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Abstract
It has become increasingly clear that the standard nomenclature for many telencephalic and related
brainstem structures of the avian brain is based on flawed once-held assumptions of homology to
mammalian brain structures, greatly hindering functional comparisons between avian and
mammalian brains. This has become especially problematic for those researchers studying the
neurobiology of birdsong, the largest single group within the avian neuroscience community. To deal
with the many communication problems this has caused among researchers specializing in different
vertebrate classes, the Avian Brain Nomenclature Forum, held at Duke University from July 18–20,
2002, set out to develop a new terminology for the avian telencephalon and some allied brainstem
cell groups. In one major step, the erroneous conception that the avian telencephalon consists mainly
of a hypertrophied basal ganglia has been purged from the telencephalic terminology, and the actual
parts of the basal ganglia and its brainstem afferent cell groups have been given new names to reflect
their now-evident homologies. The telencephalic regions that were incorrectly named to reflect
presumed homology to mammalian basal ganglia have been renamed as parts of the pallium. The
prefixes used for the new names for the pallial subdivisions have retained most established
abbreviations, in an effort to maintain continuity with the pre-existing nomenclature. Here we present
a brief synopsis of the inaccuracies in the old nomenclature, a summary of the nomenclature changes,
and details of changes for specific songbird vocal and auditory nuclei. We believe this new
terminology will promote more accurate understanding of the broader neurobiological implications
of song control mechanisms and facilitate the productive exchange of information between
researchers studying avian and mammalian systems.
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A BRIEF HISTORY OF AVIAN TELENCEPHALIC NOMENCLATURE
The advent of improved techniques for cutting and staining brain tissue resulted in a wealth of
new knowledge on brain structure in various vertebrate species at the turn of the 19th century
and the beginning of the 20th century.1 Based on his interpretation of such material, Ludwig
Edinger formulated a theory of cerebral evolution2–4 that, as further developed by his
colleague C.U. Ariëns-Kappers5,6 and subsequently refined and widely promulgated in
Ariëns-Kappers and colleagues,7 became the dominant view, and led to an avian telencephalic
nomenclature that has continued to be used into the early years of the 21st century (Fig. 1A).
According to this view, birds and mammals inherited from their fish ancestors, via the fish to
amphibian to reptile lineage, an old basal ganglia structure that was called the paleostriatum
(old striatum; corresponding largely to the globus pallidus of mammals), and a newer structure
from their reptilian ancestors that Ariëns-Kappers called the neostriatum (new striatum;
including most of the caudate and putamen in mammals). Reptiles were thought to have
elaborated the paleostriatum further into two distinct parts, one Ariëns-Kappers called the
paleostriatum primitivum (comparable to a primitive mammalian globus pallidus) and another
part he called the paleostriatum augmentatum (i.e., an augmentation of globus pallidus), and
both subdivisions were assumed to have been passed onto birds. Similarly, the neostriatum
was also thought to have become enlarged in birds and to have given rise to a novel overlying
territory that Edinger and colleagues3 and Ariëns-Kappers5,6 called the hyperstriatum, in the
belief that it was entirely “striatal” in nature and a hypertrophy of the neostriatum. Thus by
this view, the avian telencephalon was thought to consist nearly entirely of an enlarged basal
ganglia (i.e., what are now commonly called caudate, putamen, and globus pallidus in
mammals; Fig. 1A). Finally, mammals, birds, and reptiles were also thought to have inherited
an additional subcortical structure that Edinger and Ariëns-Kappers called the archistriatum
(in the belief that it was also part of the basal ganglia) from their amphibian ancestors. This
brain region in mammals is now called the amygdala, and it is no longer commonly regarded
as part of the basal ganglia.

In contrast to the basal ganglia expansion thought to characterize birds, mammals were thought
to have expanded the upper, outer part of the telencephalon (the pallium) into a six-layered
cortex from a small dorsal cortical region present in the reptile ancestors of mammals.2–6,8
The novel cortical region in mammals was referred to asneocortex, to distinguish it from the
presumed older cortices represented by the olfactory cortex (which they called paleocortex)
and hippocampus (which they called archicortex). Ariëns-Kappers and colleagues7 slightly
modified the position of Ariëns-Kappers’ earlier works by concluding that a small upper part
of the hyperstriatum (largely corresponding to what we now call the Wulst) provided birds
with a meager pallial territory comparable to mammalian neocortex. Nonetheless, the view
espoused by Ariëns-Kappers and colleagues7 and by other influential authors9–12 was that
the avian telencephalon consisted mainly of greatly expanded basal ganglia. Except for a
dissenting minority,13–15 this accretionary theory of vertebrate brain evolution became the
prevailing view for the first two-thirds of the 20th century. This led to the predominant use of
the terms neostriatum, archistriatum, and hyperstriatum to refer to the major sectors of the
avian telencephalon above the so-called paleostriatum. The Ariëns-Kappers terminology for
the avian telencephalon was, thus, already the most commonly used at the time that Karten and
Hodos constructed the first stereotaxic atlas of an avian brain.16 Although they were aware of
possible inaccuracies in this nomenclature, they felt compelled to adopt it because it was
entrenched. As a consequence, the Ariëns-Kappers terminology became the standard
telencephalic nomenclature for the avian telencephalon.

As neurobiologists have gained deeper insights into the evolution, development, and function
of avian and mammalian brains, it has become clear that the accretionary theory of vertebrate
telencephalic evolution is incorrect.1,17–19 Being flawed, the homologies implied by the
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classical nomenclature have greatly hindered communication between avian and mammalian
brain specialists by perpetuating the view that the telencephalon in birds differs qualitatively
in structure and function from that in mammals. In particular, the presumed necessity of
neocortex for adaptive behavior and higher order cognition12 and the presumed absence of
neocortex in birds have continued to make many believe that birds are incapable of such
behavioral abilities. Since the basal ganglia were thought to control instinctive motor behavior
and the avian telencephalon was thought to be largely a hypertrophied basal ganglia, all
complex behavior in birds had widely been thought to be instinctive.4,12 As a result of the
misconceptions abetted by the Ariëns-Kappers–based terminology, the relevance of the many
findings on the avian brain to understanding the functioning of the mammalian brain has been
obscured. It is now, however, evident that birds are not uniformly impoverished in their
adaptive learning skills. Songbirds, parrots, and hummingbirds show vocal learning abilities
not paralleled by any mammals other than humans and cetaceans.20–25 Crows, members of
the oscine songbird family, show the ability to make and use tools,26,27 and parrots are capable
of learning to communicate with human words and show cognitive skills otherwise evident
only in apes and cetaceans among nonhuman species.23 In parallel with the growing awareness
of avian behavioral sophistication, it has become clear that the neural substrate for such
behavior is not a hypertrophied basal ganglia but the same general brain region used for such
tasks as in mammals (i.e., the pallium), albeit without the laminar morphology characteristic
of mammalian neocortex, in combination with a basal ganglia region of the same general size
as in mammals.25,28–35

While research on all avian species was affected by the outdated terminology for the avian
telencephalon, the confusion was especially acute for those studying songbirds, for two major
reasons. First, researchers on song control mechanisms now constitute the largest single group
within the avian brain research community. Secondly, several major cell groups involved in
song perception, learning, or production are located within the part of the brain that in birds
has been called the neostriatum. These findings have been habitually misinterpreted by
researchers on the mammalian brain, for whom the term “neostriatum” refers to part of the
basal ganglia, as pertaining to the functioning of the basal ganglia. This has been the case
regardless of the efforts of songbird researchers to provide disclaimers about the use of the
term “neostriatum” in birds. A revision in terminology thus is of particular importance for those
studying the neural basis of song control.

