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ABSTRACT We model the elastic properties of bone at the level of mineralized collagen fibrils via step-by-step homogenization
from the staggered arrangement of collagen molecules up to an array of parallel mineralized fibrils. A new model for extrafibrillar
mineralization is proposed, assuming that the extrafibrillar minerals are mechanically equivalent to reinforcing rings coating each
individual fibril. Our modeling suggests that no more than 30% of the total mineral content is extrafibrillar and the fraction of
extrafibrillar minerals grows linearly with the overall degree of mineralization. It is shown that the extrafibrillar mineralization
considerably reinforces the fibrils’ mechanical properties in the transverse directions and the fibrils’ shear moduli. The model
predictions for the elastic moduli and constants are found to be in a good agreement with the experimental data reported in the
literature.

INTRODUCTION

The remarkable mechanical properties of bone related to its

low density are essentially due to the bone’s complex, hier-

archical microstructure from the macro- down to the nano-

scale (1–3), Fig. 1. At length scales below several microns,

the diversity of bone tissues is reduced to different arrange-

ments of mineralized collagen fibrils (Fig. 1, Level 4) formed

through self-assembly of soft collagen molecules and hard

mineral nanoparticles. At this level of organization, the ef-

fective mechanical properties of bone depend on the prop-

erties of the fibrils’ constituents, the fibrils’ microstructure,

and orientation distribution, as well as on the mineral content

and the shape of the mineral particles. Clearly, the develop-

ment of reliable structure-properties relations for mineralized

collagen fibrils and for fibril arrays incorporating these de-

pendencies is of crucial importance, not only for the evalu-

ation of the mechanical properties of bone, but also for better

understanding of how the governing material-design princi-

ples, growth processes, or diseased states influence the me-

chanical properties at submicron length scales. Such relations

can also help answer some still unclear questions about the

bone structure and serve as a tool for designing of new bone

implants and bioinspired nanocomposites.

At the nanoscale (Fig. 1, Levels 1 and 2), bone consists of:

Collagen type I molecules (triple helices ;300 nm long

and ;1.5 nm in diameter), self-assembled in a stag-

gered fashion to form collagen fibrils with diameter of

;100 nm (1).

Biological hydroxyapatite (HA) minerals with hexagonal

unit cells (1).

Water (1), part of which provides hydrogen (H) bonds for

both the collagen molecules and the collagen-mineral

composite (4).

A relatively limited amount of noncollagenous proteins

(NCPs) like the extrafibrillar proteins that glue together

adjacent collagen fibrils (5).

It is now well established that the HA crystals inside the

collagen fibrils grow primarily in the gaps between subsequent

collagen molecules (2,6) and are shaped as platelets with typ-

ical average dimensions of ;50 3 25 3 3 nm (1,2), although

their length can vary from 15 to 150 nm, their width from 10 to

80 nm, and their thickness from 2 to 5 nm (7). The longest

dimension of the HA platelets coincides with the c axis of the

HA crystal unit cell and is oriented along the fibril axis (2). The

structure and the relative fraction of the extrafibrillar minerals

are less well understood and are still a matter of debate. Recent

study by atomic force microscopy (AFM) (8) confirmed the

existence of mineral-containing blobs on the fibrils surface.

Hassenkam et al. (9) and Kindt et al. (10) obtained a more

detailed picture of the extrafibrillar minerals via high-resolution

AFM imaging. They observed that each collagen fibril is in-

dividually coated with extrafibrillar HA minerals with various

shapes and sizes and part of these mineral formations are ar-

ranged with a period of 67 nm, the same as that of the under-

lying microstructure of the naked collagen fibrils.

In the past decade, mechanical models for mineralized col-

lagen fibrils have been developed by Akiva et al. (11), Jäger

and Fratzl (3), Akkus (12), and Fritsch and Hellmich (13). The

cooperative collagen-mineral deformation within a single fibril

has been studied by Jäger and Fratzl (3) in the framework of

their shear-lag model with staggered mineral platelets. Akiva

et al. (11) modeled the three-dimensional orthotropic elastic

properties of a single collagen fibril as well as of lamellar and

fibrolamellar bone tissues, taking into account the mineral

content and the shape of the HA platelets in the fibrils. Akkus

(12) and Fritsch and Hellmich (13) used continuum micro-
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mechanics homogenization to estimate the mechanical prop-

erties of mineralized collagen fibrils and bone tissues. Very

recently, molecular dynamics (MD) simulations have emerged

as a promising tool for investigation of the mechanical prop-

erties and the deformation of bone and its constituents at the

nanoscale. For example, the properties of single collagen

molecules have been assessed by Vesentini et al. (4) while

Bhowmik et al. (14) investigated how the presence of HA

crystals influences the mechanical behavior of the collagen

molecules. Broedling et al. (15) showed that the strength and

the toughness of platelet-reinforced nanocomposites with

bonelike microstructure depend on the size and the arrange-

ment pattern of the platelets. Unfortunately, realistic large-

scale MD simulations of mineralized collagen fibrils including

the molecular structure of collagen, water, and HA crystals

require enormous computational power and are still not af-

fordable at present. For this reason, the modeling method used

here is based on continuum micromechanics.

In this work, we model the three-dimensional elastic con-

stants of a single mineralized collagen fibril and of a bundle of

fibrils with particular attention to the extrafibrillar minerali-

zation and its influence on the mechanical properties of bone.

Different homogenization methods are employed to first find

the effective properties at a lower level of hierarchy, starting

with the effective properties of the collagen-water composite

inside the mineralized collagen fibrils, and then incorporate

the obtained results in the modeling of the next higher hier-

archy level.

Here we propose a new model for extrafibrillar minerali-

zation considering that each individual collagen fibril is re-

inforced with HA coating rings strongly adhering to the

fibrils’ surface. Different mineralization scenarios are tested

to establish how the fraction of extrafibrillar minerals evolves

with the overall mineralization.

