata subphyla,
Cephalochordata first diverged 890 MYA, and Urochordata
and Vertebrata diverged 790 MYA. From the main Vertebrata
lineage, Cyclostomata diverged 650 MYA and Chondrich-
thyes diverged 530 MYA. This phylogenetic tree, however, is
still not conclusive; a recent report has suggested a close
relationship between Cephalochordata and Echinodermata
(Delsuc et al. 2006). The adaptive immunity based on
lymphocytes and MHC is present in Chondrichthyes and
other jawed vertebrates, but not in Cyclostomata. Thus,
adaptive immunity most probably appeared between 530 and
650 MYA.
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Presence and absence of the complement genes
in various animal genomes

To trace the evolution of the complement system, we
searched the genome data of chicken (Gallus gallus, http://
www.ncbi.nlm.nih.gov/genome/guide/chicken/), clawed
frog (Xenopus tropicalis, http://genome.jgi-psf.org/Xentr4/
Xentr4.home.html), pufferfish (7Takifugu rubripes, http://
genome.jgi-psf.org/Takru4/Takru4.home.html), and sea
anemone (Nematostella vectensis, http://www.stellabase.
org/) for the presence of the complement genes. Because
five complement gene families, C3/C4/C5, Bf/C2, MASP/
Clr/s, C6/C7/C8A/C8B/CY, and Factor I (I), have a unique
domain combination found only among complement genes
in the human genome, identification was carried out based
merely on the predicted domain structures. For other
complement genes, however, the same domain combination
is also found in noncomplement genes. In these cases,
phylogenetic tree analysis was performed to confirm the
orthologous relationship between the possible complement
genes of various animals and their mammalian counter-
parts. Figure 2 summarizes the current status of the
presence/absence of the complement genes judged by these
searches, the published results, and our unpublished
experimental data.

Mammals, Aves, Amphibia, and Teleostei seem to have
the full set of complement genes except for factor D and the
regulators of complement activation (RCAs) family mem-
bers and additional sporadic absences such as chicken C2
and C9, properdin, amphibian C1 inhibitor, and teleost
MASP-1 and MASP-3. Although these sporadic absences
are most probably due to secondary loss in each animal
lineage, the absence of factor D and RCA may reflect
technical problems in identifying them. Factor D has only a
serine protease domain (Volanakis and Arlaud 1998), and
its domain structure seems to be too simple to be used for
identification. Thus, it is possible that the D gene is present
in the chicken and clawed frog genomes, but is overlooked
by present analysis. Similarly, all RCA members have a
simple domain structure composed of repeats of a single
domain termed short consensus repeat (SCR) (Hourcade et
al. 1989). Because the primary structures of the RCA
member SCRs are poorly conserved even among mam-
malian species and many noncomplement genes are also
composed of SCRs, it is difficult to identify the RCA
genes on the basis of their domain structure. Therefore, it
is highly probable that these genes are present but not
identifiable in some animal genomes. Thus, most of the
gene duplications that played a significant role in
establishing the modern complement system of higher
vertebrates seem to have occurred before the divergence
of teleosts and tetrapods, which is estimated to have been
about 500 MYA.
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Fig. 1 Phylogenetic relationship among animals. Phylogenetic rela-
tionship among multicellular animals elucidated by molecular clock
methods based on protein sequence data is shown. Only animal groups

The lack of genome-wide information in Chondrichthyes
and Agnatha makes it difficult to evaluate the evolutionary
stage of their complement systems. However, earlier
functional analysis of the shark and lamprey complement
systems indicated that the former possesses hemolytic
activity, while the latter lacks it (Jensen et al. 1981; Nonaka
et al. 1984). Later reports on their individual complement
component genes supported the idea that the complement
system of Chondrichthyes may be similar to that of higher
vertebrates, whereas the complement system of Agnatha
shows some crucial differences from it. Thus, the C3/C4/C5
and Bf/C2 gene duplications seem to have occurred in the
jawed vertebrate lineage after the divergence of Agnatha.
Moreover, not only gene duplications among C6, C7, C8A,
C8B, and C9 but also the presence of any of them were not
identified in Agnatha (A. Kimura and M. Nonaka,
unpublished data). Therefore, the vertebrate complement
system seems to have experienced a drastic change after the

relevant to this review are included. The divergence times for the
Arthropod/Nematoda or Mollusca/Annelida were not analyzed by this
method and are arbitrarily shown in this figure

divergence of Agnatha but before the divergence of
Chondrichthyes. Although this point is still to be confirmed
by a genome analysis of species of these groups, it is
possible that the drastic changes in the complement system
occurred simultaneously with the appearance of adaptive
immunity.

