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ABSTRACT An ab initio model for gene prediction in prokaryotic genomes is proposed based on physicochemical character-
istics of codons calculated from molecular dynamics (MD) simulations. The model requires a specification of three calculated
quantities for each codon: the double-helical trinucleotide base pairing energy, the base pair stacking energy, and an index of the
propensity of a codon for protein-nucleic acid interactions. The base pairing and stacking energies for each codon are obtained
from recently reported MD simulations on all unique tetranucleotide steps, and the third parameter is assigned based on the
conjugate rule previously proposed to account for the wobble hypothesis with respect to degeneracies in the genetic code. The
third interaction propensity parameter values correlate well with ab initio MD calculated solvation energies and flexibility of codon
sequences as well as codon usage in genes and amino acid composition frequencies in ;175,000 protein sequences in the
Swissprot database. Assignment of these three parameters for each codon enables the calculation of the magnitude and
orientation of a cumulative three-dimensional vector for a DNA sequence of any length in each of the six genomic reading frames.
Analysis of 372 genomes comprising ;350,000 genes shows that the orientations of the gene and nongene vectors are well
differentiated and make a clear distinction feasible between genic and nongenic sequences at a level equivalent to or better than
currently available knowledge-based models trained on the basis of empirical data, presenting a strong support for the possibility
of a unique and useful physicochemical characterization of DNA sequences from codons to genomes.

INTRODUCTION

Genome analysis, the problem of finding genes and locating

control regions in DNA sequences, has received wide atten-

tion in recent years (1–5). Although there is no substitute for

molecular biology for determining the exact locations of

genes and control sequences in a genome, diverse computa-

tional methods (6–22) have been shown to have reasonably

successful predictive power. Most of the proposed prediction

protocols are based on prior empirical knowledge of sequence

characteristics and are thus ‘‘knowledge based.’’ Among the

most popular of these involve training on a set of known

genic sequences using techniques such as hidden Markov

(10,11) or machine learning (13) and have achieved speci-

ficities as high as ;80%. However, the lack of large enough

samples of known genes, as typically seen in a newly se-

quenced genome, can lead to suboptimal level of prediction,

and knowledge-based protocols may be organism specific.

In this article we describe an essentially ab initio model for

gene prediction in prokaryotic genomes based on a set of

three physicochemical characteristics of codons—by codon

is meant here the double-helical trinucleotide in DNA space

in a given reading frame—calculated from molecular dy-

namics (MD) simulations. By use of this approach, infor-

mation on the sequence-dependent properties of genomic

segments can be introduced effectively. The resulting gene-

finding program, called ChemGenome2 (CG2), is shown to

differentiate genes from nongenes at a level equivalent to or

better than previously reported gene-finding methods, un-

derlining the possibility of a unique and useful ab initio

characterization of DNA sequences from codons to genomes.

BACKGROUND

Gene finding using knowledge-based approaches has been

reviewed in the recent comprehensive text by Mount (1), and

an updated view has been presented by Ussery and Hallin and

others (2–7). Remarkable advances have been made in this area

using statistical methods, mathematical models, and artificial

intelligence techniques in the design of computational proto-

cols. Further improvements in this general type of approach to

gene finding depend on enlarging the database of known genes.

This article is concerned with an alternative approach: ab

initio methods based on physicochemical properties and

geometrical structures of codons. Some of the changes in-

volved in gene expression are unwinding or melting of DNA

helix, interactions with RNA polymerase/transcriptional

factors, and short-term interactions with the transcribed RNA

molecule. For transcription and replication, base pair opening

and DNA unwinding need to occur, which brings into con-

sideration DNA melting and hence relative stability of DNA

(gene sequences) vis-à-vis promoter or nongenic regions. In

a simple model, stability is attributed to hydrogen bonding

between bases and base-stacking interactions. It is also known
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that stacking energies have been correlated with DNA