Another improvement in our modeling with respect to

earlier models is the incorporation of the experimentally

FIGURE 1 Hierarchical structure of bone. Im-

ages for Levels 2–5 and 7 after Weiner and Wagner

(1); for Level 1 after Rho et al. (2); for Level 6 from

Functional Anatomy & Biomechanics (University of

Glasgow, http://www.gla.ac.uk/ibls/US/fab/tutorial/

generic/bone2.html). The arrows point from a higher

to a lower hierarchy level. Levels 6 and 7, macro-

scopic length scale; Level 5, mesoscale; Levels 3 and

4, micron scale; Levels 1 and 2, nanoscale.
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observed shape of the HA platelets in a genuine three-di-

mensional formulation. In some earlier works (11), the three-

dimensional elastic properties of mineralized collagen fibrils

were constructed using different one-dimensional models for

the Young- and the shear moduli in different directions.

Other authors proposed more advanced three-dimensional

formulations based on continuum micromechanics but used

less realistic shape assumptions for the HA minerals, nee-

dlelike (12) or spherical (13). In this approach we compute

the so-called Eshelby’s tensor (16), accounting for the shape

of the inclusions in a particulate composite, through numer-

ical integration using the viscoplastic self-consistent code

(VPSC6) developed by Lebensohn and Tomé (17). This al-

lows us to solve a three-dimensional equivalent inclusion

problem for particles shaped as general ellipsoids and em-

bedded in a stiffness matrix with arbitrary anisotropy, and

thus to provide better estimates for the orthotropic elastic

properties of mineralized collagen fibrils and fibril arrays.

HIERARCHICAL STEP-BY-STEP
HOMOGENIZATION

In this section, we consider in detail a hierarchical modeling

approach consisting of consecutive homogenization steps. In

terms of Fig. 1, we find the effective elastic properties of bone

at each of the hierarchy levels, from Level 1 up to Level 4, in

a bottom-up order. For different hierarchy levels, we employ

different continuum micromechanics methods to model the

specific microstructure in a realistic but still reasonably simple

way.

Effective properties of the
collagen-water composite

Within the mineralized collagen fibrils, the collagen mole-

cules are arranged in a staggered fashion (Fig. 1, Level 1)

with axial period of 67 nm consisting of overlaps (;27 nm)

for neighboring molecules and axial gaps (;40 nm) between

two successive molecules (18). The molecular packing is

quasihexagonal (19), and the intermolecular spaces are filled

with water and contain a small amount of noncollagenous

proteins such as proteoglycans (19).

Because the transverse properties of isolated collagen

molecules are not known, we model the collagen triple helices

as a hexagonal array of perfectly aligned long isotropic cy-

lindrical fibers in an isotropic water-protein matrix, the elas-

ticity of which is due to the hydrogen bonds linking the

collagen molecules as well as to the crosslinks provided by the

noncollagenous proteins. Accurate estimates for the effective

properties of long-fiber composites with arbitrary volume

fraction of the fibers and arbitrary contrast between the me-

chanical properties of the phases have been developed by

Torquato (20).

Let the indices 1 and 2 denote the matrix (water) and the

dispersed phase (collagen fibers), respectively. Then, the

effective two-dimensional shear- and bulk moduli, Ge and

ke, in a plane perpendicular to the orientation of the collagen

molecules are given by (20)

Ge ¼ G1

1 1
k1mf2

k1 1 2G1

� Fj � Fh

1� mf2 � Fj � Fh

2
64

3
75;

ke ¼ k1

1 1
G1kf2

k1

� 2Fj

1� kf2 � 2Fj

2
64

3
75; (1)

where

Fj ¼
G1kmf1z2

k1 1 2G1

; Fh ¼
k

2

1m
2
f1h2

ðk1 1 2G1Þ2
;

k ¼ k2 � k1

k2 1 G1

; m ¼ G2 � G1

G2 1
G1k1

k1 1 2G1

; (2)

with G1 and G2 being the shear moduli and k1 and k2, the

plane-strain bulk moduli of water and collagen in the cross-

section plane, respectively; and f1 and f2¼ 1�f1 represent

the volume fractions of water and collagen molecules, re-

spectively. The scalar parameters j2 and h2 are defined by

threefold integrals depending on the cross section’s micro-

structure—in our case, a hexagonal array of identical circles—

and on the volume fractions of the phases. For hexagonal

arrays of cylinders, their values have been numerically com-

puted and tabulated for different volume fractions in McPhedran

and Milton (21) for j2 and in Eischen and Torquato (22)

for h2.

To construct the transversely isotropic stiffness tensor of

the collagen-water composite, we need to find three addi-

tional constants for the properties along the collagen mole-

cules, namely the longitudinal Young modulus, EL, the

longitudinal three-dimensional Poisson’s ratio, nL, and the

shear modulus, GL. To estimate EL and nL, we use the Hill’s

lower bounds for long-fiber composites (23), which for G2 .

G1 read

EL ¼ f1E1 1 f2E2 1
4f1f2ðn2 � n1Þ2

f1

k2

1
f2

k1

1
1

G1

;

nL ¼ f1n1 1 f2n2 1

f1f2ðn2 � n1Þ
1

k1

� 1

k2

� �

f1

k2

1
f2

k1

1
1

G1

; (3)

where E1 and E2 are the conventional Young moduli, and

n1 andn2 stand for the three-dimensional Poisson’s ratios of

the water and the collagen molecules, respectively. The shear

modulus along the collagen molecules, GL, is independent of

the other elastic constants but can be evaluated via numerical

simulations, which for a water-collagen composite give GL�
1.04 Ge. With the obtained values for the elastic constants,
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one can construct the elastic stiffness tensor of the homog-

enized collagen-water composite CC:

Collagen fibril reinforced with intrafibrillar
HA platelets

Because the Young modulus of HA significantly exceeds that

of the collagen-water composite discussed above, the ho-

mogenized elastic properties of a single collagen fibril re-

inforced with aligned HA mineral platelets should strongly

depend on the shape and the volume fraction of the platelets.