The urochordate genome analysis performed on Ciona
intestinalis has demonstrated that most complement gene
families are present in Urochordata and many of them have
multiple members (Azumi et al. 2003). However, these
multiple members do not show a one-to-one orthologous
relationship with members of the same gene family in
higher vertebrates, indicating that the gene duplications
among members of each gene family occurred indepen-
dently in Urochordata and Vertebrata. No complement gene
sequence from Hemichordata was reported and only
fragmental information is available from Cephalochordata
and Echinodermata. However, ongoing amphioxus and sea
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Fig. 2 Presence or absence of complement component genes in
various animal groups. All complement components and related genes
of human, as a representative of Mammalia, are shown, and the
presence of the orthologous genes reported from the other animal
groups are indicated by the reference numbers. Plus and minus
indicate the presence and absence, respectively, of the orthologous
genes in the assembled genome sequences of at least one represen-
tative species of each group. Genes located outside of the complement
gene clusters in the phylogenetic tree, showing an uncertain
orthologous relationship with complement genes, are indicated in
red. Literatures cited here are: / Mavroidis et al. 1995; 2 Fritzinger et
al. 1992; 3 Kaufman et al. 1999; 4 Kjalke et al. 1993; 5 Laursen et al.
1998; 6 Lynch et al. 2005; 7 Oshiumi et al. 2005; § Mahon et al. 1999;
9 Grossberger et al. 1989; 10 Mo et al. 1996; /1 Kato et al. 1995; 12
Kato et al. 1994; /3 Endo et al. 1998 and Kakinuma et al. 2003; /4
Endo et al. 1998; /5 Kunnath-Muglia et al. 1993; /6 Boshra et al.
2005; 17 Abelseth et al. 2003; /8 Samonte et al. 2002; /9 Zarkadis et
al. 2001; 20 Nakao et al. 2000; 2/ Kuroda et al. 2000; 22 Sato et al.
1999; 23 Sunyer et al. 1997b; 24 Sunyer et al. 1997a; 25 Sunyer et al.
1996; 26 Lambris et al. 1993; 27 Boshra et al. 2004a; 28 Wang and
Secombes 2003; 29 Sambrook et al. 2003; 30 Kato et al. 2003; 3/

urchin genome projects should reveal the early evolution of
the deuterostome complement system.

Because the protostome genomes analyzed first in D.
melanogaster and C. elegans contained no complement genes,
the complement system was believed to be a unique property
of deuterostomes. However, the recent identification of some
complement genes from horseshoe crab (Zhu et al. 2005) and
Cnidaria (Dishaw et al. 2005) has indicated that the origin of
the complement system is extremely ancient. Therefore, the
absence of the complement genes in D. melanogaster and C.
elegans seems to be due to secondary loss. These two model
animals have a very short generation time, and it is tempting
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Kuroda et al. 1996; 38 Yano and Nakao 1994; 39 Vitved et al. 2000;
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2000; 83 The C. elegans Sequencing Consortium 1998; 84 Dishaw et
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to speculate that their genomes were streamlined, thus getting
rid of the complement genes.

The sea anemone (N. vectensis) genome contained only
the two complement genes, C3 and Bf. This result suggests
that the sea anemone complement system is simple,
composed of only two central components. However, we
cannot rule out the possibility that other complement genes
are present in sea anemone, but their sequences are much
too diverged to be detected by Basic Local Alignment
Search Tool (BLAST).

