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Summary
Progesterone is an ovarian steroid hormone that is essential for normal breast development during
puberty and in preparation for lactation. The actions of progesterone are primarily mediated by its
high affinity receptors, including the classical progesterone receptor (PR) -A and -B isoforms, located
in diverse tissues such as the brain where progesterone controls reproductive behavior, and the breast
and reproductive organs. Progestins are frequently prescribed as contraceptives or to alleviate
menopausal symptoms, wherein progestin is combined with estrogen as a means to block estrogen-
induced endometrial growth. Estrogen is undisputed as a potent breast mitogen, and inhibitors of the
estrogen receptor (ER) and estrogen producing enzymes (aromatases) are effective first-line cancer
therapies. However, PR action in breast cancer remains controversial. Herein, we review existing
evidence from in vitro and in vivo models, and discuss the challenges to defining a role for
progesterone in breast cancer.
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Introduction: Alterations between the normal and neoplastic breast
Complex factors contribute to the challenge of demonstrating a clear role for progesterone in
breast cancer. First, progesterone is difficult to study in isolation from other hormones (i.e.
growth factors, prolactin) that also contribute to breast cancer biology. Second, progesterone
receptor (PR) isoforms are expressed in response to estrogen receptor-alpha (ER) mediated
transcriptional events, but can also occur independently of ER [1]. The subset of mammary
epithelial cells (MECs) in the breast that express both PR-A and PR-B also express ER, and
estrogen is usually required in order to induce the robust expression of PR in these ER+ cells.
As estrogen is also a potent breast mitogen, this makes difficult to separate the effects of
progesterone alone from those of estrogen. Indeed, PR isoforms are grossly understudied
relative to ER in both the normal and neoplastic breast.

Studies in steroid hormone receptor knock-out mice have revealed that the concerted actions
of estrogen and progesterone are required for normal mammary gland development [2,3];
estrogen/ER promotes the growth of ducts that invade the mammary fat pad emanating from
the nipple, while estrogen/ER and progesterone/PR are required for the development of the
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terminal end-buds (TEBs) or acini located at the ends of ducts that later become the milk
producing structures in the lactating mammary gland (Fig. 1). Additional required hormones,
known as epidermal growth factor (EGF) and insulin-like growth factor (IGF-1) augment the
proliferation of terminal end-buds during normal breast development, and promote ductal
outgrowth and side branching induced by estrogen plus progesterone [4,5]. In fact, PR isoform
expression in response to estrogen requires the presence of EGF [6], suggesting the existence
of important cross talk between EGF receptors (EGFR) and/or family members (erbB2) and
both steroid hormone receptors.

Another limitation to deciphering a role for progesterone/PR action in breast cancer
development is that normal proliferating breast epithelial cells are steroid hormone receptor
negative [7]. In the normal adult mammary gland, ER+/PR+ cells represent only about 7–10%
of the luminal epithelial cell population; these cells are most often non-dividing, but usually
lie adjacent to proliferating cells (Fig. 1). The most current information suggests that ER+/PR
+ cells are capable of proliferating, but are growth-arrested by the expression of inhibitory
molecules, such as TGF-beta or high levels of p21 and p27, the endogenous inhibitors of cell-
cycle-dependent protein kinases (CDKs). Communication between the breast epithelial and
stromal compartments mediates the proliferation of nearby or adjacent cells by expression and
secretion of locally active pro-proliferative molecules such as wnts, IGF-II [7], or stroma-
derived hepatocyte growth factor (HGF) [8]. Recent evidence suggests that ER+/PR+ cells
may act as “feeder cells” by providing growth-promoting substances (i.e. wnts) to nearby
progenitor or stem cell populations [9].

In contrast to the normal breast, where proliferating cells are most often devoid of steroid
hormone receptors, the majority of breast cancers (~70%) express ER and PR at the time of
diagnosis. Although steroid hormone receptor-positive tumors are most often slower growing
relative to receptor-negative tumors [10], ER+/PR+ breast epithelial cells may undergo an early
switch to autocrine or paracrine signaling mechanisms whereby negative controls on
proliferation are somehow lifted. Another setting where PR-containing cells clearly divide is
in the pregnant mammary gland, where PR-B colocalizes with cyclin D1 in BrdU-stained
(dividing) cells [11]. Thus, pathways involved in normal mammary gland growth and
development may inappropriately “re-assert” themselves during breast cancer progression.
Experimental evidence in model organisms (primates, mice, rats) and humans suggests a pro-
proliferative role for progestins [12–14]. Herein, we review the status of progesterone/PR
action in breast cancer models, and suggest a potential for future development of PR antagonists
as part of combined breast cancer therapies.

