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Presented analysis of human and fly life tables proves that with the
specified accuracy their entire survival and mortality curves are
uniquely determined by a single point (e.g., by the birth mortality
q0), according to the law, which is universal for species as remote
as humans and flies. Mortality at any age decreases with the birth
mortality q0. According to life tables, in the narrow vicinity of a
certain q0 value (which is the same for all animals of a given species,
independent of their living conditions), the curves change very
rapidly and nearly simultaneously for an entire population of
different ages. The change is the largest in old age. Because
probability to survive to the mean reproductive age quantifies
biological fitness and evolution, its universal rapid change with q0

(which changes with living conditions) manifests a new kind of an
evolutionary spurt of an entire population. Agreement between
theoretical and life table data is explicitly seen in the figures.
Analysis of the data on basic metabolism reduces it to the maximal
mean lifespan (for animals from invertebrates to mammals), or to
the maximal mean fission time (for bacteria), and universally scales
them with the total number of body atoms only. Phenomenolog-
ical origin of this unification and universality of metabolism,
survival, and evolution is suggested. Their implications and chal-
lenges are discussed.

Empirical Laws

Human mortality is arguably the best quantified phenomenon
in biology, which is extensively studied (1–5). During the last

century it decreased 40-fold for newborns, but only 3-fold for
80-year-olds. Not surprisingly, the factors that affect the mor-
tality of newborns and 80-year-olds depend on their different life
histories and living conditions and are clearly different. Yet,
there is a strong correlation between mortality rates at different
ages (3, 6–9), while the next section demonstrates that according
to life tables (10–13) the birth mortality (or the survival prob-
ability at a single given age) determines entire survival and
mortality curves according to the law, which is valid at any age
and universal for species as remote as humans and flies. Statis-
tical accuracy of this law quantifies the ‘‘mortality robustness’’
with respect to age and prehistory. Mortality at any age de-
creases, together with the birth mortality q0. In the narrow
vicinity of a certain q0 5 q*0 the decrease rate changes very
rapidly and nearly simultaneously for an entire population of
different ages. The rate jump is significantly larger in old age and
is maximal at 83 years. The crossover q*0 is the same for all
humans, independent of their race, sex, country, living condi-
tions, and history. Such universality of q*0 implies (see the next
section) that if a population consists of subpopulations with
different q0 values, then with the specified accuracy all of these
subpopulations have either q0 , q*0, or q0 . q*0 only. A formal
‘‘mixture’’ of different populations for the same calendar year (to
improve statistics and mortality calculation accuracy) may ob-
scure the picture and be misleading, especially in the vicinity of
the crossover.

Analysis (see below) of fly life tables (14–17) yields for flies
the same universal survival law (with quasi-singularities at
certain q*0) as for humans. Because the probability to survive to
the mean reproductive age quantifies biological fitness, the

universal survival dependence on the birth mortality (which
changes with time and living conditions) quantitatively describes
evolution, while its quasi-singularities manifest unusual Gould-
Eldridge spurts for an entire population.

Survival probability scales with the mean lifespan. The max-
imal mean lifespan of all animals from invertebrates to mam-
mals, and the maximal mean fission time for bacteria (both
denoted by x#max thereafter), universally scale with the total number
of body atoms (18), which changes by 20 orders of magnitude.
Metabolism per body atom also reduces to x#max only (18).

I argue that quantitative universality of metabolism, sur-
vival, and evolution implies that all evolutionary changes
during billions of years are subject to fundamental biological
constraints and that the laws of biological and nonbiological
dynamics may be as different as the laws of quantum and classical
mechanics. A phenomenological origin of these laws is consid-
ered; their computer simulations, implications, and challenges
are discussed.

Human Mortality
Human mortality rate significantly changes with time and coun-
try (10–13) (see, e.g. Fig. 1 A). The change is very different at
different times and ages: the mortality rates at birth and at 80
years were close in 1900, but they are 13-fold different in 1994.
As a result, the mortality curve shape considerably changes with
time (e.g., mortality quasiplateau all but disappeared, see Fig.
1B). Consequently, only the most stable Gompertz region (1) of
advanced and old age was extensively studied. To determine the
probability ,x to survive to any age x (i.e., the relative number of
survivors to x), quantify all changes in the population and its
living conditions (with time, race, sex, country, and its history),
with, e.g., ,40 or the birth mortality. Start with the dependence
of ,x on ,40 (for a given x) according to life tables (10–13) of
Japan, Sweden, and Germany. Fig. 1C yields the universal (for
all humans) dependence, which at any age rapidly changes in the
narrow vicinity of ,40 5 0.97. The change is most pronounced in
old age. The corresponding evolution of the mortality rate qx is
clearly seen in Fig. 1D. Beyond 70 years, qx is almost the same
for a 1947 Japanese female (,40 5 0.709) and 1960 Japanese male
(,40 5 0.897) despite the increase in ,40 by ;0.19. It slightly
changes when ,40 further increases by 0.06 to 0.959 (for 1980
Swedish male); then significantly decreases when ,40 increases by
a mere 0.024 to 0.983 (for 1990 Japanese female) or to 0.985 (for
1995 Swedish female).