melting temperature (23). Previous research in this vein has

been done by Dutta et al. (24), who developed a simple three-

parameter model for gene finding based on Watson-Crick

hydrogen bond energies, base-stacking energies, and a protein-

DNA interaction parameter. The hydrogen bonding (x di-

mension) and stacking energies (y dimension) for each codon

were assigned based on finite-difference Poisson-Boltzmann

calculations, assuming canonical B-form structures. The

parameters were taken as a basis for a three-dimensional

‘‘j-vector’’ for each three-base-pair sequence, with the third

parameter (z dimension) chosen to give the maximum sepa-

ration in orientation of summation j-vectors (J-vectors) for

genes and nongenes in a training set of 1500 gene/nongene

pairs in the Escherichia coli K12 genome. In this regard, the

method of Dutta et al. is not purely ab initio but involves a

knowledge-based component in the assignment of the z pa-

rameter. However, the z parameter is observed to be consis-

tent with the general rule of conjugates proposed earlier,

which has a stereochemical basis (25). Dutta et al. calculated

j-vectors for all trinucleotides in 331 prokaryotic, 21 eukary-

otic, and 18 viral genomes. Summing up, they found J-vectors

for gene and nongene regions to be markedly different in ori-

entation, with gene/nongene classification accuracies com-

parable to those of purely knowledge-based methods. A

general specification of the procedure is referred to as the

ChemGenome algorithm.
The work of Dutta et al. (24) can be considered a proof of

the concept that gene finding based on a physicochemical

model of codons is a viable idea. However, there are several

possible improvements. One is to introduce the sequence

dependence of the solution structures of codons in the x and y
parameters, and the second is to render the j-vector approach

into a fully ab initio gene-finding tool by reframing the z
parameter as representing the propensity of a codon for

intermolecular interactions. The problem of the sequence-

dependent structures of codons could be approached by

crystallographic (26) or NMR structure determination, but

a full set of experimental results based on these methods is

not yet available. Three base-pair oligonucleotide systems

are readily accessible to computational modeling via MD

simulations, and force field and simulation protocols have

improved to the point that quite accurate results have been

obtained. The problem of sequence effects on DNA structure

in general has been recently investigated based on MD

simulations, and the results can be applied to sequence-

dependent structures of codons. Treating the problem in

general involves, at a minimum, the study of the sequence-

dependent structures of all 10 unique dinucleotide steps.

Because each step may be sensitive to the immediate se-

quence context, a minimal study of the problem requires a

consideration of all 136 unique tetranucleotide steps. MD has

been applied to this problem by a consortium of researchers

who collectively performed 15-ns trajectories on 39 different

15-base-pair DNA sequences in which multiple copies of all

FIGURE 1 The three-dimensional physicochemical vector calculated for

each DNA sequence.