In the following sections, we discuss the individual
evolution of each complement gene family.
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C3/C4/C5

In contrast to the other complement components, C3, C4,
and C5 were considered to be unique in that they do not
have an obvious domain structure. Recent elucidation of the
crystal structure of C3 (Janssen et al. 2005), however, has
revealed that human C3 is composed of 13 domains: eight
macroglobulin domains, a linker domain, an anaphylatoxin
domain, a CUB domain, a thioester-containing domain, and
a C345C domain. Although steric structures of the eight
macroglobulin domains are similar to each other, there is
almost no similarity in their amino acid sequences, explain-
ing why this repeating structure had not been recognized
until the crystal structure was elucidated. The primary
structures of complement components C3, C4, and C5
show a weak but significant similarity to those of a serum
protease inhibitor alpha2-macroglobulin (A2M) and a
glycosylphosphatidylinositol-anchored cell surface mole-
cule CD109 (Solomon et al. 2004; Sottrup-Jensen et al.
1985). Moreover, they share a unique structure, an
intramolecular thioester bond, except for C5, which is
believed to have lost it secondarily. Therefore, the family
composed of these genes is called the thioester-containing
protein (TEP) gene family. Elucidation of the domain
structure of C3 has suggested that the ancestral molecule
of the TEP proteins has a simple repeating structure
composed of eight macroglobulin domains, and that the
other domains were inserted later.

An increasing number of TEP family genes are being
identified from various animal phyla, making it clearer that
this family is divided into two subfamilies: the C3
subfamily comprising C3, C4, and C5 and the A2M
subfamily comprising A2M, CD109, and insect TEP.
Because only the latter subfamily members were identified
in the genomes of D. melanogaster and C. elegans, whereas
both subfamily members were identified from all analyzed
deuterostomes, the C3 subfamily was considered to be
established by gene duplication from A2M in the deutero-
stome lineage (Nonaka 2001). However, recent identifica-
tion of the C3 subfamily members in arthropodian
horseshoe crab (Zhu et al. 2005) and cnidarian coral
(Dishaw et al. 2005) has indicated that the origin of the
C3 gene is traced back to before the divergence of Cnidaria
and Bilateralia, and is estimated to be about 1,300 MYA.
Moreover, the members of both C3 and A2M subfamilies
are present in the nematostella genome (N. vectensis, http://
www.stellabase.org/). Thus, the emergence of the TEP
molecules and TEP differentiation into the C3 and A2M
subfamilies seems to have predated the divergence of
Cnidaria and Bilateralia. Although the evolutionary origin
of the TEP gene is still to be clarified, our preliminary
reverse transcriptase polymerase chain reaction search for
the TEP genes in species of sponges failed (S. Sugimoto

and M. Nonaka, unpublished data). The presence of TEP
family genes in prokaryotes was reported (Budd et al.
2004). However, the distribution of TEP genes in various
bacteria does not fit with their phylogeny, leading the
authors to conclude that they were obtained secondarily by
a horizontal gene transfer from eukaryotes.

At least one A2M subfamily member was identified
from all eumetazoa searched for TEP genes, although the
C3 subfamily member was identified only from deutero-
stomes, a protostome, horseshoe crab, and cnidarians. Thus,
the C3 gene that appeared before the Cnidaria/Bilateralia
divergence seems to have been lost many times at various
stages during the protostome evolution. In the deuterostome
lineage, the C3 gene multiplied independently at least twice
in the urochordate and vertebrate lineages. In the vertebrate
lineage, the C3 multiplication that gave rise to C3, C4, and
C5 occurred before the emergence of cartilaginous fish
because all three genes are present in sharks (Terado et al.
2003; H. Nagumo et al, unpublished data). In contrast, it is
not clear whether this multiplication occurred before or
after the divergence of Agnatha; upon phylogenetic tree
analysis the agnathan genes isolated from lamprey (Nonaka
and Takahashi 1992) and hagfish (Ishiguro et al. 1992)
were located in the C3 clade rather than outside of the C3/
C4/C5 cluster, although no additional member of this gene
family was identified from Agnatha.