In agreement with Fig. 1C, at any x the dependence of ,x on
,40 may be approximated with two linear ,̃x beyond ,40 5 0.6
(,40 , 0.6 is discussed later). The least mean square value D of
Lx 5 u,̃x 2 ,xu/,x for each x is provided by

,̃x 5 1 2 R1~l1 2 ,40!, if 0.6 , ,40 , 0.967, [1]
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,̃x 5 1 2 R2~l2 2 ,40!, if ,40 . 0.967, [2]

where the slopes R1, R2 and (upper) level values l1, l2(,̃x 5 1
when ,40 5 l1, l2) are presented in Table 1 (x 5 0 is missing,
since, by the definition, ,0 [ 1. The interval ,40 . 0.967 is narrow
in ,40, but it yields a broad interval in, e.g., ,90, see Fig. 1C). Eqs.
1 and 2 allow one to calculate the survival probability ,̃x. For
instance, 1990 (here and on such number is the calendar year)
Japanese females have (12) ,40 5 0.98292, and thus yield Eq. 2.
So, e.g., their ,̃60, with R2(60) and l2(60) from Table 1, equals
0.93654, while the life table (12) value is ,60 5 0.93991. The
survival probability determines the mortality rate (experimental
qx and theoretical q̃x); according to ref. 19,

qx 5 ,n~,x/,x11!, q̃x 5 ,n~,̃x/,̃x11!. [3]

For instance, 1990 Japanese females, by Eqs. 2 and 3 and Table
1, have q̃60 5 ,n(0.93654/0.93162) 5 0.00527, while, by ref. 12,
qx 5 ,n(0.93991/0.93539) 5 0.00482.

Eqs. 1 and 2 and Table 1 allow one to relate ,40, and thus ,x,
to the survival probability at any fixed age, e.g., to ,1 (and thus,
by Eq. 3, to the birth mortality q0 5 2,n,1 > 1 2 ,1):

,̃x 5 1 2 R1~l1 1 1.5814 2 2.5651,1!, if 0.85 , ,1 , 0.994,
[4]

,̃x 5 1 2 R2~l2 1 2.9338 2 3.9342,1!, if ,2 . 0.994.
[5]

Examples of entire survival and mortality curves according to
the life tables (10–13) and to Eqs. 1–5 complemented with Table
1, are presented in Fig. 1 B and E. The figure demonstrates the

Fig. 1. (A) Evolution of mortality rate (at birth, q0 and at 80 years, q80) with chronological year for Swedish (q0, O, q80, x) and Japanese (q0, F; q80, 1 ) females.
(B) Agreement between theoretical and lifetable mortality rates qx (in all cases the age x is in years) for 1891/1898 Japanese (O, q0 5 0.1612), and 1926/1930
Swedish (h, ,40 5 0.81) males; 1992/1994 German (e, q0 5 0.0515), and 1990 Japanese (1, ,40 5 0.983) females. The calculations according to the data in brackets
are presented by thick lines for Eqs. 1–3 and thin lines for Eqs. 3–5. (C) Evolution of the survival probability ,x with ,40 for 1891–1995 Swedish (10, 11), 1891–1990
Japanese (10), and 1871–1992 German (13) males and females. The ages x 5 20, 60, and 90 yield upper, middle, and lower curves, respectively. Solid lines are
linear approximations. Note a rapid and nearly simultaneous, for different ages, change in the slope at ,40 > 0.97. (D) Evolution of the mortality curve in the
vicinity of ,40 > 0.97: 1947 Japanese female (O, ,40 5 0.709); 1960 Japanese (e, ,40 5 0.897) and 1980 Swedish (1, ,40 5 0.959) males; 1995 Swedish (p, ,40 5 0.897),
and 1990 Japanese (D, ,40 5 0.983) females. (E) Agreement between theoretical and life table survival probabilities ,40 for 1891/1898 Japanese males (”, ,40 5
0.582); 1891/1900 Swedish (h, ,40 5 0.695), and 1947 Japanese (X, ,40 5 0.709) females; 1926/1930 Swedish males (e, q0 5 0.0668); 1990 Japanese ( 1 , q0 5