TABLE 1 The x (hydrogen-bonding energy), y (stacking

energy), and z (protein-nucleic acid interaction propensity

parameter) values assigned for each of the 64 codons

Codon x y z Codon x y z

CCC �1.0 0.97 �1 TCC �0.85 0.66 �1

CCG �0.85 0.14 1 TCG �0.41 �0.10 �1

CCT �0.03 1.00 1 TCT �0.15 0.74 �1

CCA �0.02 0.81 �1 TCA �0.18 0.23 �1

CGC �0.98 �1.00 �1 TGC �0.49 �0.38 �1

CGG �0.85 0.14 1 TGG �0.02 0.81 �1

CGT �0.30 �0.71 1 TGT �0.13 0.07 �1

CGA �0.41 �0.10 �1 TGA �0.18 0.23 �1

CTC 0.07 0.75 �1 TTC �0.19 0.50 �1

CTG 0.03 �0.20 1 TTG 0.18 0.26 �1

CTT 0.82 0.87 1 TTT 0.93 0.56 �1

CTA 0.33 0.12 �1 TTA 0.85 0.65 �1

CAC 0.07 �0.25 �1 TAC 0.20 �0.11 �1

CAG 0.03 �0.20 1 TAG 0.33 0.12 �1

CAT 0.15 0.15 1 TAT 0.94 0.41 �1

CAA 0.18 0.26 �1 TAA 0.85 0.65 �1

GCC �0.90 �0.13 1 ACC �0.86 0.49 1

GCG �0.98 �1.00 1 ACG �0.30 �0.71 �1

GCT �0.27 �0.24 1 ACT �0.01 �0.48 �1

GCA �0.49 �0.38 1 ACA �0.13 0.07 1

GGC �0.90 �0.13 1 AGC �0.27 �0.24 1

GGG �1.0 0.97 1 AGG �0.03 1.00 �1

GGT �0.86 0.49 1 AGT �0.01 �0.48 �1

GGA �0.85 0.66 1 AGA �0.15 0.74 1

GTC �0.09 �0.01 1 ATC 0.25 0.10 1

GTG 0.07 �0.25 1 ATG 0.15 0.15 �1

GTT 0.57 �0.10 1 ATT 1.0 0.29 �1

GTA 0.20 �0.11 1 ATA 0.94 0.41 1

GAC �0.09 �0.01 1 AAC 0.57 �0.10 1

GAG 0.07 0.75 1 AAG 0.82 0.87 �1

GAT 0.25 0.10 1 AAT 1.0 0.29 �1

GAA –0.19 0.50 1 AAA 0.93 0.56 1

Universal plane equation identified for prokaryotes and used for gene pre-

diction in all the 372 genomes studied: nx ¼ 0.698451, ny ¼ 6.82635, nz ¼
22.8116, d ¼ 1.0.
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the 136 tetranucleotides are represented. This required a total

of roughly 0.6 ms of simulation for systems containing

;24,000 atoms. Details of the MD simulations and analysis

of results are presented elsewhere (27,28), and a Web-acces-

sible database of the results is available at http://humphry.

chem.wesleyan.edu:8080/MDDNA. Most relevant here is that

the MD results on sequence-dependent structures of trinu-

cleotide sequences required for codons can be obtained as a

special case of the results on tetranucleotides.

METHODS

Each of the 64 codons is represented by a three-dimensional j-vector, with

each dimension representing a characteristic of DNA structure or recognition

FIGURE 2 (a) Frequency of occur-

rence of the 64 codons in 854 experi-

mentally verified E. coli genes is

presented as black dots, and the corre-

sponding frequency of these codons in

the frame-shifted nongenic sequences is

presented as open squares. (b) Difference

in codon frequencies between genes and

nongenes.
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as shown in Fig. 1. The x, y, and z components of the j-vector for each codon

are nucleotide base-pairing energy, the base pair stacking energy, and an

index of the propensity of a codon for intermolecular interactions, each de-

fined on the interval of�1 to 11. The x, y, and z parameters of the j-vector for

each codon are listed in Table 1 and are developed as follows.

Hydrogen bond energies (the x component)

The Watson-Crick hydrogen bond energies are calculated from the MD

trajectories using ptraj and anal modules of the AMBER software. With the

successive bases of a trinucleotide denoted as i, j, and k, and their Watson-

FIGURE 3 (a) The solvation energies

of trinucleotides (codons) with 11 for z

are presented as diamonds, and those

with �1 for z as solid squares. (b) The

flexiblity of trinucleotides (codons) with

a z value of 11 are presented as dia-

monds, and those with a z value of�1 are

shown as solid squares.
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Crick partners on the complementary strand as l, m, and n, the hydrogen bond

energy is calculated from the simulation data as follows.

EHB ¼ Ei-l 1 Ej-m 1 Ek-n;

where Ei-l refers to the electrostatic plus van der Waals interactions of all the

hydrogen-bonding atoms of base i with those of base l. The hydrogen bond

energy for all the 32 unique trinucleotides was calculated from all the 39

sequences in the ABC database, and the data were averaged out from the

multiple copies of the same trinucleotide. These energies span a range of

values from �17.4 kcal mol�1 to �10.7 kcal mol�1. The resultant energies

were then linearly mapped onto the [�1, 1] interval giving the x coordinate as

x½i� ¼ ½fðE½i�1 EminÞðEdesired range=Eactual rangeÞg � Edesired min�;
where E[i] is the hydrogen-bonding energy for ith codon, and i ranges from

1 to 64. Edesired range here is 2, and Edesired min is �1.

Basepair stacking energies (the y component)

The stacking energies, which comprise electrostatic and van der Waals in-

teractions of all the atoms with each other in a codon excluding interactions

within the same base pair, were calculated for all 32 unique double-helical

trinucleotide sequences in a similar manner.