Jäger and Fratzl (3) argued that the upper-bound for the

mineral volume fraction within the fibrils, fM, must be fM #

0.56, with a most likely value in fully mineralized bone of

fM � 0.43. On the other hand, in small deformations, the

very soft collagen matrix would drastically reduce the in-

teractions between neighboring mineral platelets. Therefore,

to find the effective properties of a mineralized collagen fibril,

one can employ the Mori-Tanaka homogenization scheme

(24) for two-phase composites reinforced with noninteract-

ing, aligned ellipsoidal inclusions. The representative volume

element (RVE) of a mineralized collagen fibril in our model

is shown in Fig. 2.

The Mori-Tanaka model for the overall properties of the

fibril can be written as (25)

CF ¼ CC 1 fM½ðCM � CCÞ : AM�½fCI 1 fMAM��1
; (4)

where

AM ¼ ½I 1 SM : CC
�1

: ðCM � CCÞ��1
(5)

is the so-called strain concentration factor for an isolated

single ellipsoidal inclusion in an infinite elastic matrix; CF;
CC; and CM denote the stiffness tensors of the homogenized

fibril, the collagen-water composite, and the HA mineral,

respectively; I is the fourth-order identity tensor; SM is the

fourth-order Eshelby’s tensor depending only on the shape

of the inclusions and on the elastic constants of the matrix;

and fC and fM ¼ 1 � fC are the volume fractions of the

collagen-water matrix and the HA crystallites, respectively.

The tensor product contracted over two indices is denoted by

(:) while the inverse of a matrix (fourth-order tensors are

represented in matrix notation because of symmetries) is

indicated by ð�Þ�1:

Mineralized collagen fibril reinforced with
extrafibrillar minerals

As already mentioned in the Introduction, the most recent

experimental studies on the extrafibrillar mineralization in

bone (8–10) found that 1), each collagen fibril is individually

coated with HA mineral particles of different sizes and

shapes; 2), the HA minerals strongly adhere to the fibrils

surface; and 3), the periodicity in the arrangement of part of

the extrafibrillar HA shells along the fibrils is approximately

the same as the 67-nm period of the underlying naked col-

lagen fibrils resulting from the staggered arrangement of the

gaps and the overlaps between the collagen molecules along

the fibril axis. On the other hand, to explain the observed

decrease in the lateral spacing of the collagen molecules with

the increase in the mineral content, Lees (26) suggested that

the HA mineral is initially deposited in the extrafibrillar space

and prevents the collagen fibrils from merging. These find-

ings are also supported by the work of Zhang et al. (27), who

could experimentally mimic the formation of bundles of

parallel mineralized collagen fibrils through self-assembly

and obtained cylindrical fibrils consisting of pure collagen

and water, individually coated with crystalline HA shells,

with their c axes oriented along the fibril axes.

The observation that part of the extrafibrillar HA shells

have the same periodicity as the 67-nm period of the collagen

fibril can be explained by considering that the 40-nm gaps

between consequent collagen molecules must also be present

at the fibrils’ surface and therefore follow the staggered pat-

terns shown in Fig. 3 b. According to Piez and Miller (28), a

single collagen fibril is composed itself by subfibrils arranged

in a subsequent (Fig. 3 b, top) or alternate (Fig. 3 b, bottom)

staggered pattern. It is reasonable to assume that during the

mineralization process, the gaps between the collagen mol-

ecules at the fibril surface, arranged in a periodic staggered

fashion as shown in Fig. 3 b, are initially filled with HA. With

increase in the overall mineralization, the extrafibrillar min-

erals located in the gaps would first thicken above the level of

the fibril surface and then start growing along the fibrils axis,

thus forming a kind of reinforcing ring of HA around the

fibril. As a result of this process and also the deposition of

additional extrafibrillar mineral on the surface, the fibril

would become considerably stiffer in directions perpendic-

ular to the fibril axis while the increase in its bending rigidity

would be less pronounced, thus preserving the fibril’s flexi-

bility.

With the above considerations in mind, we can find the

mechanical properties of a collagen fibril partially coated

with extrafibrillar minerals in two steps. Firstly, let us con-

sider the overall properties of a fibril that is fully coated with

a HA layer having a uniform thickness. As the HA coating

is much stiffer and harder than the core collagen fibril, the

FIGURE 2 Modeling of a mineralized collagen fibril: collagen-water

matrix (light shading) with elastic constants CC reinforced with aligned

ellipsoidal HA inclusions (solid) having stiffness tensor CM:
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effective mechanical properties of the coated fibril will be

dominated by the HA properties as long as the coating is

sufficiently thick. For simplicity, we can apply the Mori-

Tanaka method (25) for a composite consisting of a single

inclusion (the collagen fibril) embedded in a HA matrix,

CCF ¼ CM 1 fF½ðCF � CMÞ : AF�½fcoatI 1 fFAF��1
; (6)

with strain concentration factor

AF ¼ ½I 1 SF : CM
�1

: ðCF � CMÞ��1
; (7)

where CCF is the stiffness tensor of the coated fibril; SF is the

Eshelby’s tensor for the needlelike fibril; and fF and fcoat ¼
1 � fF are the volume fractions of the fibril and the coating,

respectively. The remaining quantities were defined in Col-

lagen Fibril Reinforced with Intrafibrillar HA Platelets.

The actual effective properties of fibrils with extrafibrillar

minerals must be within the upper bound for a fully coated

fibril, CCF; and the lower bound for a naked fibril, CF: In terms

of our modeling, it is clear that the effective properties of a

partially coated fibril will be closer to the upper bound in

certain directions, like tension/compression in directions

normal to the fibril’s surface, and closer to the lower bound in

others. In fact, for the extrafibrillar reinforcements shown in

Fig. 3 b, only two deformation modes would be not stiffened

by the extrafibrillar mineralization, namely, tension/com-

pression along the fibril axis and shear in the 1-2 plane (see

Fig. 4). Shear in the 1-3 plane must be a stiff deformation

mode because of the additional resistance to shear due to the

specific staggered geometry of the extrafibrillar and intra-

fibrillar minerals (Fig. 3 b).