0.00418), and 1995 Swedish (O, q0 5 0.00358) females. Calculations according to Eqs. 1 and 2 and 3–5 are presented by thick lines for Eqs. 1-3 and thin lines for
Eqs. 3–5. (F) Accuracy of the universal survival law: mean square deviations D1(O), and D2 (h) of Eqs. 1 and 2 from experimental data (10-13). (G) Accuracy of the
universal survival law: mean square deviations d1 (O) and d2 (h) of Eqs. 1–3 from experimental data. (H) Accuracy of the universal survival law: probability (on
a semilogarithmic scale) of relative (with respect to their mean quadratic values) deviations exceeding d for Eqs. 1–3 (O for ,x 1 for qx) and for Eqs. 3–5 (h for
,x, p for qx). The probability of random fluctuations is presented by the solid line. (I) Same as in F, but for Eqs. 4 and 5. (J) Same as in G, but for Eqs. 3–5. (K) Probability
P of uq̃x 2 qxu/qx . 0.25 for Eqs. 1 and 3 (O) and Eqs. 2 and 3 (h) vs x. (L) Same as in G, but for life tables with uq̃x 2 qxu/qx , 0.25 only.
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accuracy and sensitivity of the universal law to the exact value of
,40 and ,1 2 cf. the mortality curves of 1990 Japanese (,40 5
0.98292) and 1994 German (,40 5 0.97938) female, with very
close values of ,40.

Statistically, the accuracy of Eqs. 1 and 2 is quantified in Fig.
1 F and G with the mean square values D (of L 5 u,̃x 2 ,xu/,x)
and d (of D 5 uq̃x 2 qxu/qx), and in Fig. 1H with the probabilities
of relative survival and mortality f luctuations, exceeding a given
value d (i.e. of L/D . d and D/d . d). By Fig. 1F, the survival
mean square deviation does not exceed 10% until 75 for Eq. 1
and 90 years for Eq. 2. By Fig. 1G, the mean mortality f luctuation
is always u20% beyond 25 years. By Fig. 1H, the probability of
fluctuations significantly deviates from and is higher than that of
random ones for large (d . 2) fluctuations in Eq. 1 only.
Elsewhere it may be calculated according to the normal distri-
bution, with D and d from Fig. 1 F and G. Mortality f luctuations

increase in young (Fig. 1G) age. (Then statistics in developed
countries are low, e.g., six girls died in their ninth year in 1995
Sweden.) Consequently, Eqs. 4 and 5 are less accurate than Eqs.
1 and 2. Their survival f luctuations (Fig. 1I) do not exceed 10%
until 60 for Eq. 4 and 70 for Eq. 5; thereafter they increase to
30% at 80 years. Mortality f luctuations (Fig. 1J) do not exceed
30% beyond 25 years. Relative to the mortality change (with
time and country), the inaccuracy is less than 20% at any age. For
instance, Fig. 1 G and J yield d ; 0.5, while the birth mortality
q0 changes 15-fold in Eqs. 1 and 4 and 2.5-fold in Eqs. 2 and 5
intervals. With the accuracy specified above, Table 1 replaces
hundreds of human life tables. This accuracy statistically quan-
tifies also the survival and mortality robustness with respect to
the q0 and ,40 f luctuations. Elucidate the impact of relatively
large mortality f luctuations. By Fig. 1K, beyond 20 years the
probability of uq̃x 2 qxu/qx . 0.25 in Eqs. 1 and 2 is u20%. The