EStack ¼ ðEi-m 1 Ei-nÞ1 ðEj-l 1 Ej-nÞ1 ðEk-l 1 Ek-mÞ
1 ðEi-j 1 Ei-k 1 Ej-kÞ1 ðEl-m 1 El-n 1 Em-nÞ:

After averaging out the energies of multiple copies of the same trinu-

cleotide obtained from the MD trajectories, the energies were seen to span the

range of�56.2 kcal mol�1 to�52.9 kcal mol�1. The resultant energies were

mapped onto the interval [�1, 1], giving the y coordinate for each codon.

y½i� ¼ ½fðE½i�1 EminÞ ðEdesired range=Eactual rangeÞg � Edesired min�;
where E[i] is the base pair stacking energy for the ith codon, and i ranges

from 1 to 64.

Intermolecular interaction propensities (the
z component)

Initially for the development of the z parameter (24), we took a training set

of 1500 gene-nongene (shifted-gene) pairs (where a gene is at least 100

FIGURE 4 Correlation between the

amino acid frequency in 175,000 Swis-

sprot protein sequences (diamonds) and

frequency of occurrence of codons with

11 value for z parameter in the E. coli

data set (open squares) for each amino

acid.

FIGURE 5 A flow chart describing the ChemGenome algorithm for gene

prediction.
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nucleotides long) of the E. coli K12 genome. These parameters are based on

the conjugate rule (25) according to which a codon and its conjugate codon

are assigned equal and opposite values (11 for codon and �1 for its con-

jugate codon). Codons starting with G are assigned 11. Codons starting with

C and ending with G or T are assigned 11, and those ending with A or C�1.

The rule of conjugates fixes the remaining 32 values. Conjugate rule extends

the wobble hypothesis to capture the general spirit of the molecular events at

the recognition site—the dynamics of the third base of the codon on mRNA

in the presence of the anticodon.

A plot of codon usage (frequency of occurrence of codons) in 854 ex-

perimentally verified genes of E. coli (29) is shown in Fig. 2. Note that with

the exception of a few, the majority of the codons with 11 value for z have a

higher propensity of occurrence in gene sequences compared with those

codons with �1 for z, which have a higher propensity for the nongene se-

quences. The z parameter assignment is found to correlate with the MD

calculated solvation energies (Fig. 3 a) and flexibility (Fig. 3 b) of each

trinucleotide. The solvation energies of the DNA structural units as observed

in the MD simulations were carried out on the basis of the proximity criterion

(30), which permits a unique definition of the solution environment of each

identifiable substructure—atom, functional group, or residue of any poly-

functional solute molecule or macromolecule (31,32). Specifically, the set of

solvent molecules closer to a solute atom A than any other solute atom is

referred to as the total primary solvation shell of A. With the proximity in-

dices thus defined for the solute and solvent molecules, the interaction energy

between a particular subunit of the solute and the corresponding solvent

molecules in its proximity region provides an indicator of the interaction

potential. For this analysis, the solute-solvent interaction energies of different

trinucleotides of interest were derived on the basis of the MD trajectories. All

the proximity analysis calculations presented here have been performed

using the MMC program (33), and a detailed analysis of the solvation

properties of the various DNA sequences has been reported recently (S. B.

Dixit, M. Mezei, and D. L. Beveridge, unpublished data). On average, the

trinucleotides with 11 for z have weaker solute-solvent interaction energy

(1.1 kcal/mol overall) than their conjugate trinucleotides assigned �1 for z

(Fig. 3 a). The flexibility of the different trinucleotide units (Fig. 3 b) has

been analyzed on the basis of the average angular mean-square fluctuations

in the backbone conformational angles derived from the multiple copies of

each trinucleotide unit available in the simulation dataset (28,34). The ma-

jority of codons with �1 for z tend to lag behind their conjugate codons as-

signed 11 in terms of flexibility, although the difference between the averages

in this case is small.