Let aEM be the fraction of the fibril surface coated with

extrafibrillar minerals. If all deformation modes of the fibril

were equally strengthened by the extrafibrillar mineraliza-

tion, then a simple Voigt-like estimate for the effective elastic

constants of the mineralized fibril, CMF; would give

CMF ¼ aEMCCF 1 ð1� aEMÞCF: (8)

To account for the non-reinforced modes, from the stiffness

tensors CCF and CF we first compute the Young moduli along

the fibril axis, ECF
1 and EF

1 ; as well as the shear moduli, GCF
12 and

GF
12; in the 1-2 plane corresponding to coated and naked

fibrils, respectively. Then we obtain the effective Young

modulus EMF
1 and shear modulus GMF

12 in the soft deformation

modes using asymptotic homogenization method (29), which

in our case gives the lower Hashin-Strikman bound for the

mechanical properties, known to be more realistic than the

simple Reuss estimate. The effective moduli EMF
1 and GMF

12 are

estimated as

E
MF

1 ¼ aEME
CF

1 1ð1�aEMÞEF

1�
aEMð1�aEMÞðEF

1�E
CF

1 Þ
2

E
CF

1 ð1�aEMÞ1E
F

1ð11aEMÞ
;

(9)

G
MF

12 ¼aEMG
CF

12 1ð1�aEMÞGF

12

� aEMð1�aEMÞðGF

12�G
CF

12 Þ
2

G
CF

12 ð1�aEMÞ1G
F

12ð11aEMÞ
: (10)

Then one can immediately substitute GMF
12 in the stiffness

matrix CMF: To replace EMF
1 with the updated value found via

Eq. 9, it is necessary to first find the compliance matrix, C�1
MF;

replace the old value for 1=EMF
1 with the new estimate there,

and then invert the updated compliance matrix again to obtain

the corrected stiffness CMF: This approach is simple and gives

a satisfactory estimate of the properties of the mineralized

collagen fibrils decorated with extrafibrillar minerals, intro-

ducing only insignificant error for some of the Poisson’s ratios.

To be able to use the above-described model, we need an

additional formula for the extrafibrillar mineral content. By

definition, the total mineral volume fraction is fTM ¼ VM/VT

with VM and VT being the total volume of the mineral and the

tissue volume, respectively. On the other hand, VT can be

FIGURE 3 (a) Extrafibrillar minerals according to Sasaki

et al. (8); (b) Present model based on the collagen fibril

structure proposed by Piez and Miller (28). (Solid regions,

HA extrafibrillar reinforcements; open regions, underlying

collagen fibril.)

FIGURE 4 (Left) Bundle of aligned mineralized fibrils

(extrafibrillar minerals are not shown). (Right) Modeling

equivalent: two-dimensional cut of the RVE of the bundle

along the indicated plane. The needlelike inclusions (dark-

shaded) represent the extrafibrillar noncollagenous pro-

teins.
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expressed as VT ¼ VMF/fMF with the volume, VMF, and the

volume fraction, fMF, of the mineralized fibrils. Then, the

total mineral volume can be expressed as VM ¼ (fTM/

fMF)VMF. Introducing an equivalent thickness d for the HA

coating rings (Fig. 3 b), we can write the volume of the ex-

trafibrillar minerals as

VEM ¼p½ðRF 1dÞ2�R
2

F�LFaEM¼pdð2RF 1dÞLFaEM; (11)

where RF and LF are the radius and the length of the fibril and

aEM is the fraction of the coated fibril surface.

Taking the volume of the fibril as VMF ¼ pR2
FLF and using

VM ¼ (fTM/fMF)VMF, we can write the volume fraction of

the extrafibrillar minerals to the total mineral volume as

fEM ¼
VEM

VM

� fMF

fTM

� �
dð2RF 1dÞaEM

R
2

F

: (12)

The volume fraction of the minerals within the fibrils, fIF,

referred to as the fibril volume, VMF, can be found starting

with the basic expression

fTM¼
VM

VT

¼ VEM 1VIF

VT

; (13)

where VIF is the volume of the intrafibrillar minerals. Using

VT ¼ VMF/fMF together with Eqs 12 and 13, after some

manipulation we obtain

fIF ¼
fTM

fMF

ð1�fEMÞ: (14)

Equation 14 establishes a relationship between the extrafi-

brillar and the intrafibrillar mineralization.

Effective properties of a bundle of aligned
mineralized collagen fibrils

We now consider the overall properties of a bundle of par-

allel, closely packed mineralized collagen fibrils (Fig. 4, left).
The HA platelets within all the fibrils are assumed to have the

same orientation and shape and the adjacent fibrils are held

together by gluelike noncollagenous proteins (5). This type

of microstructure is observed in several important bone tis-

sues like the parallel-fibered bone, for example. More im-

portantly, such a bundle can be viewed as a basic unit for the

structure of any bone tissue at micron scale (Fig. 1, Level 4)

where different types of fibril arrays can be modeled as

consisting of bundles of parallel fibrils with different orien-

tation and volume fractions.

In this case, we cannot apply directly the modeling used in

Effective Properties of the Collagen-Water Composite, and

Collagen Fibril Reinforced with Intrafibrillar HA Platelets.

The method of Torquato is valid only for isotropic phases

while the individual collagen fibers possess markedly ortho-

tropic properties (1). On the other hand, the volume fraction of

the fibrils in the RVE of the bundle is�50%, given that their

diameter is ;100 nm while the separation distance between

two adjacent fibrils is only 1–2 nm (30). In addition, the in-

teractions between neighboring fibrils cannot be neglected,

which prevents us from using the Mori-Tanaka method if we

model the fibrils as inclusions embedded in a NCP matrix.

Instead, we use an ‘‘inverse Mori-Tanaka’’ homogenization

by simply inverting the matrix and the inclusions. Thus, we

consider a bundle of aligned fibrils as a two-phase composite

where the matrix properties are those of a single mineralized

fibril and the needlelike inclusions represent the interfibrillar

spaces filled with NCPs (Fig. 4, right). In fact, this approxi-

mation is more realistic than it may seem at a first glance

because adjacent collagen fibrils have the tendency to merge

together (1), and at certain places are bonded with bridges

containing HA minerals (9).