Table 1. Evolution rates R1, R2 and level parameters l1, l2

Age R1 l1 R2 l2 Age R1 l1 R2 l2

1 0.38985 0.98371 0.25418 1.0005
2 0.48224 0.97923 0.27272 1.0012
3 0.52646 0.97789 0.28633 1.0014
4 0.55528 0.97742 0.29846 1.0014
5 0.57564 0.97733 0.31114 1.0012
6 0.59005 0.97749 0.32302 1.001
7 0.60134 0.97773 0.3348 1.0007
8 0.61076 0.97798 0.34617 1.0005
9 0.61884 0.97821 0.35489 1.0003
10 0.62632 0.97842 0.36105 1.0003
11 0.63266 0.97864 0.36628 1.0004
12 0.63902 0.97884 0.37109 1.0005
13 0.64567 0.97902 0.37824 1.0004
14 0.65267 0.97923 0.38431 1.0004
15 0.66079 0.97946 0.39169 1.0005
16 0.67019 0.97985 0.40282 1.0004
17 0.68125 0.98031 0.41787 1.0003
18 0.69395 0.98084 0.43744 0.99996
19 0.70755 0.98155 0.45969 0.9997
20 0.72242 0.98226 0.48342 0.99942
21 0.738 0.98297 0.50645 0.9992
22 0.75392 0.98366 0.53037 0.99898
23 0.76979 0.98434 0.55315 0.99883
24 0.78551 0.98502 0.57803 0.99863
25 0.8011 0.98568 0.602 0.99848
26 0.81638 0.98634 0.62385 0.99843
27 0.83116 0.98705 0.64419 0.99848
28 0.84548 0.98777 0.66676 0.99847
29 0.85936 0.98852 0.68531 0.99864
30 0.87291 0.98931 0.70685 0.9987
31 0.88616 0.99014 0.72999 0.99878
32 0.89933 0.99097 0.7504 0.99897
33 0.91234 0.99184 0.77616 0.99901
34 0.92515 0.99277 0.8023 0.99913
35 0.9378 0.99378 0.83152 0.9992
36 0.95044 0.99484 0.86258 0.9993
37 0.9629 0.99599 0.89167 0.9995
38 0.97532 0.9972 0.92669 0.99963
39 0.98771 0.99858 0.96237 0.99981
40 1 1 1 1
41 1.0121 1.0016 1.0447 1.0001
42 1.0247 1.0032 1.0875 1.0004
43 1.036 1.0051 1.1353 1.0006
44 1.0476 1.0071 1.1926 1.0008
45 1.0591 1.0093 1.2514 1.001
46 1.0702 1.0118 1.311 1.0012

47 1.0812 1.0144 1.3807 1.0015
48 1.0921 1.0173 1.4579 1.0017
49 1.1031 1.0204 1.5378 1.0019
50 1.1139 1.0239 1.6223 1.0022
51 1.125 1.0275 1.7143 1.0025
52 1.1356 1.0315 1.8222 1.0027
53 1.1461 1.0359 1.9484 1.0027
54 1.1567 1.0406 2.0916 1.0027
55 1.1669 1.0457 2.2469 1.0026
56 1.1768 1.0513 2.407 1.0027
57 1.1862 1.0574 2.6021 1.0025
58 1.1952 1.064 2.8108 1.0024
59 1.2041 1.0712 3.0411 1.0023
60 1.2143 1.0788 3.2744 1.0023
61 1.2192 1.0878 3.5286 1.0023
62 1.2255 1.0973 3.8072 1.0023
63 1.2315 1.1076 4.1191 1.0023
64 1.2351 1.1192 4.4614 1.0022
65 1.2369 1.1321 4.8115 1.0023
66 1.2368 1.1463 5.1963 1.0023
67 1.2337 1.1623 5.6221 1.0023
68 1.2276 1.1802 6.0755 1.0024
69 1.2183 1.2003 6.5628 1.0025
70 1.2051 1.223 7.0902 1.0026
71 1.1879 1.2486 7.6596 1.0028
72 1.1655 1.278 8.2643 1.003
73 1.1383 1.3117 8.9137 1.0032
74 1.1052 1.3508 9.5862 1.0035
75 1.0663 1.3962 10.268 1.004
76 1.0215 1.4494 10.968 1.0045
77 0.97125 1.5119 11.561 1.0054
78 0.91377 1.5875 12.221 1.0063
79 0.85517 1.6749 12.824 1.0074
80 0.78647 1.7861 13.375 1.0087
81 0.71478 1.9224 13.742 1.0105
82 0.64169 2.0907 13.998 1.0126
83 0.56723 2.3036 14.16 1.015
84 0.49384 2.5738 14.071 1.0181
85 0.42166 2.9278 13.84 1.0218
86 0.35469 3.3826 13.58 1.0258
87 0.29127 4.0027 12.774 1.0322
88 0.23341 4.8591 11.921 1.0394
89 0.18324 6.0344 10.825 1.0493
90 0.13644 7.9011 9.5889 1.0624
91 0.1123 9.5129 8.5906 1.076
92 0.0825 12.725 7.2659 1.0981
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elimination of the corresponding life tables decreases the max-
imal and the mean (Fig. 1L) mortality f luctuations to 25% and
less than 15% correspondingly, and yields the fluctuation dis-
tribution, which is similar to the one presented in Fig. 1H, but
with the lower probability of d . 2.