A further analysis of the z parameter (Fig. 4) in terms of Swissprot (35)

amino acid composition frequencies observed in 175,000 proteins and the

frequency of occurrence of codons that are assigned 11 value in the E. coli
dataset mentioned above (29) shows a remarkable similarity. Thus, the z

parameter in a sense combines the DNA-protein recognition properties,

mRNA-tRNA recognition, and amino acid frequencies in functional pro-

TABLE 2 Number of genes predicted and the corresponding sensitivity and specificity at each step in ChemGenome2.0 in the whole

genome analyses of 372 prokaryotic genomes

S.No. NCBI_ID

Initial

ORFs SS SP

ChemGenome
(DNA space) SS SP

ChemGenome
(protein space) SS SP

ChemGenome

(Swissprot

space)

Annotated

gtenes SS SP

1 NC_000117 6773 0.99 0.13 4558 0.98 0.19 2135 0.95 0.40 1284 895 0.92 0.64

2 NC_000853 15,104 0.99 0.12 10,688 0.99 0.17 4991 0.97 0.36 3037 1858 0.92 0.57

3 NC_000854 11,774 1.00 0.16 9616 0.99 0.19 5273 0.91 0.32 2282 1841 0.81 0.65

4 NC_000868 11,066 1.00 0.17 6598 0.99 0.28 3524 0.97 0.52 2232 1896 0.90 0.77

5 NC_000907 11,945 1.00 0.14 6582 0.97 0.24 3064 0.93 0.50 1926 1657 0.91 0.78

6 NC_000908 3866 1.00 0.12 1906 0.96 0.24 871 0.85 0.47 491 477 0.81 0.79

7 NC_000909 7829 1.00 0.22 3786 0.99 0.45 2450 0.97 0.68 1488 1729 0.80 0.93

8 NC_000911 28,534 1.00 0.11 20,656 0.98 0.15 10,459 0.95 0.29 5891 3167 0.93 0.50

9 NC_000912 6856 1.00 0.10 3798 0.95 0.17 1331 0.82 0.43 792 689 0.77 0.67

10 NC_000913 41,399 1.00 0.10 30,642 0.99 0.14 15,618 0.97 0.27 8500 4311 0.94 0.48

11 NC_000915 9647 0.98 0.16 5829 0.96 0.26 3227 0.90 0.44 1807 1576 0.86 0.75

12 NC_000916 14,586 1.00 0.13 10,537 0.99 0.18 6315 0.97 0.29 3024 1873 0.91 0.57

13 NC_000917 17,584 0.99 0.14 11,988 0.99 0.20 6121 0.96 0.38 3584 2420 0.90 0.61

14 NC_000918 10,140 1.00 0.15 6591 0.99 0.23 2784 0.98 0.54 1749 1529 0.91 0.80

15 NC_000919 11,875 1.00 0.09 8694 0.99 0.12 4200 0.94 0.23 2165 1036 0.90 0.43

16 NC_000921 9384 0.99 0.16 5682 0.98 0.26 3155 0.92 0.44 1763 1491 0.89 0.75

17 NC_000922 7505 0.99 0.14 5040 0.98 0.21 2484 0.94 0.40 1504 1054 0.91 0.64

18 NC_000961 10,026 1.00 0.19 5869 0.97 0.32 3317 0.94 0.55 2096 1956 0.86 0.80

19 NC_000962 45,751 1.00 0.87 39,813 0.99 0.10 21,629 0.96 0.18 6342 3999 0.85 0.54

20 NC_000963 4307 1.00 0.19 2148 0.97 0.38 1271 0.93 0.61 805 835 0.86 0.89

Data for the first 20 genomes in the order of NCBI IDs are shown in this table. Data for all 372 genomes are provided in Table S2 in Data S1.

FIGURE 6 Octant analysis of DNA sequences. Capital letters on abscissa

indicate positive values for the three parameters; small letters indicate nega-

tive values. Black bars represent mRNA genes, gray bars represent nongenes

(shifted mRNA genes), and white bars represent E. coli promoters.
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teins. One could envisage a separate set of parameters for each of the above

properties, but in CG2, a simple three-dimensional physicochemical model,

the z parameter appears to capture the essentials of gene recognition and

expression together with x and y.