To address the problems inherent to the old terminology, formal efforts to revise avian brain
nomenclature were begun in 1997 by a small group of avian brain specialists, who then sought
to involve a more broadly representative group of researchers than had participated in two
previous attempts to standardize avian neuroanatomical terms.36,37 This process culminated
in an open Avian Brain Nomenclature Forum, held July 18–20, 2002 at Duke University in
Durham, North Carolina, at which an international and multidisciplinary group of
neuroscientists adopted a new terminology by consensus. This chapter presents a summary of
the decisions made by the Forum, the basic rationale for the revision or retention of existing
names (Fig. 1B), and the recommendations relevant to birdsong vocal and auditory nuclei (Fig.
2 and Table 1). In the new terminology, the Forum was attentive to the impact of a drastic
change in names of pallial structures on continuity in the literature on song control and to the
benefits accruing from a more homology-accurate nomenclature than has existed. A full
account of the mechanics of the Forum, a description of all structures whose names have been
changed, detailed discussions of the evidence, an explanation of the significance of the new
nomenclature for understanding vertebrate brain evolution, and a summary of the implications
for understanding brain mechanisms of cognition in birds are available38–40 and a collection
of satellite papers is in preparation.41–47
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NOMENCLATURE AND THE PROBLEM OF HOMOLOGY
Several detailed reviews18,48–51 address the theoretical issues surrounding the identification
of homologous forebrain structures between birds and mammals. It is valuable for the current
chapter to define what is meant by homology, and equally importantly, what is not meant. As
commonly used in biology, structures in two or more species are considered to be homologous
if they are thought to derive from the same antecedent structure in their common ancestor.48
Major difficulties arise, however, in identifying homologous brain structures because brain,
being a soft tissue, does not fossilize in sufficient detail to make it possible to use the fossil
record to trace the natural history of given brain structures. The only remaining approach that
can be taken is comparing a variety of features of the structures in question in extant species,
including embryological origin, location within the adult brain, afferent and efferent
connections, and neurochemical phenotype. In the simplest case, if candidate avian and
mammalian homologues (to use sample groups of present interest) arise from the same
developmental primordium and have similar adult features and if a similar structure is found
in extant reptiles, then a convincing case can be made that the stem amniote common ancestor
had an equivalent structure. If, on the other hand, the structures are dissimilar in birds and
mammals and/or a comparable structure is not evident in living reptiles, then the compared
structures in birds and mammals cannot be said to be demonstrably homologous. It also cannot
be automatically said with authority, however, that two morphologically dissimilar structures
in birds and mammals are not homologous, since homologous structures can evolve different
morphologies.48 Nonetheless, if the dissimilarities are numerous and living reptiles clearly
lack a structure resembling either the compared structure in mammals or the compared structure
in birds, then the conclusion that the compared structures in birds and mammals are not
homologous is the most likely interpretation.

Terms, such as “analogous,” “functionally analogous,” or “functionally homologous” have
also been used in comparing brain structures. The first two terms mean the same and refer to
a circumstance in which structures in different species perform the same function (e.g., bird
wings and insect wings), even if they are morphologically different and have evolved
independently.48,52–54 “Analogous” would be the appropriate word to use in this context,
and some authors consider the term only to refer to structures of the same function that are
independently evolved.48,52 Note that bat wings and bird wings are analogous as wings but
not homologous, since the wings subserve flight in both but the wingedness of the forelimbs
was independently evolved. Nonetheless, the forelimbs of bats and birds are homologous as
forelimbs, since both inherited their forelimbs from their stem amniote common ancestor. The
term “functionally analogous” is redundant with the term “analogous,” the latter already
implying a functional comparison. The term “functionally homologous” can be ambiguous,
meant either as a synonym for analogous (which would be an incorrect use of the word
homologous) or to suggest a common origin of a function in two or more species from a function
in the common ancestor. The latter misapplies a term commonly used to refer to common
ancestry of a morphological entity, i.e., “homologous,” to a functional context. The
complexities of trying to identify homology at the functional level have been discussed by
others.53,55–57

Two uses of the term homology by the nomenclature revision effort are one-to-one homology
and field homology. In most instances, the term homology is applied to specific structures,
such as the humerus of a mouse and the humerus of a chicken. Since they are both derived
from the humerus of the stem amniote common ancestor, the humerus of a mouse and chicken
would be said to show discrete, or one-to-one, homology.48,58 This type of homology (which
is the type most commonly implied by use of the word) is the type that the Forum required to
rename a structure in avian brain with the term used for its mammalian homologue. A second
type of homology is field homology. This term, when applied to brain, refers to a circumstance
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in which homologous parts of developing brain give rise to a set of adult brain structures in
two or more species.59 The adult brain structures would be said to be field homologues, even
if the sets included different nuclei in different species.57,59 This type of homology was of
relevance to the efforts of the Forum to rename the subdivisions of the pallial sector of the
avian telencephalon. The Forum required for all of its decisions that evidence for one-to-one
or field homology be ample, including for the former multiple types of morphological data and
the presence of a comparable structure in living reptiles. Since adoption of each new name for
birds required 80% approval from the Forum attendees, any acceptance of a homology-based
name was, in effect, based on at least 80% agreement on the homology. In cases in which there
was not enough evidence to convince 80% or more of the participants of the existence of
homology, new names were chosen that differed from those for any specific mammalian brain
structure, but retained similarity to the outdated avian terms in abbreviation, syllabication, and/
or phonetics.

A REVISED NOMENCLATURE OF THE AVIAN BRAIN: PRINCIPLES
The decisions of the Forum on the renaming of the cell groups in the avian telencephalon were
based on current evidence showing that birds, as do mammals, possess a complex forebrain
that contains a well-developed upper sector called the pallium and a smaller ventral sector
called the subpallium. Pallium means mantle and the term refers to the upper part of the
developing telencephalon and its adult derivatives.51,60 In mammals, the embryonic pallium
gives rise to the neocortex, hippocampal complex, piriform cortex, olfactory bulbs, claustrum,
and part of the amygdala, while the embryonic subpallium gives rise to the basal ganglia and
several additional basal telencephalic cell groups, including part of the amygdala.51,60 The
Forum concluded that developmental, topological, neurochemical, cellular, connectional, and
functional data strongly support the conclusion that approximately the dorsal three-fourths of
the avian telencephalon is pallial and in adults includes what has been termed the hyperstriatum,
neostriatum, ectostriatum, and archistriatum (as defined by Karten and Hodos16), as well as
nucleus basalis, hippocampus, piriform cortex, and olfactory bulb.28,31,49,50,60–62 It is thus
inappropriate that the root “-striatum” be present in the names of any of these structures. In
contrast to the mammalian pallium, the avian pallium does not have a cortical organization,
but rather is organized into a largely continuous field of nuclei.28,31,63 Although these nuclei
have similar connectivity and functional properties to those of the mammalian cortex,
amygdala, and possibly the claustrum, their histological appearance is more like that of the
basal ganglia, explaining, in part, the erroneous conclusions of many early comparative
neuroanatomists.