With the above considerations in mind, we can express the

effective stiffness tensor of a bundle of aligned fibrils, CB; as

(25)

CB ¼CMF 1fG½ðCG�CMFÞ : AG�½fMFI 1fGAG��1
; (15)

with concentration factor

AG¼ ½I 1SG : C
�1

MF : ðCG�CMFÞ��1
; (16)

where CMF and CG denote the stiffness tensors of the miner-

alized collagen fibrils and the extrafibrillar NCPs, respec-

tively; SG is the Eshelby’s tensor for the needlelike NCPs

inclusions; and fMF and fG ¼ 1 � fMF are the volume

fractions of the fibrils and the interfibrillar spaces, respec-

tively.

Effective properties of fibril arrays with narrow
orientation distribution of the fibrils

Once the stiffness tensor CB for the effective properties of

aligned fibrils is known, one can model other types of fibril

arrays (Fig. 1, Level 4), provided that the orientation distri-

bution of the fibril packets and the volume fractions corre-

sponding to different orientations are known.

Consider a fibril array where the fibrils are oriented along

i different directions, with ðCBÞi being the stiffness tensor

for a fibril bundle along the ith orientation and fi the

volume fraction of the bundle. Here we consider only the case

where the fibrils have narrow orientation distribution, like in

the rotated plywood structure of lamellar bone (1), for ex-

ample. Then, we can safely assume that the deformation

within the fibril array due to external loading would be more

or less uniform and therefore, the effective properties of a

fibril array without pores, CAR; defined in a fixed coordinate

frame, can be written as the volume average,

CAR¼+
i

fiR
T

i : ðCBÞi : Ri; (17)

where Ri is a 636 rotation matrix constructed from the

conventional 333 rotation matrix (31) and the symbol ð�ÞT
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denotes the transpose of a matrix. The introduction of Ri comes

from the fact that the effective elastic properties in a given

direction are found with respect to a local frame (as shown in

Fig. 4, left) coinciding with the axes of symmetry of the

bundle, and that frame in general does not coincide with the

fixed coordinate system where CAR is defined.

The Mori-Tanaka method can be further applied for

modeling of porosity at micron scale by considering the pores

as ellipsoidal inclusions with zero stiffness, but we do not

consider this topic here. As for fibril arrays with broad ori-

entation distribution in wovenlike patterns, the Mori-Tanaka

method can be used once again for finding the overall

properties, as done for textile tissues in Gommers et al. (32),

for example.

MODEL PARAMETERS

Collagen-water composite

Because of the extreme smallness of the collagen molecules,

only their longitudinal Young modulus has been evaluated by

various experimental and theoretical approaches. The Young

modulus of collagen molecules obtained via electron mi-

croscopy (33) ranges from 3 to 5.1 GPa, x-ray diffraction

yields 2.8–3 GPa (34) while MD simulations (4) predict

1.3–2.4 GPa. Here we choose E2 ¼ 2.4, which seems to be a

good compromise between simulations and experiment. The

Poisson’s ratio of the collagen molecule is not known ex-

actly. We set n2 ¼ 0.28 to have an overall Poisson’s ratio for

the collagen-water composite ;0.35, as estimated by Katz

(35). For the water-protein matrix, as a first guess we choose

Poisson’s ratio of n1 ¼ 0.47 corresponding to a nearly in-

compressible material. The associated Young modulus is

taken as E1 ¼ 0.4 GPa to match the measured bulk modulus

for water, K1¼ 2.3 GPa. With these values we determine the

shear moduli, Gi ¼ Ei/(1 1 ni), the three-dimensional bulk

moduli Ki ¼ Ei/3(1 – 2ni), and the two-dimensional bulk

moduli ki ¼ Ki 1 Gi/3, where i ¼ 1, 2 stand for water and

collagen, respectively. From geometry, the volume fraction,

f2, of the collagen molecules modeled as cylindrical fibers

with hexagonal packing is

f2 ¼
2pR

2

fffiffiffi
3
p
ð2Rf 1sÞ2

; (18)

where Rf and s denote the fiber radius and the lateral

separation between the fibers, respectively.

With Eq. 18, for f2 ¼ 0.65 and diameter of the collagen

molecule of 1.5 nm, the separation between two collagen

molecules is obtained as 2.5 Å, or approximately the length

of one H-bond (4). The corresponding three-point statistics

parameters are j2 ¼ 0.016 (21) and h2 ¼ 0.42 (22).

Substituting the above values in Eqs. 1–3 and assuming that

the collagen molecules are aligned along axis 1 of a Cartesian

coordinate system, the elastic constants of the collagen-water

system expressed in Voigt notation are obtained as

CC ¼

2:77 1:53 1:53 0 0 0

1:53 2:62 1:77 0 0 0

1:53 1:77 2:62 0 0 0

0 0 0 0:42 0 0

0 0 0 0 0:44 0

0 0 0 0 0 0:44

2
6666664

3
7777775

GPa: (19)

Because the properties of the water-protein matrix are subject

to uncertainty, we also test a higher Young modulus for the

matrix, E1 ¼ 0.7 GPa with corresponding Poisson’s ratio of

n1 ¼ 0.45, keeping the collagen properties and volume

fraction unchanged. This results in a somewhat stiffer colla-

gen-water composite,

CC ¼

2:84 1:51 1:51 0 0 0

1:51 2:77 1:67 0 0 0

1:51 1:67 2:77 0 0 0

0 0 0 0:55 0 0

0 0 0 0 0:57 0

0 0 0 0 0 0:57

2
6666664

3
7777775

GPa: (20)

Properties of HA crystallites and
extrafibrillar proteins

As in the case of collagen, there are no reliable experimental

measurements for the properties of HA nanocrystals in bone.

The measured properties of synthetic HA obtained through

various processes vary wildly with Young modulus ranging

from 6 (36) to 147 GPa (37). For the Young modulus of

biological HA, we first take a typical value of EM¼ 100 GPa

(30), and Poisson’s ratio nM¼ 0.23, as measured by Gilmore

and Katz (38) and computed with ab initio calculations (37).