The essential steps involved in gene prediction using CG2 are given in the

form of a flowchart in Fig. 5 and, together with Table 1, provide all the

information necessary to carry out genome analysis with the CG2 model.

To begin the process, a complete genome file is processed for the re-

quired format. The genome is then scanned for all possible open reading

frames (ORFs) with some minimum length of ORF in all six reading frames.

We have currently set the threshold length at 100, although the methodology

can work with much smaller lengths. Corresponding to each ORF position, a

sequence is extracted from the processed genome file. The physicochemical

J-vector is calculated for all the ORF sequences by accumulating the x, y, and

z components of the individual codons by vector summation of j-vectors. The

orientation of the resultant J-vector is given by the direction cosines. The best

universal plane covering the maximum number of genomes with sensitivity

greater than 95% is generated using a pocket algorithm (36) and is utilized to

segregate these ORF vectors into gene and nongene vectors. The universal

plane equation (common to all the 372 prokaryotic systems studied here) is

given under Table 1. Irrespective of the species, all vectors lying above this

plane are classified as genes, and those below the plane as nongenes (DNA

space). These gene vectors include a large number of false positives; how-

ever, false negatives are nearly absent.

Although the j-vectors for each codon and J-vectors for sequences of

codons are purely ab initio, some knowledge-based screening may be applied

at a general level to further reduce false positives, i.e., elements that are gene-

like but lack promoter sequences and those that are partially mutated to an

extent to be incapable of producing functional proteins. One preliminary

screen is introduced based on stereochemical properties of protein sequences

(protein space) to reduce false positives (B. Jayaram, unpublished data). An

analysis of 175,000 Swissprot protein sequences was carried out in terms of

the stereochemical properties of the amino acid side chains (linear or

branched, hydrogen bond donors, conformationally flexible, and short or

FIGURE 7 Normalized distribution of the (X) hydrogen

bond component, (Y) stacking component, and (Z) inter-

action parameter for 854 experimentally verified genes

(black), their corresponding frame-shifted nongene se-

quences (gray), and 75,000 randomly generated sequences

(black dots).
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long), and it was found that side chains with hydrogen bond donor groups

and without branching occur less frequently than the rest. These observations

were converted into a computational filter to reduce false positives.

A second screen has also been introduced to reduce false positives based

on the frequencies of occurrences of codons via their corresponding amino

acids from 175,000 Swissprot proteins. A query nucleotide sequence is

converted into amino acids, and their frequency of occurrence is compared

with the Swissprot data (Swissprot space). Both the Swissprot amino acid

frequency and query nucleotide amino acid frequency are normalized for 100

amino acids, and the difference in the frequencies of Swissprot and query

sequence is calculated for each amino acid, as is the overall standard devi-

ation. After validation on a large dataset of experimentally verified genes and

nongenes from 372 prokaryotic genomes, we found that a standard deviation

(cutoff) of ,3.5 captures 95% of genes with 35% of nongenes, whereas

a value of ,4.0 captures 98% of genes with 47% of false positives. A cutoff

of 3.5 is chosen so that the number of false positives is minimum and the

precision is maximum. Identification of exact start sites of genes (37) can

reduce the false positives in gene prediction considerably. A preliminary

attempt is made to map the physicochemical properties of promoter se-

quences on the basis of j-vector protocol. Fig. 6 shows the octant analysis of

mRNA, shifted mRNA (nongenes), and promoter sequences. Promoters

dominate in first and fifth octants (i.e., X1, Y1, Z1/Z�), whereas mRNA

dominates in first and second octants (i.e., X1/X�, Y1, Z1). A clear dif-

ference in octant distribution of the J-vectors for mRNA and shifted mRNA

sequences (nongenes) is discernible. However, promoters (regulatory region)

and mRNA sequences show a little overlap in the first octant, which needs to

be resolved. Work is in progress in this vein. Table 2 and Table S2 in

Supplementary Material, Data S1 give the number of ORFs screened after

each step along with sensitivity and specificity values.

RESULTS AND DISCUSSION

In the CG2 model, each of the 64 codons is assigned a hy-

drogen bonding, stacking, and interaction propensity pa-

rameter based on MD simulation data and the conjugate rule.