In renaming avian pallial structures, the Forum confronted the issue of whether sufficient data
were available to conclude safely and unequivocally that the structures that have been called
the archistriatum, neostriatum, and hyperstriatum in birds possess one-to-one homologies with
specific structures in adult mammals.18,28,31,50,51,60,62,64–67 The Forum decided that the
evidence was insufficient to conclusively identify one-to-one mammalian homologues for most
pallial structures in birds. While it was agreed that the new names for these structures should
include the word or root “pallium,” several issues needed to be considered in renaming the
pallial structures that possessed “-striatum” as a root word in their outdated name. One major
issue was the extent to which choosing new names that allowed retention of existing
abbreviations was desirable and could be achieved with esthetically pleasing new terms.
Alternatively, the possibility had to be considered that a simple and new descriptive
terminology that did not retain established abbreviations might be desirable by making the
structures of the avian brain easier to learn and more broadly accessible to neuroscientists. In
the end, new terms were selected that allowed abbreviations to be retained for the most intensely
studied structures of the avian pallium, to provide easy linkage and clear continuity between
the old and new terminologies. The accepted homologies of the avian and mammalian
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hippocampi, piriform cortices, and olfactory bulbs were not disputed, and it was agreed that
there was no need to change the name for these regions.

The Forum further concluded that developmental, topological, neurochemical, cellular,
connectional, and functional data strongly support the conclusion that the ventral one-fourth
of the avian telencephalon is subpallial, and that the subpallial region lateral to the telencephalic
ventricle in birds and reptiles contains homologues of the mammalian basal ganglia, while the
subpallial region medial to the lateral ventricle in birds and reptiles contains homologues of
the mammalian septum.60,62,63,68–75 The region lateral to the telencephalic ventricle in birds
includes what had been termed the paleostriatum primitivum, the paleostriatum augmentatum,
and the lobus parolfactorius. Other subpallial cell groups in birds include the bed nucleus of
the stria terminalis, the basal nucleus of Meynert, and the subpallial amygdala. For many
subpallial structures, the Forum concluded that there was sufficient evidence to infer one-to-
one homologies with mammals. In these instances, the Forum adopted for birds the same name
as used for the homologous subpallial structure in mammals. The gain in communication and
the already established familiarity of each new avian term, because of their prior use in
mammals, were thought to far outweigh disadvantages inherent to abandoning the old names
and abbreviations.

The Forum also focused attention on several brainstem cell groups connected with the
subpallium or the song control system, for which the homology implied by the name was clearly
incorrect, or at best obscure, and for which the true homologue had been amply demonstrated.
Below we describe in detail the brainstem, subpallial, and pallial revisions that are relevant to
the songbird vocal and auditory nuclei.

SUMMARY OF THE REVISED NOMENCLATURE: THE BRAINSTEM
Nucleus Intermedius (IM) → Hypoglossal Nucleus (nXII)

In the Karten and Hodos atlas16 of the pigeon brain, a population of motoneurons located
ventral to the dorsal motor nucleus of the vagus nerve and the nucleus intercalatus at levels
straddling the obex was named the nucleus intermedius, following the practice of Ariëns-
Kappers and colleagues.7 A yet more ventral and somewhat larger population of motoneurons
abutting the lateral edge of the medial longitudinal fasciculus was identified as the hypoglossal
nucleus. While Ariëns-Kappers and colleagues7 did suspect that IM innervates lingual and
syringeal muscles via bifurcating branches of the twelfth nerve, this has now been demonstrated
unambiguously in birds by more recent experimental studies of the innervation of the tongue,
trachea and syrinx.76–84 The IM of Karten and Hodos16 was thus subsequently renamed the
hypoglossal nucleus, or alternatively the 12th cranial nerve nucleus by Nottebohm,77 and the
Forum formally adopted this renaming. Because many investigators had already been using
the correct name for this nucleus since 1976, there is no widespread need for investigators to
change their customary usage for nXII in birds.

Nucleus Nervi Hypoglossi (nXII) → Supraspinal Nucleus (SSp)
Numerous retrograde labeling studies have demonstrated that the cell group identified by
Karten and Hodos16 as the hypoglossal nucleus actually innervates upper neck musculature
(e.g., Mm. complexus, biventer cervicis, splenius capitis, and rectus capitis).79,80,85–87 This
nucleus was thus subsequently renamed supraspinalis,78,79,88 and the Forum also formally
adopted this renaming. It is important to reiterate that most work referring to the hypoglossal
nucleus in songbirds has referred to the correct structure, so no change in the customary usage
to supraspinalis is needed.
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Area Ventralis ofTsai (AVT) → Ventral Tegmental Area (VTA)
The cell group named area ventralis of Tsai in the Karten and Hodos pigeon brain atlas is known
to be homologous to the mammalian ventral tegmental area, which was also once commonly
called the ventral tegmental area of Tsai89 and is now also known as the A10 dopaminergic
cell group.90–92 As in mammals, this midbrain-diencephalic cell group sends a massive
dopaminergic projection to the basal ganglia, mainly to the medial and ventral part of the region
that had been called the lobus parolfactorius (LPO),91,93–96 including to the song nucleus
Area X.93 To eliminate the eponym “Tsai” (since eponyms are no longer employed according
to standard international rules of anatomical nomenclature)37 and to emphasize the homology
with mammals, the Forum renamed the avian area ventralis of Tsai to the ventral tegmental
area, with the acceptable alternative name of the A10 dopaminergic cell group.

Nucleus Tegmenti Pedunculopontinus Pars Compacta (TPc) → Substantia Nigra Pars
Compacta (SNc)

This cell field, laterally adjacent and continuous with VTA, contains a large population of
dopaminergic neurons that send a massive dopaminergic innervation to the dorsal striatal part
of the avian basal ganglia (the regions that have been called lobus parolfactorius and
paleostriatum augmentatum, the latter including the auditory area PC)90,91,94,96–99 and
therefore is accepted as homologous to the substantia nigra pars compacta of other vertebrates.
71,72,75,92 The name applied to this region, however, incorrectly suggested homology with
the pedunculopontine tegmental nucleus of mammals, located in rhombomere 1, which is
characterized by cholinergic neurons, but no dopaminergic neurons.92,100 Moreover, the
actual avian pedunculopontine tegmental nucleus (PPT) homologue, which contains
cholinergic neurons, has been identified in rhombomere 1 of pigeons. 100 To rectify these
misnomers and avoid confusion, the Forum renamed what had been called the nucleus tegmenti
pedunculopontinus pars compacta (TPc) in birds to the substantia nigra pars compacta (SNc),
or the alternative name, the A9 dopaminergic cell group. While the dopaminergic field of
neurons in the avian A9 is not as compact as it is in rodents or as pigmented as it is in humans,
the A9 varies in its degree of compactness and blackness (i.e., pigmentedness) even among
mammals. For this reason, and because of the gain in using a homology-based term for avian
A9, the Forum decided that the descriptive inaccuracies of the terms “compacta” and “nigra”
in the avian name for A9 were far outweighed by the benefits obtained in adopting the
commonly used term SNc as the name for this structure.