We also use the Young modulus for single HA crystals, EM¼
114 GPa (38). For the sake of simplicity, we assume that the

properties of the HA crystals are isotropic.

The mechanical properties of the extrafibrillar proteins are

not known at present. Given that they consist of flexible,

coiling macromolecules, their Young modulus must be lower

than that of the collagen with its relatively stiff triple-helix

molecules. We assume that the extrafibrillar NCPs have

isotropic properties with Young modulus EG ¼ 1 GPa (30)

and Poisson’s ratio nG ¼ 0.45, a typical value for soft poly-

mers with flexible molecules. The volume fractions of the

mineralized fibrils, fMF, and the interfibrillar proteins, fG,

are determined with the help of Eq. 18 assuming that the fi-

brils have a diameter of 100 nm and are packed in a hexag-

onal array with separation between the fibrils of 1.5 nm (30).

This gives fMF ¼ 0.88 for the fibrils and fG ¼ 0.12 for the

extrafibrillar glue.

Mineralization parameters

The volume fraction of the overall mineral content is as-

sumed to vary from 32 to 52 vol %, which comprises a large

amount of literature data for wet bone (13,39). The most
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important issues concerning the mineralization in fibril arrays

are the ratio between the extrafibrillar and the intrafibrillar

mineral content, the evolution laws for mineralization outside

and inside the fibrils as functions of the total mineral content,

and the relation between the shape of the intrafibrillar HA

crystals and the mineral content in the fibrils. To our knowl-

edge, these dependencies are not known beyond some con-

tradictory data about the extrafibrillar mineral content. X-ray

diffraction methods (40,41) determined that between 70 and

80% of the total mineral content must be within the fibrils. On

the other hand, AFM and transmission electron micrographs

of turkey leg tendon (42) and AFM measurements of bone (8)

have been interpreted in a way indicating that as much as 70–

77% of the mineral is extrafibrillar.

Using Eq. 14, one can deduce that the results of Katz and

Lee (40) and Sasaki and Sudoh (41), namely that in a mature

bone between 20 and 30% of the minerals are extrafibrillar,

are consistent with the model of Jäger and Fratzl (3), for the

mineral content within the fibrils. For overall mineral volume

fraction fTM ¼ 0.52, fibril volume fraction fMF ¼ 0.88, and

extrafibrillar mineral fraction fEM ¼ 0.27, Eq. 14 gives the

volume fraction of HA within the fibrils as fIF ¼ 0.43, the

most probable value in a fully mineralized cortical bone es-

timated in Jäger and Fratzl (3).

RESULTS

Elastic moduli of a bundle of aligned fibrils

Elastic moduli of aligned fibrils without
extrafibrillar mineralization

Initially, we consider the elastic moduli for a hypothetical

bundle of naked aligned fibrils without extrafibrillar minerals.

We first assume that the shape of the HA platelets remains

unchanged for the studied volume fractions and the minerals

are ellipsoids, with shape determined by the typical dimen-

sions of the HA platelets of 50 3 25 3 3 nm. Alternatively, we

consider that the longest dimension of the platelets (along the

fibril axis) grows proportionally with increasing the mineral

volume fraction. Thus, for mineral content 32 vol % we as-

sume that the platelets have average dimensions of 40 3 25 3

3 nm, i.e., they completely fill the gaps within the collagen

fibrils but do not penetrate in the overlap zones. For mineral

content of 52 vol %, their longest dimension must evolve

linearly to 65 3 25 3 3 nm while their width and thickness

would remain unchanged. The resulting elastic moduli of

bundles of aligned fibrils without extrafibrillar minerals are

shown in Figs. 5 and 6. Hereafter, the subscripts 1, 2, and 3 are

with respect to the coordinate system shown in Fig. 4. The

collagen-water properties are given by Eq. 19 and the Young

modulus of HA is taken as EM ¼ 100 GPa.

It is seen that the preferential growth of the HA platelets

along the fibril axis changes only the longitudinal Young

modulus of the fibrils and the obtained values in this case are

more realistic than the values obtained assuming constant

platelet shape. The preferential growth of the HA crystals

along the fibril axis seems to explain the experimental fact that

the longitudinal Young modulus in parallel-fibered and fi-

brolamellar bone increases considerably for relatively small

increase in the total mineral content (39).

The bundles of aligned naked fibrils possess excessive

orthotropy and only two deformation modes are stiff enough

to match the experimentally observed stiffness in bone—

these are tension/compression along the fibril axis and shear

in the 1-2 plane. The other deformation modes are too soft to

FIGURE 5 Young moduli of a bundle of aligned fibrils without EF min-

erals. (Solid lines, HA platelets growing preferentially along the fibril axis

with increase in fTM; dashed lines, HA platelets with constant shape;

squares, E11; triangles, E22; diamonds, E33.)

FIGURE 6 Shear moduli of a bundle of aligned fibrils without EF

minerals. (Solid lines, HA platelets growing preferentially along the fibril

axis with increase in fTM; dashed lines, HA platelets with constant shape;

squares, G23; triangles, G31; diamonds, G12.)
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insure sufficient load-bearing capacity of the bone tissue,

which indirectly proves the importance of the extrafibrillar

mineralization for the mechanical properties.

Elastic moduli of aligned fibrils with
extrafibrillar mineralization

Next, we consider the elastic moduli of a bundle of aligned

fibrils with extrafibrillar mineralization. We test two different

mineralization scenarios. Firstly, it is assumed that the ex-

trafibrillar and the intrafibrillar mineralization develop si-

multaneously in a way that keeps the extrafibrillar mineral

fraction fixed at fEM ¼ 0.27 for all fTM. Alternatively, we

suppose that the volume fraction of the extrafibrillar minerals

grows linearly with the overall mineral content starting from

fEM¼ 0.10 (for fTM¼ 0.32) to fEM¼ 0.27 for fTM¼ 0.52.