Consider the implications and challenges of the above results.
With the specified accuracy, survival and mortality at any age are
statistically predetermined by the (same calendar year) survival
at a fixed age or birth mortality, independent of time, previous
history, race, country, sex, and fluctuations. In particular, close
values of, e.g., ,40 imply close survival and mortality curves.
Indeed, 1896 Swedish (,40 5 0.69599) and 1947 Japanese female
(0.70945) survival curves of different races in different countries
at different (not even overlapping for the majority of population)
periods in their different history (Fig. 1E); 1994 German
(0.97938), 1990 Japanese (0.98292), and 1995 Swedish (0.9853)
female mortality curves (Fig. 1 B and D) are nearly identical.
Even in the same country in the same year, the factors, which
affect the birth mortality, are clearly different from those
affecting the mortality of 80- or 40-year-olds during their dif-
ferent lifespans. So, the validity of Eqs. 1–5 implies that human
living conditions change sufficiently little and/or slowly‡ for
relatively accurate adaptation, and that Fig. 1 E-G statistically
quantify the impact and age dependence of prehistory and
premature mortality combined. Eqs. 1 and 2 describe the
universal (for all humans) evolution of the survival probability
,x with ,40 (and via ,40 with time, race, sex, country, its history,
and living conditions). For a given age, its rate d,x/d,40, i.e., the
slope in Fig. 1C, rapidly changes from one constant value R1 to
another R2, in the narrow vicinity of the crossover ,40 5 0.967.
There, by Table 1, it decreases before x 5 40 years (the maximal
decrease equals 0.335 at 12 years) and increases thereafter (the
maximal increase equals 14.9 at 83 years). As functions of age,
R1 and R2 are maximal at 63 years (R1 5 1.19) and 83 years
(R2 5 15.345) correspondingly. Thus, the survival evolution rate
and its crossover increase are the highest in old age under better
conditions (which yield higher ,40).

The rates of ,x evolution with ,1 and q0 5 2,n,1 > 1 2 ,1
are proportional to R: e.g., by Eq. 4, d,x/d,1 5 2.5651 R1;
d,x/dq0 5 2,1d,x/d,1 > 2d,x/d,1. Universal Eqs. 1–3 for
,̃x(,40) and Table 1 allow one to reconstruct the past and to
predict the future change of human survival and mortality,
including inevitability of evolution crossovers. Suppose, e.g., that
Eq. 1 is established in the interval 0.7 # ,40 # 0.85 only. Its
extrapolation to smaller ,40 yields ,x 5 0 when ,40 5 l1 2
(1/R1). The largest ,40, which yields ,x 5 0, equals, by Table 1,
0.608 (at x 5 91). Because humans do not die out at 91 years,
this means that earlier, at ,40 u 0.6, the slope of ,̃91(,40) was
smaller. Indeed, Fig. 1C suggests a change at ,40 > 0.6 (but
provides only few experimental points there, which are insuffi-
cient for approximation). The extrapolation of Eq. 1 to larger ,40
yields ,x 5 1 when ,40 5 l1. The smallest ,40, which yields ,x 5
1, is, by Table 1, 0.977 (at x 5 5). But humans do not stop dying
until 5 years. This predicts the future decrease of the ,̃5 slope at
,40 i 0.977, in agreement with Fig. 1C. Similar reasoning for Eq.
2 yields its invalidity at ,40 , 0.96 and at ,40 . 0.998. The
proximity of the ‘‘invalidity limits’’ 0.977 and 0.96 in Eqs. 1 and
2 proves a narrow crossover region there, in agreement with Fig.
1C. (The predicted region ,40 > 0.998 is still beyond experimen-
tal reach).

