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Genomic duplication-divergence processes are the primary source
of new protein functions and thereby contribute to the evolution-
ary expansion of functional molecular networks. Yet, it is still
unclear to what extent such duplication-divergence processes also
restrict by construction the emerging properties of molecular
networks, regardless of any specific cellular functions. We address
this question, here, focusing on the evolution of protein–protein
interaction (PPI) networks. We solve a general duplication-diver-
gence model, based on the statistically necessary deletions of
protein–protein interactions arising from stochastic duplications at
various genomic scales, from single-gene to whole-genome dupli-
cations. Major evolutionary scenarios are shown to depend on two
global parameters only: (i) a protein conservation index (M), which
controls the evolutionary history of PPI networks, and (ii) a distinct
topology index (M�) controlling their resulting structure. We then
demonstrate that conserved, nondense networks, which are of
prime biological relevance, are also necessarily scale-free by con-
struction, irrespective of any evolutionary variations or fluctua-
tions of the model parameters. It is shown to result from a
fundamental linkage between individual protein conservation and
network topology under general duplication-divergence evolu-
tion. By contrast, we find that conservation of network motifs with
two or more proteins cannot be indefinitely preserved under
general duplication-divergence evolution (independently from any
network rewiring dynamics), in broad agreement with empirical
evidence between phylogenetically distant species. All in all, these
evolutionary constraints, inherent to duplication-divergence pro-
cesses, appear to have largely controlled the overall topology and
scale-dependent conservation of PPI networks, regardless of any
specific biological function.

evolutionary constraint � scale-free graph � functional motif �
orthology � statistical model

The primary source of new protein functions is generally
considered to originate from duplication of existing genes

followed by functional divergence of their duplicate copies (1–3).
In fact, duplication-divergence events have occurred and con-
tinue to occur at a wide range of genomic scales, from many
independent duplications of individual genes† [10�3 fixed events
per gene per million years (MY) (4)] to rare but evolutionary
dramatic duplications of entire genomes [one fixed event per
100–200 MY (5)]. For instance, there have been between two
and four consecutive whole-genome duplications in all major
eukaryote kingdoms in the past 300–500 MY (5). This actually
amounts to a more-or-less similar contribution of new genes
from whole-genome duplication as from individual gene dupli-
cations [i.e., one fixed event per 100–200 MY � 10�3 fixed events
per gene per MY, assuming a 10% fixation rate after a whole-
genome duplication with �10,000 genes (5)].

This succession of whole-genome duplications, together with
the accumulation of individual gene duplications, must have
greatly contributed to shaping the global structure of large
biological networks, such as protein–protein interaction (PPI)
networks, that control cellular activities. In fact, concordant
empirical evidence reveals the evolutionary persistence of du-

plication-derived protein–protein interactions. For instance,
there are clear enrichments of recent protein duplicates around
common protein partners compared with randomly picked pairs
of proteins (5, 6), although the fraction of proteins identified as
having undergone a (recent) duplication (�200 MY) remains
typically small in absolute terms, for example, 10% (4). Similarly,
protein residues implicated in protein–protein interaction are
generally the most conserved at the surface of proteins (7),
revealing their duplication-derived origin,‡ with typically little
more than one conserved binding interface per protein-binding
domains.§

Ispolatov et al. (10) proposed an interesting local duplication-
divergence model of PPI network evolution based on (i) the
statistical deletion of individual, duplication-derived interactions
and (ii) a time-linear increase in genome and PPI network sizes.
Clearly, the deletion of redundant interactions arising from
duplication is necessary to avoid the emergence of biologically
irrelevant, densely connected PPI networks, lacking low-degree
connectivities. Yet, we expect that independent local duplications
and, a forteriori, partial- or whole-genome duplications all lead
to exponential, not time-linear, evolutionary dynamics of PPI
networks. In the long time limit, exponential dynamics should
outweigh all time-linear processes that have been assumed in
earlier PPI network evolution models (10–15). Models based on
time-linear processes also assume that local evolutionary dy-
namics remain essentially frozen, as long as they are not directly
affected by a local modification of the network. Yet, in reality,
sequence mutations and environmental changes continue to
affect the evolution of whole PPI networks, not just in the
immediate surroundings of recently duplicated proteins.