The equivalent thickness of the HA rings is assumed to be

d¼ 5 nm (Fig. 3 b) so that at total mineral volume fraction of

fTM ¼ 0.52, 76% of the fibrils’ surface is coated with HA,

which is a reasonable value. The minimum fibril surface

fraction corresponds to HA reinforcing rings 5-nm thick and

59-nm long. The values for the extrafibrillar fraction, fEM,

the surface fraction occupied by the HA coating, aEM and the

mineral volume fraction within the fibrils, fIF, for the two

scenarios (constant fEM and evolving fEM) and for different

total volume fractions fTM are calculated with Eqs 12 and 14

and are listed in Table 1.

The mineralization parameters for linear evolution of fEM

with the total mineral content fTM are visualized in Fig. 7 and

one can notice that in this case, the mineral content within the

fibrils grows only slightly with the total mineralization while

the increase in the fibril surface fraction covered with HA is

more significant.

The mineralization scenario shown in Fig. 7 also suggests

that for mineral grades ,30% volume fraction, the intra-

fibrillar mineralization would develop much faster than the

extrafibrillar one, while for mineral levels .30 vol %, the rate

of intrafibrillar mineralization saturates and is compensated

by a higher growth rate of the extrafibrillar HA.

In these simulations, the collagen-water properties are

given by Eq. 19 and the Young modulus of HA is EM ¼ 100

GPa. The results for the elastic moduli are shown in Figs. 8

and 9.

It is seen that the assumption of constant proportion fEM of

the extrafibrillar minerals for all mineral volume fractions

results in a degree of orthotropy that changes with the overall

mineral content, while linear evolution of fEM yields a self-

similar pattern for the evolution of the elastic moduli where

the degree of orthotropy is little changed with increasing the

mineral content. The literature data for the three-dimensional

elastic constants of bone summarized by Espinoza Orı́as (43)

suggest that the degree of orthotropy does not change much

for considerable changes in the values for the elastic con-

stants. Therefore, we conclude that the fraction of extra-

fibrillar minerals and the longest dimension of the HA

platelets within the fibrils develop with increasing the total

mineral content in a way similar to the evolution laws visu-

alized in Fig. 7. From Figs. 8 and 9 one can see that the elastic

moduli for high degree of mineralization are slightly under-

estimated, most probably because the properties of the col-

lagen-water composite and HA are somewhat stiffer than the

so-far assumed values.

We therefore perform simulations where the collagen-

water properties are given by Eq. 20, the Young modulus for

HA is taken as EM ¼ 114 GPa, and the extrafibrillar miner-

alization parameters are the same as in the bottom half of

Table 1. The results for the elastic moduli are shown in Figs.

10 and 11. For comparison, we superpose the moduli of a

fibril bundle without extrafibrillar minerals where the longest

dimension of the HA platelets evolves linearly with the

mineralization from 40 to 65 nm.

From Figs. 10 and 11, it is seen that collagen fibrils with

extrafibrillar (EF) mineralization have superior mechanical

properties compared to fibrils where all minerals are inside

the fibrils. The only moduli that are not considerably en-

hanced by the EF minerals are longitudinal Young modulus

E11 and shear modulus G12, which are already strengthened

by the HA platelets inside the fibrils. However, in a bundle

with EF minerals, the same Young modulus as that for naked

fibrils is achieved with only slight increase in the intrafibrillar

mineral content and in the dimensions of HA platelets along

the fibril axis. The latter range from 43 to 56.8 nm compared

to an increase from 40 to 65 nm for the naked fibrils. Also,

one can notice that the softest deformation modes, shear in

the 2-3 and 3-1 planes, have practically the same moduli and

are the most strengthened by the EF mineralization.

TABLE 1 Parameters for extrafibrillar mineralization with equivalent thickness of the coating rings d ¼ 5 nm; lp denotes the

longest average dimension of the HA platelets

fTM [�] 0.32 0.36 0.40 0.44 0.48 0.52

Constant fEM fEM [�] 0.27 0.27 0.27 0.27 0.27 0.27

aEM [�] 0.468 0.526 0.584 0.643 0.701 0.76

fIF [�] 0.265 0.299 0.332 0.365 0.398 0.431

lp nm 40 45 50 55 60 65

Evolving fEM fEM [�] 0.10 0.134 0.168 0.202 0.236 0.27

aEM [�] 0.173 0.261 0.363 0.481 0.613 0.76

fIF [�] 0.327 0.354 0.378 0.399 0.417 0.431

lp nm 43 46.6 49.8 52.6 55 56.8
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The values obtained for the longitudinal Young modulus

are in a good agreement with those obtained for hydrated

fibrolamellar bone via microtensile testing (30), and also

correspond to the longitudinal Young modulus obtained

through nanoindentation on individual trabecula (44) and

osteons (45). In our simulations, E11 increases from 10 to 25

GPa compared to the experimentally measured range from

5 to 23 GPa (30). The values ,10 GPa can be explained not

only with total mineral content ,32% but also with imperfect

packing (square array of aligned fibrils with total minerali-

zation of 32% has longitudinal Young modulus of 8.9 GPa),

misalignment of the fibrils in the sample with respect to the

tensile axis, and ,10% EF mineral content. As for the cases

where the experimentally measured longitudinal Young

modulus of hydrated bone tissues is .25 GPa, one can ex-

plain such values by longer than 59-nm dimensions of the HA

platelets.

Three-dimensional elastic constants of bone

In Voigt notation, the elastic constants of a bundle of aligned

parallel fibrils (in a coordinate frame oriented as in Fig. 4 with

the fibril axis along axis 1) with total mineral content of 52%,

extrafibrillar mineral fraction of 27% and average dimensions

FIGURE 7 Evolution of the mineralization parameters (see bottom half of

Table 1) for linear increase in fEM with the total mineral content. (Squares,

fEM; triangles, aEM; diamonds, fIF.)

FIGURE 8 Young moduli of bundles of aligned fibrils with EF mineral-

ization (parameters from Table 1). (Solid lines, constant fEM; dashed lines,

evolving fEM; squares, E11; triangles, E22; diamonds, E33.)