Bf/C2

The domain structure of this family gene, composed of
three SCR domains, a von Willebrand factor type A domain
and a serine protease domain, is unique among the higher
vertebrate genes. Thus, there is no doubt that the genes with
essentially the same domain structure found in horseshoe
crab and sea anemone are orthologs of the mammalian Bf
and C2, indicating that the origin of this gene family is
more ancient than the divergence of Cnidaria and Bilater-
alia. From all the deuterostomes analyzed so far, at least
one member of this family was identified. In some cases,
extra domains were added at the N terminus: the ascidian
Bf has extra SCR and low-density lipoprotein receptor
(LDLR) domains (Yoshizaki et al. 2005), and the sea urchin
Bf has an extra SCR domain (Smith et al. 1998). The
presence of both Bf and C2 was reported in amphibia (Ohta
et al. 2006) and mammals, indicating that the Bf/C2 gene
duplication predated the amphibia/mammal divergence. On
the other hand, lamprey (Nonaka et al. 1994) and
invertebrate Bf (Smith et al. 1998; Yoshizaki et al. 2005)
are located outside of the jawed vertebrate Bf and C2 in the
phylogenetic tree, suggesting that the Bf/C2 gene duplica-
tion occurred in the jawed vertebrate lineage. However, the
Bf/C2 genes of the bony and cartilaginous fish (Kuroda et
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al. 1996; Nakao et al. 1998; Seeger et al. 1996; Terado et al.
2001) show almost the same degree of similarity to the
tetrapod Bf and C2 genes, making it difficult to further
define the timing of the Bf/C2 gene duplication.

C1q/MBP/ficolin

All these molecules have the collagen domain at their N
terminus. In contrast, they have their respective globular
domains at their C terminus. The overall domain structure
of these molecules is relatively simple, composed of only
two domains. In addition, these domain structures are
shared not only by the complement components but also by
a number of noncomplement proteins in mammals. Thus,
phylogenetic tree analyses are required to assess the
orthologous relationships between the mammalian and
nonmammalian genes. The phylogenetic tree analysis of
the Clq and related genes has indicated that the lamprey
Clq gene forms a clade with the higher vertebrate C1qA,
ClgB, and Cl1qC genes (Matsushita et al. 2004). In
contrast, the sea urchin and ascidian Clg-like genes are
located outside of this clade together with the related
mammalian and fish genes. These results indicate that Clq
most probably emerged at an early stage of vertebrate
evolution before the establishment of adaptive immunity
and the emergence of immunoglobulin. Thus, original Clq
seems to have recognized foreign molecules independent
from immunoglobulins.

The lamprey mannan-binding protein (MBP) genes were
reported recently (Takahashi et al. 2006). Together with the
previous reports on MBP of mammals, birds, and teleosts,
this report indicates that the origin of MBP can be traced
back to an early stage of vertebrate evolution. However,
mammalian and bird lung surfactant protein genes, SP-A
and SP-D, seem to have diverged from MBP after the
divergence of Agnatha. Ascidian glucose-binding lectin and
MBPs are located outside of the vertebrate MBP, surfactant
protein, and other collectin clusters, thus rendering the
orthologous relationship between the vertebrate and ascid-
ian MBP genes to be doubtful.

In contrast to Clq and MBP, ficolin orthologs have so
far been identified only from tetrapods. In the phylogenetic
tree, genes with the same domain structure reported in the
teleost, ascidian, and sea urchin are grouped together with
nonficolin genes of higher vertebrates. Thus, the origin of
ficolin seems to be much younger than that of C1q or MBP.