Anterior Nucleus of the Ansa Lenticularis (ALa) → Subthalamic Nucleus (STN)
The avian anterior nucleus of the ansa lenticularis is an inconspicuous cell group located in
and along the medial edge of the ansa lenticularis (a fiber bundle interconnecting the basal
ganglia with various brainstem cell groups) at rostral diencephalic levels.68 Based upon its
function, the neurochemistry of its inputs and outputs, its developmental profile, its position
in the diencephalon, and its apparent presence in reptiles, the ALa is homologous to the
subthalamic nucleus (STN) of mammals.75,101 The Forum therefore renamed the avian ALa
as the subthalamic nucleus. It remains to be determined whether the song nucleus Area X of
the basal ganglia is connected with the avian STN.

SUMMARY OF THE REVISED NOMENCLATURE: THE SUBPALLIUM
The basal ganglia in mammals forms within a ventral part of the developing telencephalon
called the subpallium. The subpallium, which contains the septal nuclei and several other nuclei
in addition to those of the basal ganglia, is notably distinct from the overlying telencephalic
region called the pallium in its neurochemistry, in the genes that regulate its development,
102,103 and in its connectivity.75 Developmental, topological, neurochemical, cellular,
connectional, and functional data now strongly support the conclusion that the subpallial region
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lateral to the telencephalic ventricle in birds and reptiles contains homologues of the
mammalian basal ganglia, while the subpallial region medial to the lateral ventricle in birds
and reptiles contains the homologue of the mammalian septum.60,62,63,68–75

Embryological and developmental molecular studies in both birds and mammals show that the
developing avian and mammalian subpallium consists of two separate radially oriented
histogenetic zones, a dorsally situated zone that in mammals corresponds to the lateral
ganglionic eminence and a ventrally situated zone that in mammals corresponds to the medial
ganglionic eminence.60,104,105,157 Among the derivatives of the lateral ganglionic eminence
are the various striatal cell groups, which in mammals make up the dorsal striatum (i.e., the
caudate and putamen), the ventral striatum (nucleus accumbens and olfactory tubercle), and
the lateral septum. Among the derivatives of the medial ganglionic eminence are the various
pallidal cell groups, which in mammals make up the dorsal pallidum (or globus pallidus), the
ventral pallidum, and the medial septum. The Forum thus sought to rename the various parts
of the avian subpallium so as to more accurately reflect their homologues in mammals. The
revisions to the subdivisions that contain vocal and auditory regions are as follows.

Lobus Parolfactorius (LPO), Excluding Its Rostral Ventromedial Part → Medial Striatum (MSt)
Neurochemical, hodological, and developmental evidence indicate that the LPO has striatal
traits. The neurochemical and hodological evidence includes a prominent dopaminergic input
from the substantia nigra pars compacta and ventral tegmental area, an enrichment in dopamine
receptors, a projection back to the SNc/A9 and VTA cell groups, an acetylcholine-rich and
cholinesterase-rich neuropil, an enrichment in GABAergic neurons that either contain SP/DYN
or enkephalin, and a glutamate receptor pattern very similar to that of the mammalian striatum.
65,72,75,91,93–95,106–111 Developmental evidence includes the finding that the major part
of LPO develops from apart of the telencephalic neuroepithelium that expresses the
transcription factors Dlx1 and Dlx2, but not the transcription factor Nkx2.1, as does the
mammalian lateral ganglionic eminence.60,62 For these and additional reasons summarized
by Reiner and colleagues,75 the Forum replaced the arcane name lobus parolfactorius (meaning
lobe next to the olfactory bulb) with the term medial striatum (Fig. 1A,B).

While we recommend that LPO now be called medial striatum in birds, it is also important to
note that we do not mean to imply one-to-one homology to the medial part of the mammalian
striatum, i.e., the caudate nucleus, and the available evidence seems to be against such a
homology. Principal among the reasons against such a notion is that although the avian medial
striatum projects predominantly to the substantia nigra, it does not appear to target the pallidal
part of the basal ganglia68,112,113 By contrast, the caudate nucleus in mammals contains both
striatonigral and striato-pallidal projection neurons.75,106,114,115 A second argument against
this notion is that the medial striatum in at least some avian species contains pallidal neurons,
while such a trait has not been demonstrated for mammalian caudate. These pallidal neurons
were first discovered in the specialized song nucleus called Area X within songbird MSt.
116–118 Although the majority of Area X cell types resemble those typical of mammalian
striatum in physiology, dendritic morphology, and neurotransmitter features,108,110,117,
118 this sparse but important cell type appears to be pallidal in its aspiny morphology, its
probable input from spiny striatal neurons, its GABAergic, inhibitory projection to the
thalamus, its neurochemistry, and its physiological features.110,113,117–119 Compelling
evidence now exists showing that the lateral part of MSt outside of Area X and the lateral part
of MSt of avian species lacking an AreaX also contains pallidal-type neurons.118–121
Consistent with these observations, developmental studies have suggested that ventrolateral
parts of the chicken medial striatum abutting the pallidum may ontogenetically be a pallidal
territory that is heavily invaded by striatal cells during development and thereby becomes
predominantly striatal in its cell type composition.60,122 If further study shows such striatal-
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pallidal neuron mixing in medial striatum to be a general avian trait absent from mammals, it
might be advisable to recognize some unique striato-pallidal subdivision within medial striatum
and attach to it a suitable name. The Forum concluded, however, that sufficient data were not
yet available on the location of this region, on the prevalence of striatal and pallidal cell mixing
as an avian trait, and on its absence from mammals. It was also clear to the Forum that what
has been called LPO has predominantly striatal cellular traits,75,91 and so it is appropriate for
now to simply rename LPO as the medial striatum, and emphasize the evidence against one-
to-one homology with mammalian caudate.

Paleostriatum Augmentation (PA) → Lateral Striatum (LSt)
Similar lines of evidence demonstrate that PA also has striatal traits and together with MSt
makes up the avian dorsal striatum. These traits in PA include a prominent dopaminergic input
from the substantia nigra pars compacta, an enrichment in dopamine receptors, an
acetylcholine-rich and cholinesterase-rich neuropil, an enrichment in GABAergic neurons that
either contain SP/DYN or enkephalin, projections to the paleostriatum primitivum (now to be
called the globus pallidus), and a glutamate receptor pattern very similar to that of the
mammalian striatum.28,60,65,72,75,91,93–95,106,107,109,111,121 Additionally, the PA
develops from the Dlx1/2-rich and Nkx2.1-poor neuroepithelial zone corresponding to the
mammalian lateral ganglionic eminence.60,62 For these reasons, and additional ones
summarized by Reiner and colleagues,75 the Forum replaced the name paleostriatum
augmentatum with the term lateral striatum (Fig. 1A,B). Similar to LPO, this change is attended
by the qualification that there is no compelling evidence that the lateral striatum of birds is
homologous in a one-to-one manner with the lateral part of the mammalian striatum, namely
the putamen. Principal among the reasons against such a notion is that avian lateral striatum
projects predominantly to the pallidal part of the basal ganglia and very little to the substantia
nigra.68,73,123–125 By contrast, the putamen in mammals contains both striatonigral and
striato-pallidal projection neurons.75,106,114,115

Area X → Area X
While Area X of songbirds resides within the avian medial striatum,29,113 its own name is
unaffected by the change of the name of LPO to medial striatum. Thus, the Forum
recommended that Area X retain its name (Fig. 2A). A change to nucleus X was proposed, to
reflect the clear boundaries of this structure; after discussion, the Forum took no position on
whether Area X should be called nucleus X.