Integration of PR classical and membrane-associated rapid signaling
PR isoforms are classically defined as ligand-activated transcription factors and members of a
large family of related steroid hormone receptors (that includes ER, androgen receptor (AR),
glucocorticoid receptor (GR), and mineralocorticoid receptor). PRs are activated upon binding
the naturally occurring ovarian steroid hormone, progesterone, or via binding to synthetic
ligands (progestins) and regulate gene expression by binding directly or indirectly to specific
sites in DNA (Fig. 2). Three PR isoforms (Fig. 2A) are the distinct protein products of a single
gene located on chromosome 11 at q22-23. Transcription of PR isoforms is governed by the
use of “distal” and “proximal” promoter regions [15]. The presence of internal translational
start sites within common mRNAs results in the creation of three protein isoforms that consist
of the full length PR-B (116 kDa), N-terminally-truncated PR-A (94 kDa), and PR-C-isoforms
(60 kDa). PR-positive cells most often co-express PR-A and PR-B isoforms; these receptors
exhibit different transcriptional activities within the same promoter context, but can also
recognize entirely different gene promoters [16,17]. PR-B is essential for normal mammary
gland development [18], while PR-A is required for uterine development and reproductive
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function [19]. PR-C is devoid of transcriptional activity, but when expressed, can enhance PR
activity in breast cancer cells [20] or function as a dominant inhibitor of PR-B in the uterus
[21].

Unliganded PRs are complexed with chaperone molecules including heat shock proteins (hsps);
these interactions allow proper protein folding and assembly of stable PR molecules competent
to bind hormone [22]. Hsps also mediate important aspects of PR protein trafficking. After
binding to progesterone, receptor conformational changes induce dimerization and hsp
dissociation (Fig. 2). Activated receptors associate with co-regulators, including steroid
receptor coactivators (SRCs 1–3), are withheld in the nucleus, and bind directly to specific
progesterone response elements (PREs) and PRE-like sequences in the promoter regions of
target genes such as c-myc [23], fatty acid synthetase [24], and MMTV [25]. Treatment with
progestin also results in the upregulation of genes without canonical PREs in their proximal
promoter regions, such as Epidermal Growth Factor Receptor [26], c-fos [27], p21 [28],
IRS-2 [29], and cyclin D1 [30]. Regulation of genes without PREs, PRE half-sites, or PRE-like
sequences can occur through PR tethering to other DNA-binding transcription factors, such as
Specificity protein 1 [28], Activating Protein 1 [31] or Signal Transducers and Activators of
Transcription (Stats) [32,33].

The genomic or classical actions of steroid hormone treatment are delayed by several minutes
to hours, dictated by the time required for transcription and translation of target genes. Recently,
however, rapidly occurring (within a few minutes) extranuclear or non-genomic effects of cell
membrane-localized steroid hormone receptors have entered the forefront. For example,
progestin treatment of breast cancer cells causes a rapid and transient (2–15 mins) activation
of cytoplasmic protein kinases, including mitogen-activated protein kinase (MAPK), PI3K,
and p60-Src kinase [34–36]. Similar activities have been reported for membrane-associated
ERalpha and AR [37]. These effects are mediated by direct binding of steroid hormone
receptors to protein-protein interaction domains of signaling molecules located in or near the
plasma membrane, in close proximity to growth factor receptors and their immediate effectors.
Human PR contains an N-terminal proline-rich (PXXP) motif that mediates direct binding to
the Src-homology three (SH3) domains of signaling molecules in the p60-Src kinase family in
a ligand-dependent manner [34]. In vitro experiments demonstrate that progestin-bound,
purified PR-A and PR-B directly activate the c-Src-related protein kinase, Hck; PR-B but not
PR-A activates c-Src and MAPKs in vivo. Mutation of the PXXP sequence in PR-B disrupts
the c-Src/PR interaction and blocks progestin-induced activation of c-Src (or Hck) and p42/
p44 MAPKs. Furthermore, mutation of the PR-B DNA-binding domain (DBD) abolished PR
transcriptional activity without blocking progestin-induced c-Src or MAP kinase activation.
Thus, non-genomic MAPK activation by progestin/PR-B/c-Src complexes most likely occurs
by way of a c-Src-dependent mechanism involving Ras activation of the Raf/MEK/MAPK
module (Fig. 2B). ER in association with other signaling and adaptor molecules is suspected
to reside in similar cytoplasmic signaling complexes, possibly in association with PR and c-
Src [37].