MASP-1, MASP-2, MASP-3, Clr, and Cls

The evolution of this gene family was reviewed several
times because of its unique and interesting processes,
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including gene duplication, retrotransposition, and modifi-
cation of the serine protease-encoding regions (Fujita 2002;
Fujita et al. 2004; Nonaka and Miyazawa 2002; Nonaka
and Yoshizaki 2004). Therefore, we discuss here only one
of this gene family’s major evolutionary events: the origin
of the apparently modern MASP-2, MASP-3, Clr, and Cls
genes. From the structural comparison of the mammalian
and various chordate MASP-1, MASP-3, MASP-2, Clr,
and Cls genes, it is suggested that the ancestral MASP-2,
MASP-3, Clr, and Cls genes were generated by the
insertion of a new serine protease-encoding exon into an
ancient MASP-1 gene. Only the MASP-1 type genes are
present in ascidians, and both the MASP-1 type and
MASP-2, MASP-3, Clr, and Cls type genes are present
in amphioxus. Based on the previous understanding of
animal phylogeny that cephalochordates and vertebrates are
more closely related to each other than either is to
urochordates, this result seemed to suggest that the
retrotransposition to generate the MASP-2, MASP-3, Clr,
and Cls type genes occurred after the divergence of
urochordates but before the divergence of cephalochordates
in the lineage leading to vertebrates. However, following
upon the revision of chordate evolution, a new interpreta-
tion is that this retrotransposition occurred in the common
ancestor of chordates, and urochordates secondarily lost the
MASP-2, MASP-3, Clr, and Cls type genes. Similarly,
loss of the MASP-1 type gene also occurred multiple times
because lamprey, shark, carp, and chicken seem to have
only the MASP-2, MASP-3, Clr, and Cls type genes. The
evolutionary origin of the Clr and Cls genes remains to be
clarified, although the presence of functional evidence in
shark (Jensen et al. 1981) and functional and molecular
evidence in carp (Nakao et al. 2003b) suggest that the Clr
and Cls genes were established in the common ancestor of
the jawed vertebrates.

Terminal components

The terminal complement components (TCCs) and C5b
assemble to form the membrane attack complex (MAC),
which forms pores on the plasma membrane of the target
cell, disturbs the membrane potential, and finally leads to
cell lysis. Mammalian TCCs, C6, C7, C8A, C8B, and C9
share a unique domain structure, composed of the TSP
(thrombospondin type I) domain, the LDLR class A domain,
the membrane attack complex/perforin (MACPF) domain,
and the epidermal growth factor (EGF)-like domain, while
C6 and C7 have additional domains: the complement control
protein (CCP) domain and the factor I/membrane attack
complex (FIM) domain at their C termini. All TCC genes are
present in the mammalian, avian, and amphibian genomic
sequences, except for the avian C9 gene, which is not found
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in the draft genome sequence of chicken (Fig. 2). Although
the origin of the TCC genes can be traced back to before
the divergence of urochordates, cephalochordates, and
vertebrates, the gene duplications among the C6, C7, C8,
and C9 genes seem to have occurred in the vertebrate
lineage after its divergence from urochordates and cephalo-
chordates. It is interesting to note that it is possible that
primitive ascidian and amphioxus TCCs are not activated
through the complement system because they lack the FIM
domain responsible for the interaction with the C345C
domain of C5 (Thai and Ogata 2004) and the CCP domain,
which potentially interact with other complement mole-
cules. Thus, although the orthologous relationship between
ascidian/amphioxus TCCs and mammalian TCCs is well
supported by their domain structures, the biological
function and activation mechanism of ascidian and amphi-
oxus TCCs could be quite different. Despite an earlier
report on the presence of the TCC in sharks, no gene
sequence was published to date. In addition, there is no
information at all on the TCC of cyclostomes. Identification
and structural characterization of the TCC genes in these
animals will clarify the evolution of the TCC genes
involved in the MAC formation.

On the other hand, proteins containing the MACPF
domain, but lacking the other TCC-specific domains, are
found in many organisms belonging to the broad range of
phyla and even kingdoms, though many of them are merely
predicted genes from the draft genomes and have no known
function. They include (1) invertebrates: sea urchin (Haag
et al. 1999), abalones (Mah et al. 2004), venomous sea
anemone (Nagai et al. 2002; Oshiro et al. 2004), and
Drosophila melanogaster (Martin et al. 1994); (2) proto-
zoans: malarial parasite Plasmodium (Kaiser et al. 2004),
bovine parasite Theileria annulata, and Tetrahymena
thermophila; (3) plants: Arabidopsis thaliana (Morita-
Yamamuro et al. 2005) and Oryza sativa; (4) (pathogenic)
fungi: Emericella nidulans; (5) bacteria: Chlamydias
(Ponting 1999), luminescent bacterium, and intraintestinal
bacterium.