Consider a population with ,40 5 ,#40. Suppose it consists of the
subpopulations with the ,40 values ,40

(1) , 0.967 and ,40
(2) . 0.967

and the concentrations c(1) and c(2)(c(1) 1 c(2) 5 1, c(1),40
(1) 1

c(2),49
(2) 5 ,# 40). The population ,̃x 5 c(1) (1 2 R1l1 1 R1,40

(1)) 1
c(2)(1 2 R2l2 1 R2,40

(2)) is linear in ,#40 and yields Eqs. 1 and 2
with the accuracy ;c(2) and ;c(1) correspondingly. Thus, before
the crossover c(2) is relatively small (i.e., almost all phenotypes
are in the ‘‘phase’’§ where c(1) > 1, and their ,40 # 0.967).
Then, rapidly and nearly simultaneously, an entire population of
different ages changes its ‘‘phase’’ to c(2) > 1 (where almost all
phenotypes have ,40 * 0.967) in the narrow vicinity of the ‘‘phase
transition point’’ ,40 > 0.967. Population migration that mixes
phases smears the transition. In a given country, the accuracy of
Eqs. 1 and 2 and 4 and 5 and the transition width between them
quantify the stationarity and phase homogeneity of the popu-
lation. The latter are high in countries as different as Japan and
Sweden. In Sweden, the sharpness of the transition suggests a
true singularity (21). To improve statistics, one may mix up
populations with very close (especially when ,40 > 0.97) values
of ,40 only.

Universality of Mortality, Metabolism, and Evolution
In the last decade nonhuman mortality was studied in popula-
tions of 1.2 millions medflies (14, 17) and up to 5,000 genetically
homogeneous fruitf lies (15, 16) in different conditions (over-
crowded cages with more than 7,000 medflies in a cage, indi-
vidual cells, cups, and vials), which may change during the
medfly lifespan (because medflies die out and their population
density in a cage drastically decreases). Theoretical study (19)
demonstrated for species as remote as humans and flies the same
survival dependence on the mean life expectancy at birth x#:

,x 5 aa 1 rax#1, [6]

where a 5 1 when x# , x* and a 5 2 when x# . x*; x* 5 75 years
for humans and x* 5 32 days for flies. Presumably, Eq. 6, and
thus Eqs. 1 and 2 and 4 and 5, are universal for all animals. The
universality of the survival ,x microevolution with x# for humans
and flies, complemented with its explicit relation to fly geno-
types (19), suggests that Eq. 6 describes evolution at large and
quantifies fitness with the survival probability. Remarkably, the
evolutionary rate d,x/dx# dependence on x# and x for humans and
flies is similar (19) (for humans it is proportional to R); in
particular, the rate is maximal in old age. The rate crossover at
x# 5 x* quantifies a new kind of the Gould-Eldridge (22) spurt.
It separates subpopulations within the same species, which
belong to one of the x# intervals (phases) only, and thus quanti-
tatively distinguishes genetically very close populations. Accord-
ing to ref. 19 and the previous section, the spurts are unusual. An
entire population, which yields Eqs. 1–5, from newborns to
elderly (whose birth is thus separated by the whole lifespan), very
rapidly and nearly simultaneously (at x# > x*) changes its
evolutionary rate. Such phase transitions may be consistent
with very unusual latent [possibly adaptive (refs. 23–25), but see
ref. 26] mutations accumulated and switched on at the crossover
x# 5 x* simultaneously for almost all genotypes and ages by some
kind of “evolvability” (27) and selection mechanism. For differ-
ent (e.g., Swedish and Japanese) populations the crossover
x#(t) 5 x* is reached at different calendar times t. So, their
dependence ,x(t) 5 ,x[x#(t)] yields bifurcations (cf. ref. 28). It
may be described (21) by the three-dimensional ‘‘evolutionary
landscape’’ function E 5 E(x, t) 5 2,n,x[x#(t)].

‡If a cohort has Nx(t) survivors to the age x at the time t, and Nx 1 dx(t 1 dx) of them survive
to the age x 1 dx, the calculated mortality rate is: qx(t) 5 2 d,nNx/N0dx 5 2 (,n,x/
x) 2 (,n,x/t). The first (usually dominating) term represents the instantaneous mor-
tality rate. The second term leads to the dependences of ,x(t) and qx(t) on the prehistory.