In studies using human breast or prostate cancer cell lines, the rapid signaling actions of
membrane associated AR, PR and/or ER have been shown to contribute to the regulation of
cell proliferation in response to their respective hormone ligands [38–40]. While potential roles
in human physiology (i.e. whole organisms) are less clear, steroid hormone receptor-mediated
activation of cytoplasmic signaling molecules may primarily serve to potentiate the nuclear
functions of these receptors (Fig. 2). For example, amplification of PR nuclear functions likely
occurs through rapid, direct phosphorylation of PR proteins and/or receptor co-regulators in
response to activation of PR-induced cytoplasmic pathways that are mechanistically coupled
to ligand binding. Thus, appropriately phosphorylated and activated receptor complexes are
efficiently directed to selected target genes. Clearly, such positive feedback explains the
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dramatic influence of activated signaling pathways on PR nuclear function. Indeed, several
progestin/PR-dependent events are MAPK or c-Src-dependent, including upregulation of
cyclins D1 and E, CDK2 activation, S-phase entry, and anchorage-independent cell growth in
soft-agar [26,41,42]. C-Src- and MAPK-dependent direct phosphorylation of PR Ser345 is
required for PR tethering to Sp1 transcription factors bound to the p21 and EGFR promoters
[43]. PR/Sp1 tethering upon c-Src/MAPK pathway activation is predicted to alter PR promoter
selectivity, favoring the use of Sp1-driven promoters within PR-target genes. Kinases also
confer hyperactivity and ligand-independence to phosphorylated PR-B [42,44,45]. For
example, MAPKs mediate PR hypersensitivity to ligand by phosphorylation of PR Ser294, an
event that derepresses receptor activity by preventing PR sumoylation [46]. Activated CDK2
or loss of p27 induces PR ligand-independent activity via Ser400 phosphorylation [42].
Although more studies are needed, it is becoming clear that activation of cytoplasmic protein
kinases is an integral feature of PR nuclear action (i.e. phosphorylation events are required for
gene regulation leading to changes in cell biology). Thus, rapid phosphorylation events may
primarily act to alter PR transcriptional activity, but clearly also mediate promoter selectivity
[47].

How might the membrane-associated signaling actions of steroid hormone receptors, including
PR, contribute to deregulated breast cancer cell growth and/or increased breast cancer risk?
Perhaps by linking steroid hormone action to the expression of MAPK-regulated genes (i.e.
the endpoint of MAPK signaling is the phosphorylation of transcription factors). In support of
this concept, the extranuclear actions of liganded ERs induce a state of “adaptive
hypersensitivity” during endocrine therapy in which growth factor signaling pathways are
coopted by upregulated ERs [48]. In this model of ER-dependent MAPK activation, liganded
ERs localized at the cell membrane interact with the adapter protein Shc and induce its
phosphorylation, leading to recruitment of adaptor molecules and activation of Ras and the
Raf-1/MEK/MAPK module. MAPK then regulates genes via direct phosphorylation of Ets
factors and/or AP1 components (i.e. independently of ER transcriptional activity). ER
activation of MAPK explains why many tumors respond well to aromatase inhibitors, yet fail
to respond to selective estrogen receptor modulators (SERMS) designed to inhibit ER
transcriptional activity in the nucleus, but not ER-dependent MAPK activation in the
cytoplasm. Breast cancers often exhibit heightened c-Src and MAPK activities [49,50] and
elevated cyclin D1, an AP1 target gene whose expression is sensitive to multiple kinase inputs
[51–53]. Steroid hormone receptors including PRs may contribute to the constitutive signaling
of cytoplasmic mitogenic protein kinases via their membrane-associated activities, thereby
circumventing endocrine-based (i.e. antiestrogen) therapies (Fig. 2).