In this article, we propose and asymptotically solve a general
duplication-divergence model based on prevailing exponential
dynamics¶ of PPI network evolution under local, partial, or
global genome duplications. The only interaction changes that
are considered are deletions of duplication-derived interactions.
In particular, the rewiring dynamics of PPI networks by de novo
creation of protein-binding interfaces (4) is neglected (10), as
suggested by the empirical evidence mentioned earlier (see also
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and eukaryotes, or the TATA-binding protein from archaea and eukaryotes.

‡Except for a few interesting cases of protein-binding mimicry, typically found in virus–host
protein–protein interactions (8).

§Except for domains that self-assemble into homo-oligomers, which must have at least two
binding interfaces, see table 2 in ref. 9.

¶Results from the time-linear duplication-divergence model (10) are recovered as a special
limit, see supporting information (SI) Appendix.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0804119105/DCSupplemental.

© 2008 by The National Academy of Sciences of the USA

www.pnas.org�cgi�doi�10.1073�pnas.0804119105 PNAS � July 22, 2008 � vol. 105 � no. 29 � 9863–9868

A
PP

LI
ED

M
A

TH
EM

A
TI

CS
EV

O
LU

TI
O

N

http://www.pnas.org/cgi/data/0804119105/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/content/full/0804119105/DCSupplemental
http://www.pnas.org/cgi/content/full/0804119105/DCSupplemental


Evolution of PPI network motifs). Indeed, our aim here is to
establish a theoretical baseline from which other evolutionary
processes beyond strict gene duplication and interaction loss
events, such as shuffling of protein domains (5) or horizontal
gene transfers, can then be considered.

A visual overview of the model is shown in Fig. 1 including its
two main effective parameters, M and M�, that control, respec-
tively, the evolutionary history or conservation (M) and resulting
structure or topology (M�) of PPI networks under duplication-
divergence evolution. In this article, we demonstrate a funda-
mental relation between protein conservation (M) and network
topology (M�), that is, M � M�, that is strictly independent from
any evolutionary variations or fluctuations of the model param-
eters. We then discuss simple consequences in terms of evolu-
tionary linkage between individual protein conservation and PPI
network topology. The approach is also extended to outline the
evolutionary statistics of small-network motifs including two or
more proteins. In particular, we show that network motifs, unlike
individual proteins, cannot be indefinitely conserved under
general duplication-divergence evolution, regardless of any net-
work-rewiring dynamics. Throughout the article, theoretical
assumptions and results are commented on with brief discussions
highlighting their biological relevance.

Results
General Duplication-Divergence Model. The general duplication-
divergence (GDD) model is designed to capture PPI network
properties caused by evolutionary constraints, inherent to duplica-
tion-divergence processes and independent of selective adaptation
(3) or any specific biological function. Concretely, the GDD model
analyzes the deletion statistics of protein–protein interactions that
arise from stochastic duplications at various genomic scales, from
single-gene to whole-genome duplications. This deletion statistics
of duplication-derived interactions is indeed a necessary ‘‘back-
ground’’ dynamics of PPI network evolution to prevent the emer-
gence of biologically irrelevant, densely connected PPI networks,
lacking low-degree connectivities.

In practice, a fraction q of extant genes is randomly duplicated
at each time step of the GDD model. The divergence of both
duplicated and nonduplicated genes then leads to the stochastic
deletion or conservation of their related interactions, before
another round of duplication-divergence occurs (Fig. 1). In the
following, we first solve the GDD model assuming that q is
constant over evolutionary time scales. We then study more
realistic scenarios combining, for instance, rare whole-genome

duplications (q � 1) with more frequent local duplications of
individual genes (q �� 1), and including also stochastic f luctu-
ations in all microscopic parameters of the GDD model (see Fig.
1 and below). To analyze the deletion statistics of duplication-
derived interactions, we assume that ancient and recently du-
plicated interactions are stochastically conserved with distinct
probabilities �ij’s, depending only on the recently duplicated or
nonduplicated state of each protein partners, as well as on the
asymmetric divergence between ‘‘old’’ and ‘‘new’’ (or more
‘‘conserved’’ and more ‘‘divergent’’) gene duplicates (5), see the
Fig. 1 legend (‘‘s’’ for ‘‘singular,’’ nonduplicated genes and
‘‘o’’/‘‘n’’ for old/new asymmetrically divergent duplicates). Here,
we consider nonoriented PPI networks, that is, �ij � �ji, for i, j �
s, o, n.

The first effective parameters derived from these microscopic
evolutionary parameters are the average rates of connectivity
change �i (i.e., k3 k�i) for each type of node i � s, o, n, where
�i � (1 � q)�is � q(�io � �in) is independent from node
connectivity k. In the following, we assume �o � �n by definition
of old and new duplicates caused by asymmetric divergence.
Note that self-interacting proteins, corresponding to self-link
loops, are not taken into account, for simplicity, in the main text,
because they can be shown to have little effect on the asymptotic
evolutionary regimes of the connectivity distribution (see SI
Appendix, Fig. S3 and SI Text, for details).

We study the GDD evolutionary dynamics of PPI networks in
terms of ensemble averages �Q(n)	 defined as the mean value of
a feature Q over all realizations of the evolutionary dynamics
after n successive duplications. This does not imply, of course,
that all network realizations ‘‘coexist,’’ but only that a random
selection of them is reasonably well characterized by the theo-
retical ensemble average. Although it is generally not the case for
exponentially growing systems, here, we can show that ensemble
averages over all evolutionary dynamics indeed reflect the
properties of typical network realizations for biologically rele-
vant regimes (see Statistical Properties of GDD Models in SI
Appendix).

In the following, we focus on the number of proteins (or
‘‘nodes’’) Nk of connectivity k in PPI networks, while postponing
the analysis of GDD models for simple network motifs to the end
of the article and the SI Appendix. The total number of nodes in
the network is noted N � ¥k�0 Nk and the total number of
interactions (or ‘‘links’’) L � ¥k�0 kNk/2. The dynamics of the
ensemble averages �Nk

(n)	 after n duplications is analyzed by using
a generating function,
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Fig. 1. General duplication-divergence model for protein–protein interaction network evolution. Successive duplications of a fraction q of genes are followed
by an asymmetric divergence of gene duplicates (e.g., 2 vs. 2�). New duplicates (n) are left essentially free to accumulate neutral mutations with the likely outcome
of becoming nonfunctional and eventually deleted unless some new, duplication-derived interactions are selected; old duplicates (o), however, are more
constrained to conserve old interactions already present before duplication. Interactions on the locally (q �� 1), partially (q � 1) or fully (q � 1) duplicated network
are then preserved stochastically with different probabilities �ij (0� �ij � 1, i, j � s, o, n) reflecting the recent history of each interacting partners, that are either
singular, nonduplicated genes (s) or recently duplicated genes undergoing asymmetric divergence (o/n). Two effective parameters, M and M�, that depend on
the rates of connectivity change, �i, and underlying parameters q and �ij, control the evolutionary history or conservation (M) and resulting structure or topology
(M�) of PPI networks (see text).
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F
n�
x� � �
k�0

�Nk

n�	xk. [1]

The evolutionary dynamics of F(n)(x) corresponds to the follow-
ing recurrence deduced from the microscopic definition of the
GDD model (see SI Appendix),

F
n�1�
x� � 
1 � q�F
n�
As
x�� � qF
n�
Ao
x�� � qF
n�
An
x�� [2]

where we note for i � s, o, n,

Ai
x� � 
1 � q�
�isx � �is� � q
�iox � �io�
�inx � �in� [3]

where �ij � 1 � �ij are deletion probabilities (i, j � s, o, n) and
A�i(1) � (1 � q)�is � q(�io � �in) � �i, average rates of
connectivity change for each type of nodes i � s, o, n (Fig. 1).

Network Expansion (�) and Protein Conservation (M). The total
number of nodes generated by the GDD model, F(n) (1), growths
exponentially with the number of partial duplications, F(n) (1) �
C�(1 � q)n, where C is the initial number of nodes, as a constant
fraction of nodes q is duplicated at each time step. Yet, some
nodes become completely disconnected from the rest of the
graph during divergence and rejoin the disconnected component
of size F(n) (0). From a biological point of view, these discon-
nected nodes represent genes that have presumably lost all
biological functions and become pseudogenes before being
simply eliminated from the genome. We neglect the possibility
for nonfunctional genes to reconvert to functional genes again
after suitable mutations, and remove them at each round of
partial duplication� focusing solely on the connected part of the
graph.

In particular, the link growth rate � � (1 � q)�s � q�o � q�n
obtained by taking the first derivative of Eq. 2 at x � 1, controls
whether the connected part of the graph is exponentially growing
(� � 1) or shrinking (� � 1).

Let us now introduce another rate of prime biological interest,
M � (1 � q)�s � q�o. It is the average rate of connectivity increase
(M �1) of decrease (M � 1) for the most conserved duplicate
lineage, which corresponds to a stochastic alternance between
singular (s) and most conserved (o) duplicate descents. In
particular, we have by construction, M � � � M � q�n,
independently from any evolutionary parameters, q and �ij � 0.
This implies three main evolutionary regimes from the perspec-
tive of network expansion (�) and protein conservation (M)
(Fig. 2):

Y If M � � � 1. PPI networks are vanishing in this regime with
seemingly little biological relevance.

Y If M � 1 � �. PPI networks are expanding, in this case, but
their proteins are not conserved over long evolutionary time
scales. This implies that the networks forget their evolutionary
history exponentially fast, as most nodes eventually disappear
and, with them, all traces of network evolution. These net-
works are not preserved over time, but instead are continu-
ously renewed from duplication of the (few) most connected
nodes (Fig. 2). Individual proteins of a given network real-
ization are thus more similar to one another than to any
protein of other network realizations, which can be seen, from
a speciation perspective, as PPI networks of phylogenetically
distant organisms. This is in sharp contrast to the widespread
structural orthology observed across all extant life forms, even

though functions of orthologs often differ (see Evolution of
PPI Network Motifs).

Y If 1 � M � �. By contrast, PPI networks remember their past
evolution from the very beginning, in this case, as proteins
statistically keep on increasing their connectivity once they
have emerged from a duplication-divergence event. This
implies that most proteins are conserved throughout the
evolution process and preserve some interaction partners.
This is indeed in broad agreement with empirical evidence,
because traces of protein conservation are even observed
within the core transcriptional and translational machineries
across all three major living kingdoms (16).

Evolution of PPI Network Degree Distribution. We now turn to the
evolution of the degree distribution and other topological prop-
erties of PPI networks, which correspond to the technical core
of the GDD model. To this end, we rescale the exponentially
growing connected graph by introducing a normalized generat-
ing function for the average degree distribution,

p
n�
x� � �
k�1

pk

n�xk with pk


n� �
�Nk


n�	

�N 
n�	
, [4]

where �N(n)	 � ¥k�1 �Nk
(n)	, that is, after removing �N0

(n)	. F(n)(x)
can be reconstructed from the shifted degree distribution,
p̃(n)(x) � p(n)(x) � 1, as

F
n�
x� � �N
n�	p̃
n�
x� � C�
1 � q�n, [5]

which yields the following recurrence for p̃(n)(x),

p̃
n�1�
x� �

1 � q�p̃
n�
As
x�� � qp̃
n�
Ao
x�� � qp̃
n�
An
x��


n� [6]

where (n) is the ratio between two consecutive graph sizes in
terms of connected nodes, that is, (n) � �N(n � 1)	/�N(n)	,


n� � � 
1 � q�p̃
n�
As
0�� � qp̃
n�
Ao
0�� � qp̃
n�
An
0�� � 0 [7]

Although (n) is not known a priori and should, in general, be
determined self-consistently with p̃(n)(x) itself, it is directly
related to the evolution of the mean degree k� (n) � ¥k�1 kpk

(n)

obtained by taking the first derivative of Eq. 6 at x � 1,

k� 
n�1�

k� 
n� �

1 � q��s � q�o � q�n


n� �
�


n� . [8]

�Note, however, that pseudogenes may still have a critical role in evolution by providing
functional domains that can be fused to adjacent genes. This supports a view of PPI
network evolution in terms of protein domains instead of entire proteins (SI Appendix, Fig.
S6B, and ref. 5). Yet, we showed in ref. 5 that extensive domain shuffling does not change
the resulting network topology from duplication-divergence models.
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discussed in the text.
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Hence, although connected networks grow exponentially both in
terms of number of links (link growth rate �) and number of
connected nodes (node growth rate (n)), features normalized
over these growing networks, such as node mean connectivity
(Eq. 8) or distributions of node degree (or simple network
motifs, see below), exhibit richer evolutionary dynamics in the
asymptotic limit n 3 �, as we will now discuss.

Asymptotic Analysis of Node Degree Distribution (M�). The node
degree distribution can be shown (see SI Appendix) to converge
toward a limit function p(x), with p̃(x) � p(x) � 1 solution of the
functional Eq. 6.

p̃
x� �

1 � q�p̃
As
x�� � qp̃
Ao
x�� � qp̃
An
x��


[9]

where  � limn3�(n) with both  � 1 � q, the maximum node
growth rate, and  � �, the link growth rate, because the number
of connected nodes cannot increase faster than the number of
links. Asymptotic regimes with  � � correspond to the same
exponential growth of the network in terms of connected nodes
and links, and will be referred to as linear regimes, hereafter,
whereas  � � corresponds to nonlinear asymptotic regimes,
which imply a diverging mean connectivity k� (n) 3 � in the
asymptotic limit n 3 � (Eq. 8).

To determine  and p(x) self-consistently, we first express
successive derivatives of p(x) at x � 1 in terms of lower derivatives
by using Eq. 9,

	x
kp
1��1 �


1 � q��s
k � q�o

k � q�n
k

 � � �
l��k/2�

k


k,l	x
l p
1�, [10]

where 
k,l are positive functions of the 1 � 6 parameters.
Inspection of this expression readily defines two classes of
asymptotic regimes, regular and singular regimes, depending on
the value of a topology index M� � maxi(�i), for i � s, o, n. The
detailed analysis relies on the ‘‘characteristic function’’ h(
) �
(1 � q)�s


 � q�o

 �q�n


, as outlined below and in Fig. 3 (see SI
Appendix, Asymptotic Methods, for proof details).
Regular regimes, if M� � maxi(�i) � 1, for i � s, o, n. In this case,
the only possible solution is  � h(1) (i.e., linear regime). Hence,
since M� � 1, h(1) � h(k), and successive derivatives 	x

kp(1) are
thus finite and positive for all k > 1. This corresponds to an
exponential decrease of the node degree distribution for k �� 1,
pk � e��k with a power law prefactor. The limit average con-
nectivity (Eq. 8) is finite in this case, k� � �.