The values of these three parameters in the cumulative re-

sultant normalized unit vector (the J-vector) are capable of

distinguishing genes from nongenes. In Fig. 7, we present the

normalized distribution of hydrogen bonding, stacking, and

interaction components for 854 experimentally verified genes

in the E. coli genome. The frame-shifted nongene sequences

derived from these gene sequences as well as a set of 75,000

computationally derived random sequences, each 300 nucle-

otides long, constitute the reference set of nongene sequences

for this analysis. The three graphs highlight the fact that the

composition of gene sequences vis-à-vis the nongene and

random sequences can be differentiated on the basis of each

of the three parameters independently. The combined use of

these three parameters in terms of the ‘‘J-vector’’ further im-

proves our ability to differentiate genes from nongene se-

quences.

The results of gene finding using CG2 on an already an-

notated genome with experimentally verified genes are as-

sessed in this study on the basis of true positives (TP, genes

identified as genes), false positives (FP, nongenes identified

as genes), true negatives (TN, nongenes identified as non-

genes), and false negatives (FN, genes identified as nongenes).

It is useful to define some derived quantities based on these

parameters, viz.

Number of actual positives ðAPÞ ¼ TP 1 FN

Number of actual negatives ðANÞ ¼ FP 1 TN

Predicted number of positives ðPPÞ ¼ TP 1 FP

Predicted number of negatives ðPNÞ ¼ TN 1 FN

From these quantities the conventional descriptors of as-

sessment can be calculated; i.e.,

Sensitivity ðSSÞ ¼ TP=ðTP 1 FNÞ
Specificity ðSPÞ ¼ TP=ðTP 1 FPÞ;

where sensitivity refers to the fraction of correct predictions

and specificity to the true positive rate. A final assessment

parameter for this study, the correlation coefficient, is defined

as:

Correlation coefficient ðCCÞ ¼ ðTP 3 TN � FP 3 FNÞ=
ðAN 3 PP 3 AP 3 PNÞ½

The initial assessment of the CG2 model was carried out

on the basis of 372 prokaryotic genomes available in the

Genbank (38). The sensitivity, specificity, and correlation

coefficients averaged over 356,208 genes and an equal

number of frame-shifted genes (nongenes) were found to be

97.5%, 97.20%, and 94.25%, respectively (Table 3 and Table

S1 in Data S1). The observed average sensitivity, specificity,

and correlation coefficient for gene and pregene (intergenic

regions preceeding genes) separation are found to be 92.41%,

82.16%, and 73.30%, respectively (data not shown). The

differences in the separation accuracies for gene/shifted gene

TABLE 3 Gene evaluation data for prokaryotic genomes for

experimentally verified genes and nongenes

Serial

No. NCBI_ID Genes TP FN SS SP CC

1 NC_000117 455 447 8 0.98 0.96 0.94

2 NC_000853 638 627 11 0.98 0.99 0.97

3 NC_000854 560 544 16 0.97 0.97 0.94

4 NC_000868 619 598 21 0.97 0.98 0.94

5 NC_000907 953 921 32 0.97 0.97 0.94

6 NC_000908 186 182 4 0.98 0.95 0.93

7 NC_000909 713 702 11 0.98 0.98 0.97

8 NC_000911 1351 1298 53 0.96 0.96 0.92

9 NC_000912 238 222 16 0.93 0.93 0.86

10 NC_000913 1914 1217 697 0.64 0.73 0.41

11 NC_000915 731 704 27 0.96 0.96 0.93

12 NC_000916 715 700 15 0.98 0.97 0.95

13 NC_000917 784 774 10 0.99 0.98 0.97

14 NC_000918 594 585 9 0.98 0.98 0.97

15 NC_000919 455 439 16 0.96 0.96 0.92

16 NC_000921 499 488 11 0.98 0.95 0.93

17 NC_000922 619 583 36 0.94 0.95 0.89

18 NC_000961 475 458 17 0.96 0.97 0.93

19 NC_000962 1895 1876 19 0.99 0.99 0.98

20 NC_000963 449 444 5 0.99 0.98 0.97

Data for the first 20 genomes in the order of NCBI IDs are shown in this

table. Data for all 372 genomes are provided in Table S1 in Data S1.
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and gene/pregene may be attributed to the fact that the pre-

gene regions are typically very small in prokaryotic genomes.