Caudal Paleostriatum (PC) → Caudal Striatum (CSt)
The Forum did not discuss renaming of the PC, an auditory region of the caudal lateral striatum.
This region possibly receives auditory input from the thalamus and pallium,126,127 and it
shows audition-related gene expression and electrophysiological activity.25,128,129 Here, we
suggest renaming the caudal paleostriatum (PC) to the caudal part of the lateral striatum or
more simply the caudal striatum (Fig. 2B). We have not included the letter L for lateral, to
simplify the abbreviation.

Ventromedial Rostral LPO → Nucleus Accumbens (Ac)
Although there are no known auditory or vocal regions within the avian nucleus accumbens,
a revision to the location of nucleus accumbens relative to LPO, and thus to Area X within
MSt is of relevance. In the Karten and Hodos atlas,16 nucleus accumbens was identified as a
small bulge at the ventral tip of the lateral ventricle extending several millimeters rostral from
the level of the anterior commissure. However, based on compelling evidence,130 the Forum
concluded that this region instead is homologous to the lateral part of the mammalian bed
nucleus of the stria terminalis (BNST). The Forum further concluded that the region
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surrounding the tip of the lateral ventricle, at the ventromedial margin of the rostral pole of
what has been called LPO in birds possesses the same topographic, hodological, and
neurochemical traits as the nucleus accumbens of mammals.106,124,131–138 This includes
for both birds and mammals preferential reciprocal connections with the ventral tegmental
area, afferent input from limbic pallial regions (such as the hippocampal complex, amygdala,
and cingulate cortex, as well as from frontal pallium), and the frequent co-localization of
substance P and enkephalin in spiny projection neurons. By contrast, much of the remainder
of what has been called LPO in birds and caudatoputamen in mammals is reciprocally
connected with the substantia nigra pars compacta, receives pallial input from somatosensory
and somatomotor areas of the pallium, and shows little co-localization of SP and enkephalin
in spiny striatal projection neurons.63,106, 112,123–125,131,132,135–137,139 Moreover, a
topographically, hodologically, and neurochemically similar cell group has been identified as
nucleus accumbens in turtles, lizards, and snakes.71,106,132,140–143 For these reasons, the
Forum recognized and recommended that the rostral ventromedial part of the former LPO of
birds be called nucleus accumbens and that the term medial striatum be only used to refer to
the remainder of LPO. As in mammals, however, a precise cytoarchitectonic border between
the dorsal striatum and nucleus accumbens is not evident, and a neurochemical criterion by
which to unambiguously distinguish the two fields has not been identified. Additionally, while
the nucleus accumbens of mammals possesses core and shell subdivisions, comparable
subdivisions of nucleus accumbens in birds have not been conclusively identified.135,136

Paleostriatum Primitivum (PP) → Globus Pallidus (GP)
Although there are no described auditory or vocal nuclei within avian pallidal regions, it is
important to be acquainted with the renaming of pallidal subdivisions within the context of
subpallial nomenclature revisions. Diverse lines of evidence indicate that the avian PP is
derived from the avian equivalent of the medial ganglionic eminence and has traits comparable
to those of the dorsal pallidum (globus pallidus) in mammals.60,63,68,74,75,91,122,131,
144–149 In both birds and mammals, the projection neurons of these regions possess large cell
bodies and smooth dendrites, derive from an Nkx2.1-expressing neuroepithelium, and give rise
to the motor output projections of the basal ganglia. In birds and mammals, these neurons are
also GABAergic, contain the neuropeptide LANT6, receive inputs with a woolly fiber
morphology from either SP/DYN-containing or ENK-containing striatal neurons, receive a
prominent glutamatergic input from the subthalamic nucleus, and share similar
electrophysiological properties.75,101,121,150 Thus, the Forum renamed the avian
paleostriatum primitivum as the globus pallidus (Fig. 1A,B). This term is appropriate for
descriptive reasons, as the avian GP and its mammalian counterpart are pale. Nonetheless, there
are some differences between avian GP and mammalian GP. Avian GP neurons, for example,
migrate farther laterally than do mammalian pallidal neurons, with the result that avian GP is
more laterally situated than adult mammalian GP.60,122 The GP in mammals is separated into
two segments, the internal and external, with distinct connectivity and neurochemistry, whereas
in birds the neuronal types of the two segments are intermingled.75 The avian globus pallidus
as a cell field is also not as globular in shape as the comparable cell field is in mammals, but
different mammalian species show variation in the shape of the GP as well. Thus, the Forum
concluded that despite any differences, the advantages in the use of the homology-based term
globus pallidus as the new name for PP in birds outweighed any slightly misleading
implications as to its shape or organization.

Ventral Paleostriatum (VP) → Ventral Pallidum (VP)
A group of GABAergic neurons within the medial forebrain bundle (MFP; also called the
fasciculus prosencephali medialis, FPM) has been demonstrated in birds. This cell group has
also been called the ventral paleostriatum.151 It has the cellular neurochemistry, receives the
ventral striatal inputs (including from nucleus accumbens), and has the outputs characteristic
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of the ventral pallidum of mammals.106,135,144–146 Its glutamate receptor expression profile
is identical to that of GP of both birds and mammals.65 In addition, in both mammals and birds,
the neurons of this region arise from the same Nkx2.1-expressing histogenetic subpallial
neuroepithelium as the GP.60 A comparable cell group is present in turtles, crocodilians, and
lizards.69,140,141,145,152,153 The Forum thus renamed this cell group as the avian ventral
pallidum (Table 1). The word ventral is used because it provides the VP with a positional term
that distinguishes it from its more dorsal somatic counterpart, the GP, which has also
alternatively been termed the dorsal pallidum. Note that the ventral pallidum in birds overlaps
a field of cholinergic neurons that spans the medial and lateral forebrain bundles. These
cholinergic neurons send diffuse projections into the pallium, including the pallial song control
nuclei.154,155 Since the ventral pallidum in mammals also overlaps a similar field of
cholinergic neurons with projections to the pallium,156 the Forum recommended these neurons
in birds be given a name similar to those in mammals, the basal magnocellular cholinergic
nucleus (NBM).

SUMMARY OF THE REVISED NOMENCLATURE: THE PALLIUM
The structures constituting the pallium in adult birds and mammals derive from a large
histogenetic zone located dorsal to the subpallium and distinguishable from the subpallium in
the developmentally regulated genes it expresses.60,157 Owing to the flawed identification of
brain regions by Edinger and his followers, the major pallial sectors of the lateral telencephalic
wall in birds have the incorrect root word “-striatum” in their names (hyperstriatum,
neostriatum, ectostriatum, archistriatum), and in some cases possess prefixes with questionable
evolutionary implications (e.g., “neo-” and “archi-”). The perceived need to correct these errors
was the main driving force behind the Forum. The reasoning used by the Forum in selecting
the new names is briefly reviewed below (Fig. 1B), followed by specific recommendations of
the Forum for vocal and auditory areas (Fig. 2; Table 1).