Singular regimes, if M� � maxi(�i) � 1, for i � s, o, n. In this case,
Eq. 10 suggests that there exists an integer r � 1 for which the
rth derivative is negative, 	x

rp(1) � 0, which is impossible by
definition. This simply means that neither this derivative nor any
higher ones exist (for k � r). We thus look for self-consistent
solutions of the ‘‘characteristic equation’’ h(
) �  (with r � 1 �

 � r) corresponding to a singularity of p(x) at x � 1 and a power
law tail of pk, for k �� 1 (17),

p
x� � 1 � · · · � A

1 � x�
 � · · · and pk�k�
�1 [11]

where the singular term (1 � x)
 is replaced by (1 � x)r ln(1 �
x) for 
 � r exactly. Several asymptotic behaviors are predicted
from the convex shape of h(
) (	


2h � 0), depending on the signs
of its derivatives h�(0) and h�(1) (Fig. 3 Inset).

Y If h�(0) � 0 and h�(1) � 0. There exists an 
� � 1 so that
h(
�) � h(1) and the condition  � h(1) implies that 
� �

 � 1. The solution 
 � 1 requires h�(1) � 0 and should be
rejected in this case. Hence, because k� � � for 
 � 1, we must
have  � h(1) (linear regime) and a scale-free limit degree
distribution with a unique 
 � 
� � 1, pk � k�
��1 for k �� 1.

Y If h�(0) � 0 and h�(1) � 0. 
 � 1,  � h(1), and pk � k�2 for
k �� 1 (k� (n) 3 � as n 3 �).

Y If h�(0) � 0 and h�(1) � 0. The general condition  �
min(h(0), h(1)) leads a priori to a whole range of possible 

�]0, 1] corresponding to stationary scale-free degree distri-
butions with diverging mean degrees k� (n)3 �. Yet, numerical
simulations suggest that there might still be a unique asymp-
totic node growth rate  regardless of initial conditions or
evolutionary trajectories, although convergence is extremely
slow (see SI Appendix, Numerical simulations).

Y If h�(0) � 0 and h�(1) � 0.  � h(0) � 1 � q, implying that
all duplicated nodes are selected in this case. No suitable 

exists as the node degree distribution is exponentially shifted
toward higher and higher connectivities. This is a dense,
nonstationary regime with seemingly little relevance to bio-
logical networks.

Finally, note that the characteristic equation  � h(
) can be
recovered directly from the average change of connectivity k3
k�i and the following continuous approximation (by using N(n)

� ¥k Nk
(n) � �u Nu

(n) du and �Nk
(n)	 � k�
�1),

�N
n�1�	

�N
n�	
�

��
1 � q�Nk�s


n� �s � qNk�o


n� �o � qNk�n


n� �n	dk

�u�Nu

n�	du

� h

�

Local (q �� 1) and Global (q � 1) Duplication Limits. The asymptotic
degree distribution of the GDD model can be conveniently
mapped into the (�, M) plane for two limit regimes of prime
biological relevance: (i) for local duplication events (q �� 1 and
�ss � 1; Fig. 4A) and (ii) for whole-genome duplication events
(q � 1; Fig. 4B). See SI Appendix for details.

The local duplication-divergence limit leads to scale-free limit
degree distributions for both conserved and nonconserved net-
works, with power law exponents 1 � 
 � 1 � 3 if �so � 1 (i.e.,
which ensures that most previous interactions are conserved in
at least one copy after duplication). By contrast, the whole-
genome duplication-divergence limit leads to a wide range of
asymptotic behaviors from nonconserved, exponential regimes
to conserved, scale-free regimes with arbitrary power law expo-
nents. Conserved, nondense networks require, however, an
asymmetric divergence between old and new duplicates (�oo �
�nn) (5) and lead to scale-free limit degree distributions with the
same range of exponents 1 � 
 � 1 � 3 for maximum divergence
asymmetry (�oo � 1 and �nn � 0).
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Fig. 3. Asymptotic degree distribution for GDD models. Asymptotic regimes
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h�(0) and h�(1) (see text).
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Evolutionary Variations of Model Parameters. The previous analysis
with fixed parameters {q, �ij} can be readily extended to combine
local and global PPI network duplications (Fig. 4 A and B) or
even include any evolutionary variations and stochastic f luctu-
ations of the GDD model parameters with arbitrary series
{q(n),�ij