Some of these MACPF domain-containing molecules are
known to have a toxic function or are implicated in
pathogenesis or developmental pathways. In addition, astro-
tactin proteins of vertebrates composed of one MACPF, one
fibronectin type 3, and three EGF-like domains are implicated
in neuronal migration along glial fibers (Zheng et al. 1996).
Among these, non-TCC MACPF molecules, toxins of the
venomous sea anemone possessing the MACPF and EGF
domains and a very high hemolytic potential, are possibly
closest to the TCCs. However, the mechanism to avoid host
damage is quite different; the hemolytic toxins of sea
anemone are enclosed in the nematocyst and are released
only upon stinging the target body, while the TCCs are
serum proteins whose hemolytic activity is regulated by

interactions with the complement system through the
additional TCC-specific domains.

Taken together, in the common ancestor of chordates
TCC molecules seem to have been tuned for extremely
effective, targeted, and regulated hemolytic function by the
addition of the extra domains to the MACPF domain.

Other complement components

As shown in Fig. 2, most of the other component genes are
present in the teleost genomes but not in the ascidian
genome, suggesting that either these genes emerged in the
vertebrate lineage or that they are evolving too quickly,
making it difficult to detect the ascidian counterparts by
BLAST search using vertebrate sequences as the query. The
absence of genome-wide information in cartilaginous fish
and agnatha prevents a further definition of the evolution-
ary origin of these genes. For the complement regulators or
receptors with the SCR domains, RCA, the structural and
functional counterpart was reported from lamprey (Kimura
et al. 2004), although the biological function of the
structural orthologs in ascidians is yet to be clarified
(Azumi et al. 2003). For the CR3 and CR4 genes, which
encode integrin complement receptors composed of the
alpha and beta chains, the presence of the structural
orthologs is confirmed in the draft genome of X. tropicalis,
although four copies of the alpha genes show a similar level
of similarity to CR3 and CR4. In contrast, ascidian genes,
whose products were shown to play a role as a C3 receptor,
did not show an orthologous relationship with the mam-
malian functional counterparts (Miyazawa et al. 2001;
Miyazawa and Nonaka 2004). Both the alpha and beta
chain genes seem to have expanded in the vertebrate
lineage after the divergence of urochordates, suggesting
that the functional and structural diversification of integrins
occurred in the vertebrate lineage, although C3 was one of
the original ligands.

Evolutionarily conserved linkage

The most curious genetic linkage among the mammalian
complement genes may be that among the C4, Bf, and C2
genes found in the MHC (Carroll et al. 1984; Chaplin et al.
1983). The X. tropicalis genome analysis has indicated that
these genes are also tightly linked to each other in the frog
MHC (Ohta et al. 2006). Although the C4 and Bf/C2 genes
are not linked to each other or to MHC class I or II genes in
teleost (Kuroda et al. 1996, 2000; Samonte et al. 2002), this
may be due to teleost-specific extensive genomic rear-
rangement, and the shark C4 and Bf/C2 genes are linked to
each other in its MHC (Terado et al. 2003). Thus, the basic
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genome structure of the MHC complement gene region
seems to have been established early in the evolution of
jawed vertebrates. Using the entire genome information on
an ascidian urochordate, C. intestinalis, the possibility was
analyzed that the origin of this linkage was more ancient and
that the common ancestor of C3, C4, and C5 and the
common ancestor of Bf and C2 were linked to each other
before the establishment of the MHC. C. intestinalis has two
C3 genes on two different chromosomes and three Bf genes
arranged in tandem on another chromosome (Yoshizaki et al.
2005). Thus, it is likely that the linkage between the C4 and
Bf/C2 genes was simultaneously established in the jawed
vertebrate lineage with the establishment of the classical
pathway or the adaptive immune system. It is tempting to
speculate that the close linkage between these complement
genes played some role in establishing the classical pathway
by promoting coevolution of these genes. Because the gene
duplication that gave rise to Bf and C2 genes was most
probably a tandem type, the Bf/C2 and C3/C4/C5 gene

duplications are considered to be independent events. It is
likely that these duplications occurred in the vertebrate
lineage after the divergence of cyclostomes but before the
divergence of cartilaginous fish, and then the linkages
between one of the duplicated C3/C4/C5 genes, the Bf and
C2 genes, and between these genes and the MHC class I and
II genes were established before the emergence of cartilag-
inous fish. Because the MHC was established just before the
divergence of cartilaginous fish and higher vertebrates
(Flajnik and Kasahara 2001), the C4, Bf, and C2 genes
seem to be original members of the MHC.