Probing PR action in animal models
Studies in rodents demonstrate that PR-A and PR-B are differentially expressed during
mammary gland development, with PR-A predominantly expressed during ductal
sidebranching, while PR-B expression coincides with the formation of alveoli [54,55]. PR-B
but not PR-A is expressed in proliferating cells. Some but not all proliferating cells in both
compartments are PR-B+, suggesting that progesterone may induce proliferation through either
direct or paracrine mechanisms. In contrast, cells in adult virgin glands are PR and cyclin D1
positive, but fail to proliferate, possibly due to high levels of the cyclin-dependent protein
kinase inhibitors, p21 and p27 [55]. During the menstrual cycle, MEC undergo sequential
waves of proliferation and apoptosis. Notably, in primates (macaques and humans) increased
terminal duct lobular unit cell proliferation coincides with the peak of serum progesterone that
occurs during the luteal phase [13,56–58], again suggesting a paracrine mechanism for this
hormone in adult tissues. Upregulation of local IGF-1 may be a cooperating factor in this regard
[59]. In animal models of postmenopausal hormone replacement therapy, both parous and
nulliparous early and late postmenopausal mice were subjected to estrogen alone (E) or
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estrogen plus progestin (E+P); E+P produced a greater proliferative response relative to E alone
regardless of parity or treatment time. E+P was also shown to act directly on the mammary
gland, rather than via systemic effects [60]. Similar results occurred in surgically
postmenopausal macaques [61] and in postmenopausal humans [62]. Although breast cancer
development was not modeled in the above animal studies, the results (i.e. increased
proliferation) are consistent with human clinical data [63,64], which revealed increased tumor
number and size in women taking E+P, while E alone did not significantly alter breast cancer
risk or tumor size.

Progesterone may act via proto-oncogenes and growth factors to affect breast cell proliferation
and breast cancer etiology. As the majority of early breast cancer lesions express both ER and
PR and these receptors remain high in at least 60% of advanced decease, early events may
include a switch in the ability of normally quiescent ER+/PR+ cells to respond directly to
steroid hormones and proliferate (Fig. 1). Notably, deregulation of the cell cycle is a hallmark
of breast cancer. Up to 40% of breast cancers overexpress cyclin D1, while at least 30% have
lost p27 or p21 and/or contain activated CDK2 [65,66]. Mutation or loss of p53 is also a frequent
occurrence [67]. Numerous in vitro studies have demonstrated linkage of PR action to cell
cycle regulation [42,68–70]. Namely, PR interacts directly with cyclins A or E and CDK2
[69,70]. PR activity is highest in the DNA synthesis (S) phase of the cell cycle, when CDK2
activity peaks [68,69]. Furthermore, PR transcriptional activity becomes ligand-independent
and CDK2-driven upon loss of p27 [42]. Progestins, acting through PR-B-dependent
transcription, induce cyclin D1 expression and cell cycle re-entry in antiestrogen-arrested
breast cancer cells [71]. This suggests that in the breast, progesterone/PR action is tightly
coupled to mechanisms of cell cycle control. In breast cancer, the mitogenic potential of
activated PRs may manifest particularly during loss of checkpoint control and/or elevation of
CDK or other mitogenic kinase activities. For example, TGF-□ (an EGFR ligand) transgenic
mice develop ER+/PR+ proliferative hyperplasias (early lesions) that rapidly progress to ER
+/PR- tumors [72]. Recent in vitro studies demonstrate that BRCA-1 knock-down enhances
progestin-induced PR transcriptional activity, while progestin-induced MEC proliferation is
increased in genetically engineered mice lacking BRCA-1 in the mammary gland [73]. Related
to this finding, in recent studies using mice lacking mammary gland expression of both
BRCA-1 and p53, PR protein levels were dramatically increased, and the development of
aggressive ER+/PR+ tumors in virgin mice was completely blocked by antiprogestins [74]. In
future studies, it will be important to define how negative regulation of cell proliferation in ER
+/PR+ normal MECs is somehow lifted to allow progression of early lesions to malignant
cancer, and if early events include loss of checkpoint control or alteration of DNA damage and
repair pathways in PR+ cells.