(n)}R (see SI Appendix). Protein conservation is then found
to be controlled by the cumulated product of connectivity
growth/decrease rates following the most conserved, old dupli-
cate lineage,

M � �	
n

R

�
1 � q
n���s

n� � q
n��o


n��
1/R

[12]

with conserved (resp. nonconserved) protein evolutionary re-
gimes corresponding to M � 1 (resp. M � 1).

A similar geometric average also controls the nature of the
asymptotic degree distribution as the network topology index
now reads,

M� � �	
n

R

max
i


� i

n��
 1/R

[13]

with M� � 1 corresponding to exponential networks and M� �
1 to scale-free (or dense) networks with an effective node degree
exponent 
 and effective node growth rate  that are self-
consistent solutions of the generalized characteristic equation,

h

� � �	
n

R

h
n�

�
1/R

� , [14]

where h(n)(
) � (1 � q(n))�s
(n)
 � q(n)�o

(n)
 � q(n)�n
(n)
, as before.

This leads to exactly the same discussion for singular regimes as
with constant q and �i (Fig. 3) because of the convexity of the
generalized function h(
) (	


2h(
) � 0; see SI Appendix for
details and discussion on the R 3 � limit).

In particular, because (1 � q(n))�s
(n) � q(n)�o

(n) � maxi(�i
(n)) for

all q(n) and �i
(n) (i � s, o, n), we always have M � M�. This relation

implies a fundamental linkage between protein conservation and
network topology under general duplication-divergence evolu-
tion, regardless of all possible evolutionary variations of the
model parameters, q(n) and �i

(n). We expect, in particular, that all
conserved networks are necessarily scale-free (or dense) (1 � M �
M�), whereas exponential networks can never be conserved (M �
M� � 1), under general duplication-divergence evolution.

Evolution of PPI Network Motifs. The generating function ap-
proach, introduced for the one-node degree distribution pk

(n)

(Eqs. 1–6), can be generalized to analyze the evolutionary
statistics of multinode correlation functions and related cluster-
ing coefficient, distribution of first-neighbor average connectiv-
ity gk (18) (see Fig. 6) and small-network motifs. Yet, although
M� also controls transitions between major evolutionary regimes
for multinode correlation functions, their analysis remains tech-
nically involved (SI Appendix).

By contrast, the conservation property of network motifs
under general duplication-divergence evolution turns out to be
remarkably simple, as outlined in Fig. 5. We derive conservation
indices for specific network motifs by summing over all possible
combinations of s nodes (with probability �s � 1 � q) or o nodes
(with probability �o � q) and the corresponding �ij (i, j � s, o)
(Fig. 5). Clearly, network motifs with a larger number of
interactions, p � 1, have lower conservation indices, Mp � O(�ij

p)
(Fig. 5). Moreover, because the probability to conserve a specific
interaction �ij cannot be exactly 1, because of deleterious mu-
tations (i.e., �ij � 1), motif conservation indices Mp must all be
�1, regardless of any parameter variations, q(n) and �ij

(n).
Hence, network motifs cannot be indefinitely conserved under

duplication-divergence evolution, even though their individual
proteins are typically conserved in the network (if M � 1) (Fig.
2). This implies that structural orthology between individual
proteins from phylogenetically distant species cannot indefi-
nitely coincide with functional orthology at the level of protein
interactions and complexes, in broad agreement with empirical
evidences (19). The resulting turnover toward more and more
divergent interaction partners is a simple evolutionary conse-
quence of the GDD model, regardless of any network-rewiring
dynamics (that have been neglected here). In particular, even the
most conserved orthologous proteins (s/o descents) must even-
tually perform different functions, but conserved ancestral func-
tions are inevitably passed down to less conserved protein
complexes (s/o/n descents) in phylogenetically distant species.
This inherent evolutionary constraint of the GDD model sets