FIGURE 9 Shear moduli of bundles of aligned fibrils with EF mineral-

ization (parameters from Table 1). (Solid lines, constant fEM; dashed lines,

evolving fEM; squares, G23; triangles, G31; diamonds, G12.)

FIGURE 10 Young moduli of bundles of aligned fibrils with and without

EF mineralization; CC from Eq. 20, EM ¼ 114 GPa. Parameters for EF

mineralization: see bottom half of Table 1. (Dashed lines, bundle without EF

minerals; squares, E11; triangles, E22; diamonds, E33.)
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of the HA platelets within the fibrils of 56.8 3 25 3 3 nm

read

CB ¼

27:68 6:45 5:22 0 0 0

6:45 20:33 5:94 0 0 0

5:22 5:94 13:96 0 0 0

0 0 0 4:45 0 0

0 0 0 0 4:53 0

0 0 0 0 0 7:06

2
6666664

3
7777775

GPa: (21)

The local properties CB are relevant for a length scale

ofseveral microns while the ultrasonic measurements of cor-

tical bone found in the literature are for samples with char-

acteristic length of several mm, where the mineralized

collagen fibrils are organized in a much more complex manner

to form rotated plywood structures, osteons, Haversian

canals. etc. (Fig. 1, Level 5). The explicit modeling of the

microstructure at higher levels of hierarchy within the frame

of our approach is possible but is beyond the scope of this

work. Here we use a simple phenomenological model to

reproduce the properties of compact bone observed at mac-

roscopic scales. Let us assume that in a first approximation,

cortical bone can be represented as a composite of aligned

fibrils where 67% of the fibrils are oriented like the bundle in

Fig. 4 and 33% of the fibrils are rotated about their axes

(parallel to coordinate axis 1) at an angle p/2. The volume

fraction of 33% for the rotated fibrils was chosen so that the

simulated elastic constant C66 matches the value obtained via

ultrasonic measurements reported in Espinoza Orı́as (43).

The elastic constants of this composite can be found using

Eq. 17 and are listed in Table 2 along with experimental

measurements for hydrated compact bone from different

sources.

From Table 2 is seen that our simple phenomenological

estimate yields surprisingly good predictions for the macro-

scopic three-dimensional elastic constants despite the fact

that the bone microstructure and porosity at higher hierarchy

levels has been discarded. While we do not pretend to have

explained in detail the macroscopic three-dimensional elastic

constants of bone, the obtained values indicate that our

modeling is able to quantitatively describe the essential fea-

tures of bone elasticity at micron and submicron length scales

and is rich enough to serve as a basis for a physically relevant

modeling of the bone properties at all length scales.

CONCLUSIONS

We have shown that extrafibrillar mineralization consider-

ably enhances the overall mechanical properties of the min-

eralized collagen fibrils in bone when the extrafibrillar

crystals strongly adhere to the fibrils surfaces and individu-

ally coat each collagen fibril, as suggested by the most recent

experimental data. Part of the extrafibrillar minerals most

probably form effective coating rings with the same period

and staggered geometry as the underlying naked fibrils and

start growing in the 40-nm gaps between the successive

collagen molecules situated at the fibrils surface. Minerali-

zation enhances the stiffness of the fibrils by two mecha-

nisms: firstly, the intrafibrillar HA platelets strengthen the

collagen fibrils in tension/compression along the fibril axis

and in shear in the platelets’ plane. The extrafibrillar miner-

alization further strengthens the fibrils in all remaining de-

formation modes except those already stiffened by the

intrafibrillar minerals.

We have established that typically, if the mineral content

within the fibrils does not exceed 43 vol % in fully miner-

alized cortical bone (3), no more than 30% of the total min-

FIGURE 11 Shear moduli of bundles of aligned fibrils with and without

EF mineralization; CC from Eq. 20, EM ¼ 114 GPa. Parameters for EF

mineralization: see bottom half of Table 1. (Dashed lines, bundle without EF

minerals; squares, G23; triangles, G31; diamonds, G12.)

TABLE 2 Elastic constants of cortical bone

Coefficient This work Espinoza Orı́as (43) Van Buskirk et al. (47) Ashman et al. (48)

C11 27.68 27.33 6 1.64 25.00 6 4.30 27.60 6 1.74

C22 18.23 19.66 6 2.09 18.40 6 2.70 20.20 6 1.79

C33 16.06 16.75 6 2.27 14.10 6 2.40 18.00 6 1.60

C44 4.45 4.64 6 0.43 5.38 6 0.46 4.52 6 0.37

C55 5.36 5.65 6 0.53 6.30 6 0.67 5.61 6 0.40

C66 6.22 6.22 6 0.31 7.00 6 0.67 6.23 6 0.48

Source — Wet femur Wet femur Wet femur

Species — Human Bovine Human
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eral content is extrafibrillar, in accord with the experimental

findings in the literature (40,41). More importantly, it is

shown that the percentage of the extrafibrillar minerals must

evolve proportionally to the overall mineral content to have a

relatively small change in the degree of orthotropy of the

elastic constants for different degrees of mineralization. In

this case, for a typical mineral content of 44 vol %, the gain in

stiffness from extrafibrillar mineralization compared to fibrils

where all minerals are intrafibrillar is ;2 times for the

weakest Young modulus (in direction perpendicular to the

HA platelets) and ;3 times for the weakest shear moduli.

The obtained three-dimensional elastic constants for bundles

of parallel fibril arrays are close to the elastic constants for

macroscopic samples obtained via ultrasonic measurements.

The model predictions for the longitudinal Young modu-

lus of arrays of parallel mineralized collagen fibers are in a

good agreement with the experimental data from microtensile

testing of fibrolamellar bone with the assumption that for

mineral content of .30 vol %, the HA platelets within the

fibrils grow preferentially in the fibrils direction and the

growth of the longest dimension of the HA platelets is pro-

portional to the increase in the overall mineral content.

We thank Prof. Peter Fratzl for communicating recent results from micro-

tensile experiments for fibrolamellar bone.
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