§The idea of phases and phase transitions is borrowed from physics, which extensively
studies them, see, e.g., ref. 20. The same chemical compound, e.g., water at atmospheric
pressure, may be solid below 0°C, then liquid until 100°C, and then gas. Transition
temperatures depend on pressure. Remarkably, the mortality phase transition has no
counterpart in physics in its robustness and universality in a wide region outside the
transition point (rather than in its immediate vicinity only), despite of irregular, uncon-
trollable, and time-dependent 40-fold change in q0 (see Fig. 1A).
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By Eq. 6, survival and evolution universally reduce to the mean
life expectancy at birth x#. The latter may change for a given
species by a factor of three (10–13), while for different animals
x# may change by more than 2 orders of magnitude (18). Its
maximal value x#max for any animal from invertebrates to mam-
mals scales (18) with the mean animal volume V

x#max 5 V1/3/10 cmzyear21. [7]

This formula also is valid for the bacteria fission time (18). It was
suggested (18) that the power of V in Eq. 7 may be somewhat
decreased by fractality; the corresponding decrease in Ṅ0 was
calculated (29) to be 1/12 (i.e. on the edge of experimental
accuracy, (ref. 18). Following ref. 18, I refine Eq. 7 to

x#max 5 T~V1/3/L!1/4, T 5 1 year, L 5 10 cm. [8]

(Numerically, L ; the Brownian walk of an oxygen atom over
the time T.) The value of x#max determines metabolism also (18):
on average 10 oxygen molecules are consumed per body atom
per maximal mean lifespan (for any animal from invertebrates to
mammals) or per maximal mean fission time (for any oxygen-
consuming bacteria). Thus, if the total number of consumed
oxygen molecules is N0 and of body atoms is NA, then

N0 5 10 NA. [9]

Because N0 5 Ṅ0x#max, the average oxygen consumption rate per
body atom ṅ0 5 Ṅ0/NA is related to ẋmax:

ṅ0 5 10/x#max. [10]

Mutation rate also universally reduces (21) to x#.

Phenomenology of Universality
Dynamics of any closed macroscopic system is related to the
entropy increase (20). Life, in contrast, is well known (30) to be
related to the entropy decrease of an animal (which therefore is
never a closed system). A necessary condition of entropy de-
crease (20) is an energy supply (metabolism), whose destructive
byproduct is a lethal irreparable molecular damage, which limits
the maximal lifespan. So, individual death is an inevitable
implication of life, and metabolism is related to the maximal (in
the absence of all other factors) mean lifespan. The calculation
and analysis of the consumed and destructive energies (18) yields
Eq. 9.

Individual death leads to equilibrium and entropy increase.
Thus, a necessary condition for the preservation of entropy
decrease is the population reproduction. To further decrease the
entropy, i.e. to increase genetic information, the population must
change and adapt to changing conditions. Variability is provided
by mutations. Maximally rapid genetic adaptation to changing
conditions implies that all causes of mortality must most effi-
ciently reduce to genetics. This means that although individual
survival is highly accidental, the statistical probability of a cohort
to survive to a given age under given living conditions universally
depends on its (genetic) polymorphism and on parameters,
which are strongly correlated with genetics (e.g., via immunity
and thus the chances to survive illness; physical fitness and thus
the chances to escape predators, capture prey, survive war).
Indeed, by Eq. 6, for species as remote as humans and flies the
survival probability ,x(x#) depends on age x and, e.g., the mean
life expectancy at birth x# (19), independent of calendar year,
country, race, and sex for humans; of family (medflies or
fruitf lies), conditions (overcrowded cages or individual cells),
genetic composition for flies. So, all changes in polymorphism
and living conditions reduce to the change in x#. Thus, ,x(x#)
describes also the universal law of evolution, quantifying ‘‘fit-
ness’’ with the survival probability.

So, life is related to entropy decrease, which inevitably leads
to individual death; death implies reproduction and evolution;
evolution is related to mutations and death, which eliminates
deleterious mutations and thus less fit individuals. (Truly, the
role of death is multifaceted!) Because natural selection is
related to survival, the latter quantifies macroevolution. Eq. 6
quantitatively reduces a three-dimensional evolutionary bush
(21) to the survival probability, which allows for computer
simulations (similar to those presented in refs. 31–34).