Rationale for New Names for Hyperstriatum, Neostriatum, Ectostriatum, and Archistriatum
Hyperstriatum—In revising the terminology for the hyperstriatum, a guiding consideration
was that the hyperstriatum ventrale (HV) should have a name distinct from that for the
hyperstriatal subdivisions composing the Wulst [i.e., the hyperstriatum accessorium, (HA), the
hyperstriatum intercalatus superior (HIS), and the hyperstriatum dorsale (HD) in the outdated
nomenclature]. It has been apparent for some time, from developmental, hodological,
neurochemical, and functional studies, that HV and the Wulst are distinct telencephalic
subdivisions. 15,50,65,111,158–164 After consideration of various possibilities, the Forum
decided to replace the term “hyperstriatum” in HA, HIS, and HD with hyperpallium, replacing
the secondary terms of accessorium with apicale, intercalatus superior with intercalatum, and
dorsale with densocellulare, and replacing HV with mesopallium (Fig. 1A,B; Table 1). Since
the prefix “hyper-” refers to an enlarged entity, “hyper-” in hyperpallium was considered
acceptable, as the Wulst is an enlarged (bulging) structure at the upper aspect of the pallium.
In addition, “hyper” possesses the merits that it is a commonly employed neuroanatomical
term, already having been used in the names for the subregions of the Wulst, and it offers easy
linking of the new term to the old, with abbreviations retained. “Meso-” as a prefix is descriptive
of the location of this region (the former hyperstriatum ventrale) between the hyperpallium
and the subdivision below it (the former neostriatum). Of course, the use of mesopallium as a
replacement for hyperstriatum ventrale means that abbreviations for this region must change.
The Forum did not consider this a serious disadvantage, since relatively few subregions have
been named in the literature on the mesopallium.

Neostriatum and Ectostriatum—In revising the terminology for the neostriatum, a
guiding principle was to devise a suitable and acceptable prefix that is descriptive of the region
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and that maintains abbreviations with the past literature. The Forum decided that the prefix
“nido-,” derived from the Latin word for nest (nidus) met these requirements, resulting in the
new term nidopallium as a replacement for neostriatum (Fig. 1A,B). The prefix “nido-” is apt
for the neostriatum, since it is the pallial structure in which the overlying pallial structures are
nested. Moreover, the prefix “nido-” offers an aural link to the existing prefix for this region
(i.e., “neo-”), and allows abbreviation retention. In revising the term ectostriatum, the Forum
noted that the term ectostriatum, broken into its prefix and root word, means “outside the
striatum.” as the striatum is now recognized in birds, and is therefore semantically appropriate.
Thus, ectostriatum could have been retained without any erroneous denotation. Nonetheless,
the term ectostriatum was linked to the set of incorrect names for the avian pallium by the root
word “-striatum”, and could be misconstrued as being part of the striatum. For this reason, the
name for the ectostriatum was changed to the entopallium, which means “within (ento-) the
pallium”. This new term also retains existing abbreviations for this region and possesses an
aural linkage to the term ectostriatum.

Archistriatum—In revising the terminology for the archistriatum, a number of issues had to
be considered. These included defining the boundaries of the archistriatum, as different reports
had set different boundaries,16,165 and coming to consensus on any homologies between the
avian archistriatum (or its parts) with cell groups of the mammalian telencephalon. The avian
archistriatum has been thought to be, at least in part, homologous to the mammalian amygdala,
3,4,7,60,64,165 a structure that itself is now known to possess both pallial and subpallial
portions.103 In revising the terminology for the avian archistriatum, the relationship of its
subfields (including nucleus taeniae, also known as the taenia) to the pallial and subpallial parts
of the mammalian amygdala needed to be addressed. Based on neurochemical and
developmental data, the Forum concluded that the evidence overwhelmingly indicates that all
parts of the avian archistriatum, i.e., structures with archistriatum in their names in the pigeon
and chicken brain atlases,16,151 are pallial.65,66,167 As part of the discussion on the pallial
versus subpallial nature of the archistriatum, the Forum concluded that the taenia has typically
been regarded as a part of the archistriatal complex, although this was not reflected in its name,
165,168–170 but that much or all of it is subpallial. 104,170,171 Thus, the conclusion that the
structures with archistriatum in their name, as their limits have been traditionally defined
(excluding the taenia), are entirely pallial, made it appropriate that the new name for the
archistriatum and its subdivisions have “-pallium” as part of the name.

Given the desirability of retaining existing abbreviations for the archistriatum, the Forum
considered a number of possible prefixes beginning with the letter “A”. “Archi-” was ruled out
because of its questionable evolutionary implications. Consideration was given to the idea that
“amygdalo-” be used, based on the interpretation that all of the archistriatum was amygdaloid
in developmental origin and homologous as a field to all or part of the amygdala in mammals.
60,64 The Forum concluded that while the evidence for an amygdaloid nature of the taeniae
and the posterior archistriatum was supported by hodological, developmental, neurochemical,
and behavioral evidence,60,123,135,165,170,172 the anterior, the intermediate, and at least
parts of the medial archistriatum appeared to have largely somatic features, making them unlike
the amygdala.65,123,165,166,173,174 While it was further acknowledged that perhaps these
regions were homologous to some parts of the mammalian amygdala and had evolved
divergently in birds, the Forum concluded that this had not been demonstrated unequivocally.
In addition, even if such an evolutionary relationship were established, the concern was
expressed that it would be misleading and inappropriate to attach a name with viscerolimbic
functional implications (i.e., the term “amygdala”) to a field with somatic functional traits.
175–177 In the end, the Forum decided that only the posterior archistriatum and taenia
warranted the designation of amygdala (PoA and TnA, Fig. 1B). For the remaining parts of the
archistriatum, the Forum decided to replace archistriatum with the term arcopallium, with the
prefix “arco-” referring to the arched contour of the upper boundary of the field (Fig. 1B). This
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choice does not foreclose the future option of replacing “arco-” with “amygdalo-” for specific
arcopallial subdivisions if the evidence for this homology becomes more convincing. The
subpallial region inferior to the globus pallidus was renamed the subpallial amygdala (SpA,
Fig. 1B).

Vocal and Auditory Regions of the Mesopallium
Nucleus Avalanche (Av) → Nucleus Avalanche (Av)—This is a little-studied vocal
nucleus in the old named HV that receives a projection from HVC178 (Fig. 2A) and shows
vocalization-associated gene expression.179 A similar mesopallial nucleus has been identified
by vocalization-associated gene expression in budgerigars and hummingbirds.25,34 Because
the name given to this nucleus in songbirds did not have hyperstriatum ventrale in it, no name
change is necessary.

Oval Nucleus of the Hyperstriatum Ventrale (HVo) → Oval Nucleus of the
Mesopallium (MO)—First described in parrots,32,33 a similarly positioned, oval-shaped
nucleus in the anterior part of songbird HV that shows vocalization-associated gene expression
has been noted.180 With the renaming of the HV, the Forum recommended renaming this
nucleus to the oval nucleus of the mesopallium (MO, Fig. 2A). Here the abbreviation for “oval”
is capitalized, as the Forum decided to capitalize the letters representing the main words of
each name, with only subordinate letters or words in lowercase.

Caudal Medial Hyperstriatum Ventrale (CMHV) → Caudal Medial Mesopallium
(CMM)—The caudal medial HV is a distinct region that is part of the telencephalic auditory
pathway and that shows auditory-induced gene expression and neural activity 25,127–129,
181–185 with the renaming of the HV, this region becomes the caudal medial mesopallium
(CMM, Table 1). CMM also has a lateral auditory counterpart that was called the caudal lateral
hyperstriatum ventrale (CLHV).127 This becomes the caudal lateral mesopallium (CLM, Fig.
2B).