Another curious linkage among the mammalian comple-
ment genes involves the RCA genes (Hourcade et al. 1992).
The human RCA genes, composed of the SCR domains, are
tightly clustered on the long arm of chromosome 1, at 1q32,
suggesting that they were generated by recurrent tandem
duplications. Similar clustering of the RCA genes is also
found in chicken (Oshiumi et al. 2005) and frog, although
the latter contains only two genes. No clear linkage
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Fig. 3 Evolutionary conservation of genetic linkages between
complement genes. Genomic organization of four sets of the linked
complement genes in four species, human (Hosa), chicken (Gaga),
clawed frog (Xetr), and fugu (7aru), are shown to scale: a C6 and C7,
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between the SCR genes was observed in the fugu genome.
The RCA genes display a rapid evolution in both the
primary structure and the number of SCR domains, and it is
not easy to determine the orthologous relationships between
the genes from different animal classes. Even between
human and mouse, the counterparts of certain genes are
missing from the other species. Despite the difficulty in
lineage identification of the RCA genes, it is conceivable
that at least one round of tandem duplication predated the
emergence of amphibia because X. tropicalis has linked
C4BP and DAF genes. These two genes are considered to

Alternative Pathway

Lectin Pathwa

be the founding members of the vertebrate RCA gene
cluster.

The other linkages between the complement genes
recognized in the mammalian genome are those between
C6 and C7, C8A and C8B, and Clr and Cls. All of these
linkages are conserved in the chicken, frog, and fugu
genomes, and only a few tandem duplications (Hosa Clr,
Xetr Clr, Gaga C7, and Xetr C6) and one inversion (Taru
Cls) are observed (Fig. 3). A high degree of conservation
of these linkages, even in teleosts believed to have
experienced an extensive genome rearrangement, suggests
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Fig. 4 Evolutionary processes of the complement system. Evolution-
ary origins of the three complement activation pathways are shown by
the gray arrows. The origin and evolution of the major gene families
of the complement system are shown by the colored arrows. Timings
of the gene duplications that possibly contributed to the establishment
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of the classical pathway are shown by the double-headed arrows.
Because the presence of the classical pathway was functionally
demonstrated in sharks, it is likely that the Bf/C2 and MASP/Clr,s
gene duplication occurred before the emergence of cartilaginous fish
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the presence of selective pressure to keep them together,
most probably facilitating the coevolution of the linked
genes. It is interesting to note that the sizes of the genes and
the intergenic regions showed species-specific variation
almost proportional to their genome sizes, despite a high
degree of conservation of the basic gene organization.

Conclusion

The current view of the complement system evolutionary
processes is summarized in Fig. 4. First, the primitive
complement system, most likely composed of C3 and Bf
and thus similar to the mammalian alternative pathway,
emerged in the common ancestor of Cnidaria and Bilater-
alia more than 1,300 MYA. Structural features of these
Cnidaria genes suggest that the ancestral C3 was proteo-
lytically activated by Bf, and that it formed a covalent bond
with nonself molecules using its intramolecular thioester
bond. Whereas the C3 and Bf genes were retained by
deuterostomes, they were lost many times independently in
the protostome lineages. Second, with the emergence of
chordates (900 MYA), the MASP, MBL, and ficolin genes
were recruited to the complement system, establishing the
lectin pathway. Finally, vertebrate-specific complement
gene duplications, such as those among C3/C4/C5 and
between Bf/C2 and MASP/Clr/s, occurred before the
emergence of cartilaginous fish about 600 MYA, most
probably contributing to the establishment of the third
activation pathway, the classical pathway. Thus, the
complement classical pathway seems to have been estab-
lished simultaneously with the appearance of the lympho-
cyte-MHC-based adaptive immune system. Ancestral TCC
genes appear to have been recruited by the complement
system and duplicated to C6/C7/C8A/C8B/C9 before the
appearance of the jawed vertebrates, although its timing
still needs to be clarified in detail. The linkages between
certain complement genes played a certain role in establish-
ing the modern complement system by facilitating the
coevolution of the linked genes.
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