Natural evolution is hereditary and individual (the elimination
of less-fit individuals is beneficial for the species). It selects
populations, whose better chances to survive are verified over
many generations. At a certain stage evolutionary genetic ad-
aptation may be complemented with individual learning. Induc-
tive learning is relatively recent (on an evolutionary scale). So,
according to the molecular scale of evolution (25), the latter
corresponds to a relatively small genome change. One wonders
whether inductive reasoning emerges at every evolutionary
summit. There are no immediate benefits, and thus no incentives,
for an individual to invest time and effort in the preservation of
the results of inductive learning for future generations. So, a
breakthrough discovery of a nongenetic information transfer
from generation to generation is little probable. Different from
genetic evolution, it allows for a long-range information transfer
to many individuals over many generations, thus providing a
possibility for long-range correlations and time-space nonlocal-
ity in interactions between individuals (postevolution). The
latter might lead to technology, thus to nonlinear (e.g., in
population density) interactions between individuals and to
absolute instability of a civilization (21). In a technological
society destructive (e.g., bacteriological) power, available to an
individual or a small group (a microscopic fluctuation) may
rapidly become lethal for the population at large (absolute
instability of life), lead to a near-instantaneous entropy increase
and to the return to an equilibrium lifeless state. The reasoning
is not limited to terrestrials and may resolve the Fermi-Hart
(35–38) paradox: if extraterrestrial intelligence exists, why can it
not be contacted? Presumably, it is either not sufficiently
developed, or almost certainly already extinct.

Universality and Its Challenge
The previous section considers why evolution leads to universal
laws of survival, evolution, and metabolism; why, e.g., Eq. 9,
which relates metabolism and lifespan, is universal for all
animals from bacteria to mammals, with no dimensional or
dimensionless adjustable parameters. The problem of how this
happens, despite different evolution (over billions of years),
diversity (for ṅ0 and x#max over millions of species from bacteria
to mammals, with 1020-fold body mass change) and living
conditions (e.g., from hot water to cold air), is a true challenge.
The situation, whose comprehensive description includes an
enormous number of variables, but macroscopically reduces to
few variables only, is well known in thermodynamics, where
many billions of billions of variables, which describe individual
atoms, reduce to pressure and temperature only. Universal laws
are typical in the vicinity of critical points (20). Per Bak (32)
demonstrated self-organized criticality. Yet, the universality of
biological dynamics of all animals is unprecedented (no dynamic
universality class in physics is even remotely as broad) and
suggests that biology does not reduce to physics, just as irrevers-
ible turbulence does not reduce to reversible mechanics of atoms
in liquids. Essentially, the situation resembles the emergence of
quantum mechanics. In 1911 Rutherford suggested that an atom
is similar to the solar system: its electrons rotate around the
nucleus. Bohr noticed that this model does not explain an
amazing stability of an atom (39). No planetary system returns
to its initial state after a collision with another one, while the
stationary state of an atom is universal with respect to its
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prehistory (e.g., its collisions or prior chemical bonds with other
atoms. Imagine cars that self-repair themselves precisely to the
initial state after millions of head-on high speed collisions!) This
observation ultimately led to quantum mechanics. Empirical
laws of heat radiation, photoeffect, and atomic spectra yielded its
microscopic equations. Universal, self-reproducing during the
evolution, biological laws (for animals, which are macroscopic as
cars rather than microscopic as atoms) may lead to underlying
‘‘biological’’ equations and their microscopic implications (e.g.,
for DNA sequences).

Uniqueness of biological systems may be related to the
uniqueness of natural evolution. Natural evolution is extraordi-
nary rapid: the evolution from the first fishes to humans occurred
in about 100 million generations, while it takes a million times
more collisions (generations) for a given molecule to traverse 1
mm of water. Such speed is related to mortality, which extin-
guishes less-fit offsprings. Indeed, suppose there are on average
Q offsprings per animal (survival implies Q . 1). If the
population is stationary, i.e., only one of them survives, then the
probability of survival is 1/Q in each generation and the prob-
ability of survival in G generations is (1/Q)G. If, e.g., Q 5 1.1,
then after 100,000,000 generations each survivor is chosen from
104,000,000 a priori options. This unimaginably huge number

demonstrates the uniqueness of a biological system. (The rea-
soning is readily generalized to a nonstationary population.)

Genetic evolution may be elucidated by a cartoon. Prepare 10
million copies of nursery rhymes books (bacteria). Randomly
change, add or delete one letter in each of the books. Shred (kill)
all copies with meaningless portions, and multiply surviving
copies to restore the original (10,000,000) number. Repeat the
procedure until it yields the Shakespeare level books (humans).
The cartoon may be generalized to account for sexual repro-
duction with dominant and recessive alleles and to model natural
evolution. The bottleneck in a computer simulation of this model
is a computer that can identify a meaningless text, i.e., to
formally define meaning. The mathematical challenge is related
to high statistical proximity of a meaningful system to a disor-
dered one that increases (40) together with the amount of
information in the former. (Try to statistically distinguish an
encyclopedia from Hamlet if both are presented in a binary
code).
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