Vocal and Auditory Regions of the Nidopallium
HVC (Higher Vocal Center) or HVc → HVC—This nucleus was the first identified part
of the telencephalic song control circuit.29 It was thought to occupy the caudal-most part of
the hyperstriatum ventrale, and was thus named the hyperstriatum ventrale, pars caudale, and
abbreviated HVc. Subsequent work, however, recognized that this region is in actuality located
within the pallial field that had been called the neostriatum30 (Fig. 2A). To retain the
abbreviation, which had already become entrenched, but eliminate the inaccurate location
implied by its name, Nottebohm186 suggested calling this region the higher vocal center, and
abbreviating it with all capital letters HVC. Subsequently, the concern was raised that HVC
was arguably not the apex of a hierarchy of vocal centers of the brain, making the name
unwarranted.187 Thus, Fortune and Margoliash188 and Brenowitz and colleagues189
recommended use of “HVc” as a letter-based proper name for the nucleus. However, the use
of “high (or higher) vocal center” has persisted in published reports by some investigators,
while “HVc” used as a proper name has been employed by others. In order to unify the field
behind a single name, the Forum solicited feedback from the songbird research community,
who overwhelmingly supported using HVC as the proper name (i.e., letter-based name only,
all caps) and recommended against using HVc or any form of the term “higher vocal center.”

Lateral and Medial Magnocellular Nucleus of the Anterior Neostriatum (lMAN
and mMAN) → Lateral and Medial Magnocellular Nucleus of the Anterior
Nidopallium (LMAN and MMAN)—The magnocellular nucleus of the anterior neostriatum
(MAN) is a vocal nucleus of the anterior telencephalon that is necessary for song learning
113,190–192 and is active during singing.179,193 This nucleus has two named subdivisions,
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the lateral and medial (typically abbreviated IMAN and mMAN). With the renaming of the
neostriatum, the name for each of these is altered by substituting nidopallium for neostriatum;
the established abbreviations remain the same (Fig. 2A; Table 1). Based upon feedback from
songbird researchers, the Forum recognized that using the lowercase letter “l” for the word
“lateral” in the abbreviation for the lateral magnocellular nucleus of the anterior nidopallium
causes confusion due to the resemblance of the lowercase letter “l” to the number “1” or to the
capital letter “I.” Using all capital letters in this case (LMAN and MMAN) eliminates this
confusion.

Nucleus Interface (NIf) → Nucleus Interface of the Nidopallium (NIf)—The nucleus
interface (NIf) is a telencephalic constituent of the song control circuit that projects to
HVC178 (Fig. 2A), and shows singing-associated neural activity and gene expression.180,
194 While this nucleus is located in what has been called the neostriatum, the word neostriatum
does not appear in the established name for NIf. To emphasize its location, the Forum adopted
the official name nucleus interface of the nidopallium (or its Latin equivalent), and its
abbreviation remains the same (Table 1).

Caudal Medial Neostriatum (NCM) → Caudal Medial Nidopallium (NCM)—The
caudal medial neostriatum is a large and well-studied region of the avian auditory circuit,
subjacent to the caudal medial mesopallium (CMM). It shows specialized auditory processing
properties in response to species-specific sounds.128,195–199 With the renaming of the
neostriatum, the name is altered to caudal medial nidopallium (NCM), and the established
abbreviation remains the same (Fig. 2B; Table 1).

HVC (or HVc) Shelf → HVC Shelf—The HVC shelf is an auditory region continuous with
NCM dorsally, and is located immediately ventral to HVC126,128,174 (Fig. 2B). Because the
word neostriatum is not in the name, there is no change. However, due to the Forum
recommendation that HVC serve as a proper name, it is similarly recommended that the HVC
part of the term “HVC shelf” be a letter-based proper name.

Field L → Field L—The nidopallial region containing the primary auditory thalamo-recipient
zone was not recognized as a distinct region in the Karten and Hodos atlas16 and was not
assigned a name. However, the experimental work of Karten200 established that this zone
largely coincided with the cytoarchitectonic region named Field L by Rose,13 and this name
subsequently became entrenched in the literature on this region.126,127,181,183,201–203
Given its identification as Field L in a large number of studies, and given that the term has no
erroneous evolutionary implications, the existing name was retained. The Forum recognized,
however, that an inconsistency exists in the literature in the extent of the territory to which the
term Field L is applied. In many studies, Field L is taken to mean the region in the caudal
medial neostriatum (now nidopallium) defined by Rose13 and identified by Karten200 as
receiving a prominent input from nucleus ovoidalis (Ov, Fig. 2B). The work of Scheich and
colleagues183,204,205 led to the recognition that the auditory field in the caudal medial
nidopallium was actually larger than the ovoidalis-recipient Field L alone. Thus, the main
ovoidalis thalamo-recipient zone was named L2, and the regions immediately adjacent to L2,
which receive L2 input as well as a smaller amount of thalamic input from the ovoidalis shell
region, were named L1 and L3 (Fig. 2B). As a consequence of the presence of subfields, the
term “Field L” has come to have two different definitions in the recent literature, one in which
it refers to L2 alone and one in which it refers to L1, L2, and L3 together. Similar problems
exist for what the Forum has renamed the entopallium,161,206–209 and for the nucleus basalis
(renamed nucleus basorostralis by the Forum).78,210–212 The Forum concluded that it would
be desirable to develop a uniform and consistent terminology for core and shell subdivisions
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of these three sensory fields in the nidopallium, and will make recommendations in a separate
publication devoted to this issue.46

Vocal and Auditory Regions of the Arcopallium
Robust Nucleus of the Archistriatum (RA) → Robust Nucleus of the Arcopallium
(RA)—The robust nucleus of the arcopallium (RA) is a specialized nucleus within the
intermediate archistriatum of songbirds, required for and active during the production of
learned song.29,177,179,213 With the renaming of the archistriatum, the name for this nucleus
becomes the robust nucleus of the arcopallium (RA), and the existing abbreviation is retained
(Fig. 2A).

Cup of the Robust Nucleus of the Archistriatum (RA cup) → Cup of the Robust
Nucleus of the Arcopallium (RA cup)—The RA cup is a region within the songbird
auditory pathway located immediately rostroventral to the vocal nucleus RA126,128,174,
180 (Fig. 2B). A similar region has been found in the intermediate arcopallium of other vocal
learning birds, as well as in vocal non-learning birds.25,34,181 In pigeons, this region has been
called the ventromedial nucleus of the intermediate archistriatum (AIVM).181 With the new
nomenclature, archistriatum in these names is replaced by arcopallium, and the existing
abbreviations are retained (Table 1).