PR action in human breast cancer cell models
The biochemistry of PR action is well characterized, having been largely defined using PR+
human breast cancer cell lines, or PR-null cells into which wild-type or modified PRs has been
re-expressed. Numerous studies have focused on PR interactions with regulatory proteins,
changes in PR subcellular localization, or post-translational modifications of PRs (i.e.
phosphorylation, ubiquitinylation, or sumoylation) or other conditions that affect PR
transcriptional activities, usually measured on artificial gene promoters (reporter genes)
containing one or more tandem PRE sites [75]. Growth factors, including EGF or heregulin,
promote transcriptional synergy in the presence of progestins on PR-target genes [45,76,77].
As discussed above, phosphorylation events primarily serve to augment PR action in a promoter
selective manner [46]. Despite this depth of basic understanding, the details of gene regulation
and the associated changes in cell biology in response to PR activation remain elusive. Only a
handful of endogenous progesterone-responsive genes have been described in detail [23,29,
78]. The majority of genes regulated in response to progesterone lack PR-binding consensus
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sequences or progesterone responsive elements (PREs), and the presence of one or more PREs
or PRE half-sites fails to accurately predict progesterone-responsive regulation [17]. Many
genes are regulated upon PR expression, but independently of progesterone [16,79].
Furthermore, several genes are downregulated in response to progesterone/PR-dependent
transcriptional repression, largely by unknown mechanisms [16,17]. In most cases, the
regulation of specific genes in response to progesterone/PR is only loosely tied (by correlation)
to changes in cell or tumor biology. For example, many PR-regulated genes are associated with
aspects of tumor progression towards aggressive tumor phenotype. In addition, the PR-A to
PR-B ratio is frequently altered (i.e. away from 1:1) in breast tumors relative to normal tissue
[80], a condition predicted to dramatically alter the genetic program [16,81].

Confounding the role of progesterone in breast cancer is the finding that progesterone has
biphasic effects on the proliferation of breast cancer cell lines grown in vitro (cells grown in
plastic culture dishes supplemented with progestin-containing media). Cultured cell lines
undergo an initial burst of proliferation characterized by increased S-phase entry that peaks at
18 hrs of progesterone treatment [30,82,83]. Cell cycle progression is driven by successive
upregulation of G1/S and G2 cyclins, p21, and elevated CDK2 activity. This is followed 24–
48 hours (one to three cell cycles) later by cell growth inhibition in which p27 is upregulated
and the cells ultimately arrest at the G1/S boundary. Thus, the response of cultured breast cancer
cells to progesterone is both proliferative and inhibitory, in contrast to the clear mitogenic
effects of estrogens in the same cell line models. For this reason, it has been suggested that
progesterone acts primarily as a priming agent, with growth promoting activity dependent upon
cellular context and/or the presence of secondary agents [84]. For example, progestins
upregulate selected components of growth factor-initiated signaling pathways, including IRS-2
[29], and EGFR family members and their ligands; progestin-treated breast cancer cells are
more responsive to EGF-induced proliferation than are progestin-naïve cells [30]. Thus,
progesterone may act in part by sensitizing breast cancer cells to growth factor and cytokine
signals [85].

Of note is that progesterone treatment of PR+ breast cancer cells growing in culture has also
been implicated in pro-survival (resistance to chemotherapy-induced apoptosis [86]) and tumor
cell differentiation (from luminal to myoepithelial phenotype) with minimal effects on tumor
growth [87]; this transition is associated with poor clinical prognosis. Similarly, epithelial to
mesenchymal transition (EMT) is an early event that precedes tumor cell invasion and
metastasis, and may occur independently of changes in proliferation. During EMT, stationary
epithelial cells become fibroblast-like and acquire the ability to migrate and invade locally.
Interestingly, many progesterone regulated genes encode molecules involved in signal
transduction and cell adhesion to extracellular matrix (ECM) or other basement membrane
components [16,17]. IRS-2, a PR-B-regulated gene, is a mediator of increased cell motility
[47]. The effects of progestins have recently been evaluated in soft-agar, a type of 3D culture
system that allows breast cancer cells to grow as anchorage-independent colonies more similar
to the organization of acini found in vivo. In contrast to mono-layer cultures, progestins are
clearly mitogenic in this system, wherein PR-B induces transcriptional upregulation of wnt-1,
leading to sustained MAPK activity, upregulation of cyclin D1, and the formation of abundant
large colonies [41]. This suggests that the mitogenic actions of progesterone require the
establishment of cell polarity, a property that is not supported in 2D culture systems. In addition
to gaining further insight into the role of what appears to be excessive cross talk between
progesterone/PR and signaling pathway components, a clear definition of the specific actions
of progesterone/PR that are relevant to more advanced breast cancer cell biology (i.e. tumor
progression to metastasis, including EMT) is needed. This may require study conditions that
mimic or preserve breast epithelial cell architecture in which PR+ luminal epithelial cells are
polarized, and in contact with basement membrane components (Fig. 1). In support of this
concept, normal MECs respond differently to estrogen and progesterone when cultured in the
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presence of variable ECM components (i.e. collagen type I, fibronectin, laminin) [8]; ECM
proteins increase the expression of EGF and IGF receptors. In this context, estrogen plus
progestin inhibit EGF/IGF-induced MEC proliferation in an ECM-dependent manner [88].
Clearly, ER and PR interactions with ECM are complex [8]. Deregulation of ECM protein
expression and/or integrin signaling (i.e. early events in cancer progression) is likely to
dramatically alter hormone responsiveness.