Fig. 4. Asymptotic phase diagram of PPI networks under the GDD model. (A) Local duplication-divergence limit (q �� 1 and �ss � 1). (B) Whole-genome
duplication-divergence limit (q � 1). Boxed figures are power law exponents (
 � 1) of scale-free regimes (Eq. 11).
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Fig. 5. Motif conservation indices. Although individual proteins are typically
conserved (if M � 1), network motifs including two or more proteins cannot
be indefinitely conserved under general duplication-divergence evolution
(�o � 1 � �s � q; see text).
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conceptual and practical limitations on functional annotation
transfer between genomes (19).

Comparison with Empirical PPI Network Data. Although the GDD
model can, in principle, accommodate 1q � 6�ij fitting param-
eters, and any evolutionary variations or fluctuations q(n) and

�ij
(n), we have restricted all quantitative comparisons with the

empirical data (20) to biologically relevant regimes, limited to
one or two effective fitting parameters, only.

The results, corresponding to 103 to 104 protein nodes and low
network growth rates in the conserved, scale-free regime (1�
M � M�), are compared with Yeast PPI network data (20) (Fig.
6), both for the connectivity distribution pk and the first-neighbor
average connectivity gk (18) (see Fig. 6 legend and SI Appendix
for model and fitting details).

Extending these numerical simulations to larger PPI network
sizes (�105 nodes) shows little changes in these distributions for
small k � 20 (SI Appendix, Figs. S5–S7). This suggests that the
available empirical PPI network for yeast (20) has essentially
reached its asymptotic degree distribution, for k � 20. By
contrast, global convergence of the GDD model is typically quite
slow for large growth rate regimes with little biological relevance,
as shown in SI Appendix, Numerical simulations, Figs. S5–S7.

Conclusions
Although conservation and network topology have a priori no
reason to be related features of emerging PPI networks in the
course of evolution, we demonstrate in this article that they are,
in fact, linked properties under general duplication-divergence
evolution, because of a fundamental linkage between protein
conservation and network topology indices, that is, M � M�,
regardless of any variations or fluctuations of the model param-
eters.

By contrast, we also showed that conservation of network
motifs cannot be indefinitely preserved under general duplica-
tion-divergence evolution (independently from any network
rewiring dynamics). This underlies intrinsic limitations on func-
tional annotation transfer across phylogenetically distant ge-
nomes (19).

All in all, these evolutionary constraints, inherent to duplica-
tion-divergence processes and independent from selective ad-
aptation (3), appear to have largely controlled the overall
topology and scale-dependent conservation of PPI networks,
regardless of any specific biological function.
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Fig. 6. Comparison between empirical PPI network data (20) and finite-size,
duplication-divergence simulations. Protein physical interaction data for
yeast are taken from the Biomolecular Interaction Network Database (20)
(4,576 proteins, 9,133 physical interactions, k� � 3.99, k�2 � 106). Both connec-
tivity distribution pk (open circles) and first-neighbor average connectivity gk

(18) (open triangles) are shown. Best one-parameter fit of the data (blue
curves) (�2 for expected deviations) for the most asymmetric genome du-
plication-divergence model with �on � 0.26 (and q � 1, �oo � 1, �nn � 0) (5).
Best two-parameter fit of the data (red curves) (�2 for expected deviations)
with the same most asymmetric whole-genome duplication limit but at the
level of protein domains instead of entire proteins, with �on � 0.1 and � � 0.3,
which corresponds to 1/(1 � �) � 1.5 average number of binding domains per
proteins. See SI Appendix, Fig. S6 and ref. 5 for details about this model
including domain shuffling.
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