Usage of a genome-specific plane as opposed to a common

(universal) plane for genomes of all species is observed to yield

even better accuracies. Overall, the accuracy in the prediction

of protein-coding genes in a genome based on a simple three-

parameter model capturing the inherent properties of DNA

without any prior knowledge of coding regions or database

training may be noted.

The performance of the model with all the three parameters

taken together is shown graphically for the 854 experimentally

verified genes (genes where both 59 and 39 positions are

experimentally verified and function identified) in the E. coli
genome as a plot of orientations of predicted cumulated (J)

vector over a unit sphere in Fig. 8 a. The clustering of gene

vectors (Fig. 8) indicates that genes are characterized by a

specific combination of hydrogen-bonding energy, stacking

energy, and protein-nucleic acid interaction propensity. For

instance, it may be noted from Fig. 6 that genes occur in the

first and second octants predominantly. The physicochemical

properties of DNA considered in CG2, namely hydrogen-

bonding energy and stacking energy together with the z pa-

rameter, which correlates with solvation energy and flexibility,

seem to embed sufficient information for gene identification.

FIGURE 8 (a) Representation of cumulative physicochemical codon vectors on a unit sphere for 854 experimentally verified genes in E. coli and (b) their

corresponding frame-shifted nongene sequences. (c) Second view for genes on unit sphere.
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To further gauge the efficacy of the physicochemical model,

we deleted all start and stop sites in a genome and tested for

gene identification by CG2. The results are shown in Table 4.

CG2 identifies gene regions to within 610 codons with an

accuracy exceeding 90%.

The CG2 algorithm as described herein has been pro-

grammed into a Web-enabled gene prediction software suite

that can be accessed at www.scfbio-iitd.res.in/chemgenome/

chemgenomenew.jsp. A mirror site has also been created at

http://chemgenome.wesleyan.edu. A linux version of the

software is also available for free download. A click on the

Chemgenome2.0 server opens into a window wherein a user

can input the whole genome sequence or a part of the genome

of an organism. The sequence can be uploaded or alterna-

tively pasted or typed into the query window of the browser.

Acceptable characters are A, G, C, and T. The user can select

the minimum ORF length to scan the entire genome. A tab-

ular output displays the strand name and the predicted gene

boundaries. A karyogram of the whole genome demarcating

protein-coding and noncoding regions is also displayed.

SUMMARY AND CONCLUSIONS

An ab initio model for gene prediction in prokaryotic ge-

nomes is proposed based on the assigned j-vectors for each

codon and of the orientation of the cumulative J-vectors for a

nucleotide sequence element (putative gene). The compo-

nents of each j-vector correspond to base pair hydrogen

bonding, base stacking, and an index representing a pro-

pensity for intermolecular interactions. The parameters are

calculated from MD simulations and a quantification of the

wobble hypothesis. The latter correlates well with MD-

calculated solvation energies and flexibility of codon se-

quences as well as amino acid composition frequencies in

;175,000 protein sequences in the Swissprot database. As-

signment of these three parameters for each codon enables

the calculation of the magnitude and orientation of a cumu-

lative three-dimensional vector for a DNA sequence of any

length in each of the six genomic reading frames. Analysis of

372 genomes comprising ;350,000 genes shows that the

orientations of the gene and nongene vectors are well dif-

ferentiated and make a clear distinction feasible between

genic and nongenic sequences. Moreover, the success ach-

ieved in differentiating genes from nongenes is equivalent

to or better than the currently available knowledge-based

models trained on the basis of empirical data, presenting a

strong support for the possibility of a highly useful physi-

cochemical characterization of DNA sequences from codons

to genome.

SUPPLEMENTARY MATERIAL

To view all of the supplemental files associated with this

article, visit www.biophysj.org.
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6. Mathé, C., M. F. Sagot, T. Schiex, and P. Rouzé. 2002. Current
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