CONCLUSIONS
The understanding of avian brain organization and function has advanced enormously in the
past one hundred years.3,5–7,12,13,18,28,31,38,40,60,75 The facts that have emerged have
shown the existing terminology for the avian telencephalon and many brainstem cell groups
related to it to be erroneous. These errors perpetuated misconceptions about birds and the avian
brain. The Avian Brain Nomenclature Forum was the culmination of a growing awareness of
how these errors have affected the understanding of the avian brain and of the communication
problems caused by the faulty and outdated terminology. The Forum thus sought to devise a
new terminology that is free of errors and promotes accurate understanding of avian brain
organization and evolution. The Forum was scrupulous in its renaming efforts to use names
implying homology only when it was confident that the names would not later prove to be in
error. We believe the nomenclature we have devised can serve the field well, and we thus urge
all avian brain researchers, birdsong neurobiologists included, to adopt the new nomenclature.
Further information and avian brain images depicting this new nomenclature are available in
our related papers39,40,167 and on the Avian Brain Nomenclature Exchange website
(<http://avianbrain.org>).
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FIGURE 1.
(A) Classical view of avian and mammalian brain relationships according to the historical
nomenclature. Although past authors had differing opinions as to which brain regions are part
of the pallium versus subpallium, the images are color-coded according to the meaning of the
actual names given to these brain regions. White lines represent laminae, cell-sparse regions
separating brain subdivisions. Large white areas in the human cerebrum are the fibers bundles
making up the white matter. Dashed lines divide regions that differ by cytoarchitecture. The
abbreviations PA and LPO designate regions as defined by Karten and Hodos,16 while the
spelled-out term paleostriatum augmentatum designates this entire area as defined by Ariëns-
Kappers, Huber and Crosby.7 (B) Modern view of avian and mammalian brain relationships
according to the new nomenclature. In birds, the lateral ventricle is located in the dorsal part
of the pallium, whereas in mammals much of the ventricle is located near the border of the
pallium with the subpallium. Abbreviations, classical view: Ac=accumbens; Ap=posterior
archistriatum; B=nucleus basalis; Cd=caudate nucleus; CDL=dorsal lateral corticoid area;
E=ectostriatum; GP=globus pallidus (i=internal segment, e=external segment);
HA=hyperstriatum accessorium; HIS=hyperstriatum intercalatum superior;
HD=hyperstriatum dorsale; HV=hyperstriatum ventrale; L2=field L2, LPO=lobus
parolfactorius, OB=olfactory bulb; PA=paleostriatum augmentatum; Pt=putamen; Tn=nucleus
taeniae. Abbreviations, modern view where different from panel A: E=entopallium;
B=basorostralis; HA=hyperpallium apicale; HI=hyperpallium intercalatum;
HD=hyperpallium densocellulare; Hp=hippocampus; LSt=lateral striatum; MSt=medial
striatum; PoA=posterior pallial amygdala; TnA=nucleus taeniae of the amygdala;
SpA=subpallial amygdala. (Figure adapted from Jarvis and colleagues.40)
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FIGURE 2.
Vocal and auditory pathways of the songbird brain within the context of the new avian brain
nomenclature. Only the most prominent and/or most studied projections are indicated. For the
vocal pathways (A), black arrows show connections of the components (dark grey) of the
posterior vocal pathway, white arrows show connections of the components (white) of the
anterior forebrain pathway, and dashed lines connections between the two pathways. For the
auditory pathway (B), most of the hindbrain connectivity is extrapolated from non-songbird
species. For clarity, only the lateral part of the anterior vocal pathway is shown, and the
connection from Uva to HVC and reciprocal connections in the pallial auditory areas are not
indicated. Note that the NCM and CMM are shown for schematic purposes, as they actually
lie in a sagittal plane medial to that depicted, and the pathway from NCM to CMM is not
depicted. Abbreviations: Av=avalanche; CLM=caudal lateral mesopallium; CMM=caudal
medial mesopallium; CN=cochlear nucleus; CSt=caudal striatum; DM=dorsal medial nucleus;
DLM=dorsal lateral nucleus of the medial thalamus; E, entopallium; B=basorostralis; HVC
(no formal name other than HVC); LLD=lateral lemniscus, dorsal nucleus; LLI=lateral
lemniscus, intermediate nucleus; LLV=lateral lemniscus, ventral nucleus; MLd=dorsal lateral
nucleus of the mesencephalon; LMAN=lateral magnocellular nucleus of the anterior
nidopallium; Area X=Area X of the medial striatum; MO=oval nucleus of the mesopallium;
NCM= caudal medial nidopallium; NIf= nucleus interface of the nidopallium; nXIIts=nucleus
XII, tracheosyringeal part; Ov=ovoidalis; PAm=paraambiguus; RAm=retroambiguus;
RA=robust nucleus of the arcopallium; SO=superior olive; Uva=nucleus uvaeformis. (Figure
adapted from Jarvis and colleagues.40)
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TABLE 1
New terminology relevant to songbird vocal and auditory areas

Old Term Old Abbreviation New Term New Abbreviation

BRAINSTEM
Nucleus intermedius of the medulla IM Hypoglossal nucleus –the twelfth

cranial nerve nucleus
nXII

Nucleus nervi hypoglossi the twelfth cranial
nerve nucleus

nXII Supraspinal nucleus SSp

Area ventralis of Tsai AVT Ventral tegmental area or A10 VTA or A10
Nucleus tegmenti-pedunculopontinus, pars
compacta

TPc Substantia nigra, pars compacta or
A9

SNc or A9

Anterior nucleus of ansa lenticularis ALa Subthalamic nucleus STN
SUBPALLIUM PART OF THE TELENCEPHALON

Striatal subdivision
Lobus parolfactorius LPO Medial striatum MSt
–Area X within songbird LPO X –Area X within songbird MSt X
Paleostriatum augmentatum PA Lateral striatum LSt
–Caudal paleostriatum (auditory region) PC –Caudal part of the lateral striatum

(auditory region)
CSt

Pallidal subdivision
Paleostriatum primitivum PP Globus pallidus GP
Ventral paleostriatum VP Ventral pallidum VP

PALLIUM PART OF THE TELENCEPHALON
Hyperpallium subdivision

Hyperstriatum, Wulst regions H Hyperpallium H
–Hyperstriatum accessorium HA –Hyperpallium apicale HA
–Hyperstriatum intercalatum superior HIS –Hyperpallium intercalatum HI
–Hyperstriatum dorsale HD –Hyperpallium dorsale HD

Mesopallium subdivision
Hyperstriatum ventrale HV Mesopallium M
–Nucleus avalanche Av –Nucleus avalanche Av
–Oval nucleus of the hyperstriatum ventrale HVo –Oval nucleus of the mesopallium MO
–Caudal medial hyperstriatum ventrale CMHV –Caudal medial mesopallium CMM
–Caudal lateral hyperstriatum ventrale CLHV –Caudal lateral mesopallium CLM

Nidopallium subdivision
Neostriatum N Nidopallium N
–Hyperstriatum ventrale, pars caudale, or high
vocal center, or HVc (letter-based name)

HVC or HVc –HVC (letter-based proper name) HVC

–Lateral magnocellular nucleus of the anterior
neostriatum

lMAN or LMAN –Lateral magnocellular nucleus of
the anterior nidopallium

LMAN

–Medial magnocellular nucleus of the anterior
neostriatum

mMAN or MMAN –Medial magnocellular nucleus of
the anterior nidopallium

MMAN

–Interfacial nucleus NIf –Interfacial nucleus of the
nidopallium

NIf

–Caudal medial neostriatum NCM Caudal medial nidopallium NCM
–HVC shelf HVC shelf –HVC shelf (letter-based proper

name)
HVC shelf

–Field L L –Field L L
–Ectostriatum E – Entopallium E
–Nucleus basalis B or Bas –Nucleus basorostralis B or Bas

Arcopallium subdivisions
Archistriatum A Arcopallium A
–Robust nucleus of the archistriatum RA –Robust nucleus of the arcopallium RA
–Cup of robust nucleus of the archistriatum RA cup –Cup of robust nucleus of the

arcopallium
RA cup

–Ventromedial nucleus of the intermediate
archistriatum

Aivm –Ventromedial nucleus of the
intermediate arcopallium

AIVM
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