Future Perspective
Many aspects of PR action originally discovered in animal or cell line models of breast cancer
have not been established in humans. However, a direct role for PRs in breast cancer is
illustrated by the clinical findings of the Women’s Health Initiative (WHI) and Million Women
Study, demonstrating that women taking a progestin in combination with estrogen as part of
hormone replacement therapy (EPT), experienced a greater breast cancer risk relative to
estrogen alone; tumors were larger and of higher grade [63,64]. The Million Women Study
also found that women were more likely to die of breast cancer if they were taking EPT at the
time of diagnosis. Thus, while substantial preclinical data suggest an important role for PR
function in modulating breast cancer biology, validation of these findings are dependent on a
clinical strategy to disrupt PR function in human breast cancers. It will then be important to
decipher the contribution of both nuclear and membrane PR activities, and target them
appropriately with selective PR modulators, in addition to targeting the relevant kinases (c-
Src, MAPKs, and CDK2) required for steroid hormone receptor action. We suggest that PR
activities be routinely targeted as part of combination therapies aimed at blocking both ER-□
and PR-B, along with the associated essential protein kinases.
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Figure 1. Mammary gland structure
A. Acini, located at the ends of ducts in the adult mammary gland, are the functional units of
the lactating mammary gland. Luminal epithelial cells (apical) exist as polar cells in contact
with myoepithelial cells (basal). Epithelial cell populations are separated from the stroma by
a basement membrane. B. Steroid hormone receptor positive (ER+/PR+) cells occur adjacent
to proliferating cells in the normal mammary gland. Communication (paracrine signaling)
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between the epithelial and stromal compartments mediates proliferation of ER/PR negative
cells. Early events during breast cancer development may mediate switching from paracrine
to autocrine mechanisms of proliferation in ER+/PR+ cells.
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Figure 2. Progesterone receptor-dependent integrated actions
A. Ligand activated PR-B and PR-A transcription factors contain a hormone binding domain
(HBD), hinge region (H), DNA-binding domain (DBD), and amino terminus. Activation
functions (AFs) represent the sites of co-regulator interaction required for transcription. Serines
294, 345, and 400 are regulatory sites that are phosphorlyated in response to progestins and/
or mitogenic signaling pathways that modify PR function. B. Phosphorylation (P) of specific
sites in PR couples multiple receptor functions. 1. Ligand-binding mediates dissociation of
heat-shock proteins (hsps) and nuclear accumulation of PR. 2. Nuclear PRs regulate gene
expression via the classical (PRE-dependent) pathway; phosphorylated PR recruit regulatory
molecules that are phospho-proteins, and may function in one or more inter-connected
processes (transcription, localization, and turnover). 3. PR and growth factors activate MAPKs
via a c-Src kinase-dependent pathway, and this may result in positive regulation of PR
transcriptional activity via “feed-back” regulation (i.e. direct phosphorylation of liganded PR
or co-activators), occurring in both the absence and presence of ligands and on PRE-containing
or other PR-regulated gene promoters. 4. Activation of MAPKs by PR provides for regulation
of genes whose promoters do not contain PREs and are otherwise independent of PR-
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transcriptional activities but utilize PR-activated MAPKs. 5. In response to progestins, c-Src
and MAPK-dependent phosphorylation of PR Ser345 mediates tethering to Sp1 and selective
regulation of growth promoting genes via Sp1 sites (p21, EGFR).
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