Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Oct;104(1):234–238. doi: 10.1128/jb.104.1.234-238.1970

Utilization of Glucose in Heterotrophic Media by Thiobacillus intermedius

Abdul Matin 1, Sydney C Rittenberg 1
PMCID: PMC248205  PMID: 5473891

Abstract

The growth yield of Thiobacillus intermedius is greater in glucose-yeast extract or glucose-casein hydrolysate broth than in comparable media without glucose. The quantity of glucose utilized in the glucose-supplemented media is much greater than the increase in cell yield observed relative to the unsupplemented media. Addition of glucose to cell-free extracts of glucose-yeast extract or glucose-casein hydrolysate grown cells results in the reduction of endogenous cytochrome c. Thus, in these media, glucose serves as a source of energy. This is in contrast to thiosulfate-glucose broth in which glucose provides only cell carbon. The presence of thiosulfate in glucose-casein hydrolysate broth results in a marked decrease in glucose consumption. Cytochrome c in extracts of cells grown in this medium is not reduced by glucose addition. The data suggest that thiosulfate prevents the utilization of glucose for energy generation. The final growth yield in glucose-casein hydrolysate broth is directly proportional to the initial glucose concentration, although not all the glucose was utilized even at the lowest concentration tested. This effect may be due to an inefficient glucose transport in this organism.

Full text

PDF
237

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. GOTTSCHALK G. DIE VERWERTUNG ORGANISCHER SUBSTRATE DURCH HYDROGENOMONAS IN GEGENWART VON MOLEKULAREM WASSERSTOFF. Biochem Z. 1965 Feb 24;341:260–270. [PubMed] [Google Scholar]
  2. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  3. London J., Rittenberg S. C. Effects of organic matter on the growth of Thiobacillus intermedius. J Bacteriol. 1966 Mar;91(3):1062–1069. doi: 10.1128/jb.91.3.1062-1069.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. MECHALAS B. J., RITTENBERG S. C. Energy coupling in Desulfovibrio desulfuricans. J Bacteriol. 1960 Oct;80:501–507. doi: 10.1128/jb.80.4.501-507.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Matin A., Rittenberg S. C. Regulation of glucose metabolism in Thiobacillus intermedius. J Bacteriol. 1970 Oct;104(1):239–246. doi: 10.1128/jb.104.1.239-246.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES