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ABSTRACT Representations of the (infinite) canonical
anticommutation relations and the associated operator alge-
bra, the fermion algebra, are studied. A “coupling constant”
(in (0, 1]) is defined for primary states of “finite type” of
that algebra. Primary, faithful states of finite type with arbi-
trary coupling are constructed and classified. Their physical
significance for quantum thermodynamical systems at high
temperatures is discussed. The scope of this study is broad-
ened to include a large class of operator algebras sharing
some of the structural properties of the fermion algebra.

1. Background

The underlying theme of this note is the study of represen-
tations of the (infinite) canonical anticommutation relations
(CAR). This study is conducted in the framework of operator
algebras. In particular, our definitions and results are stated
in terms of “C*-algebras” and “von Neumann algebras.” Both
are algebras of bounded operators on a Hilbert space (over
the complex numbers �� containing the adjoint A∗ of A when
they contain A (“self-adjoint operator algebras”) and closed
in the metric topology induced on "�(�, the algebra of all
bounded operators on (, by the norm A → �A� on "�(�,
where �A� is the bound (or, norm) of A. The von Neumann
algebras contain the unit operator I on (; for our purposes,
we may assume that each C*-algebra does, as well. In addi-
tion, a von Neumann algebra 2 must satisfy the condition
2′′ = 2, where 2′ is the “commutant" of 2, the set of oper-
ators in "�(� that commute with all the operators in 2. The
commutant is also a von Neumann algebra. These operator
algebras provide the basis for mathematical models of infinite
quantum systems. We refer to ref. 7 for the basics of the the-
ory of C*-algebras and von Neumann algebras. [A reference
of the form (theorem 8.2.8) is to theorem 8 in section 2 of
chapter 8 of ref. 7.] The recently published ref. 2 serves as
an excellent up-to-date reference for the connections between
quantum physics and operator algebras.

In ref. 3, a class of C*-algebras called, variously, “uhf”
(“uniformly hyperfinite”), “matricial,” and “Glimm” C*-
algebras is studied and classified up to algebraic isomorphism.
Their “states” and “representations” are examined, as well.
Each Glimm algebra A is simple, admits a unique tracial state,
and is generated (as a C*-algebra) by a countable number
(infinite) of elements. [A “state” of A is a linear functional ρ
on A such that ρ�A∗A� � 0 for each A in A and ρ�I� = 1;
a “tracial” state is a state ρ for which ρ�AB� = ρ�BA� for
all A and B in A.] A countably infinite family �Aj�j=1;2;::: of
pairwise-commuting C*-subalgebras Aj of A, each contain-
ing the unit I of A, generates A (as a C*-algebra), and each
Aj is * isomorphic to a full matrix algebra over the complex
numbers � (the orders of the matrix algebras varying with j).
Glimm shows that two such algebras A and B are isomorphic
if and only if A�p� = B�p� for each prime p, where A�p� is
the sum of the powers to which p divides the order of each
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Aj [so that A�p� may be 0 or : as well as any natural num-
ber]. If the sum of A�p� over all primes p is :, then there is
a Glimm algebra A for which this “invariant” occurs.

The Glimm algebra for which A�2� = : and A�p� = 0
for all other primes p is of special significance in quantum
physics. If each Aj is (isomorphic to) the algebra of complex
2 3 2 matrices, then A has that invariant. In that case, A
provides us with a mathematical model for the kinematical
structure of an infinite system of identical fermion particles.
Representations of groups by * automorphisms of A model
the symmetries of such systems. One-parameter groups of au-
tomorphisms model the dynamics generated by certain hamil-
tonians. This special Glimm algebra is called the “CAR al-
gebra” (also, the “fermion algebra”). Although we shall study
representations of broader classes of C*-algebras, sharing with
the CAR algebra the properties of being countably generated
and admitting a unique tracial state, our principal interest is
in the CAR algebra. (A representation of A is a homomor-
phism ϕ of A into "�+�, for some Hilbert space +, such
that ϕ�A∗� = ϕ�A�∗ for each A in A.) A family of opera-
tors C1; C2; : : : acting on a Hilbert space ( is said to be a
representation of the CAR when

�∗�
CjCk + CkCj = 0 �j; k = 1; 2; : : :�;
Cj C

∗
k + C∗kCj = 0 �j 6= k�;

Cj C
∗
j + C∗j Cj = I �j = 1; 2; : : :�:

[The system of equations �∗� is referred to as the “canonical
anticommutation relations” and the set of elements �Cj� is
said to “satisfy the CAR.”] An important part of the math-
ematical analysis of (infinite) fermion systems involves the
study of the representations of the CAR. In each Aj , re-
garded as the algebra of 2 3 2 matrices, let σ �j�x , σ �j�y , and
σ
�j�
z be

( 1 0
0 −1

)
,
( 0 i
−i 0

)
, and

( 0 1
1 0

)
, respectively. (These are the

“Pauli spin matrices.” They generate Aj as an algebra and
�σ �j�x ; σ �j�y ; σ �j�z x j = 1; 2; : : :� generates A as a C*-algebra.)

Let Cj be σ �1�z · · ·σ �j−1�
z �σ �j�x − iσ �j�y �/2. Then �Cj� satisfies

the CAR. In addition,

σ
�j�
z = 2C∗j Cj − I;

σ
�j�
x = σ �1�z · · ·σ �j−1�

z �Cj + C∗j �;

σ
�j�
y = iσ �1�z · · ·σ �j−1�

z �Cj − C∗j �:
Thus �C1; : : : ; Cj� generates the same (finite-dimensional)
C*-algebra as �A1; : : : ;Aj� does, and �C1; C2; : : :� gener-
ates A as a C*-algebra. With some further calculation, it
follows that each representation of the CAR algebra A on a
Hilbert space ( gives rise to a representation of the CAR.
Conversely, each representation of the CAR gives rise to a
representation of the CAR algebra (that leads, again, to the
given representation of the CAR). This identification of the
representations of the CAR with the representations of the
CAR algebra makes a very powerful mechanism available
to us for studying the representations of the CAR; there is
a deep and highly developed theory of representations of
C*-algebras in the mathematical literature.
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At the heart of the representation theory for C*-algebras is
the GNS (Gelfand–Neumark–Segal) construction associating
with each state ρ of a C*-algebra A a representation πρ of A
on a Hilbert space (ρ such that, for some unit vector xρ in
(ρ, πρ�A�xρ is dense in (ρ and ρ�A� = �πρ�A�xρ; xρ�, for
each A in A (see theorem 4.5.2). In effect, the Hilbert space
(ρ is A provided with the inner product �A;B� = ρ�B∗A�.
In general, we must form the quotient A/,ρ of A by the left
ideal ,ρ (= �A � Ax ρ�A∗A� = 0�, the left kernel of ρ) in A
of “null vectors” for this inner product, and “complete” the
quotient to construct (ρ. Then πρ�A� stems from left multi-
plication by A on A and xρ corresponds to the unit I of A.
When ,ρ = �0�, no quotient is needed. We say that ρ is a faith-
ful state of A in that case. If πρ�A�x is dense in (ρ for each
non-zero vector x in (ρ, we say that πρ is an irreducible repre-
sentation of A and that ρ is a pure state of A. That the state ρ
is pure is equivalent to each of the following conditions: ,ρ is
a maximal left ideal in A (theorem 10.2.10); the null space of
ρ is ,ρ+,∗ρ (theorem 10.2.8); if ρ = 1

2 �ρ1+ρ2�, with ρ1 and ρ2
states of A, then ρ = ρ1 = ρ2 (theorem 10.2.3). The process
leading to πρ, (ρ, and xρ, is called the “GNS construction,”
and πρ is the “GNS representation” for ρ.

In ref. 9, the class of von Neumann algebras (there called
“rings of operators”) whose centers consist just of the scalar
multiples of I, the factors, is studied in detail. These factors
are separated into three large subclasses: those of type I con-
tain a minimal projection; those of type II do not have a min-
imal projection and either have a tracial state, the factors of
“type II1,” or can be viewed as infinite matrices with entries
from a factor of type II1, the factors of “type II:”; the remain-
ing factors are said to be of “type III.” Each factor of type I
is isomorphic to some "�(�. If ( has dimension n (a finite or
infinite cardinal), the factor is said to be of “type In.”

The tracial state on a factor - of type II1 is unique. Its
restriction to the (lattice of) projections in - serves as a “di-
mension function” on the lattice of projections and provides
us with a realistic concept of “continuous dimensionality” (rel-
ative to -). It makes sense to speak of spaces (the ranges
of projections in -) of dimension, say,

√
2/2. More than 60

years of intensive research, and a vast mathematical literature
on the subject, have made it clear that the class of factors of
type II1 are pivotal to our understanding of the structure of
all factors (and all von Neumann algebras).

A representation π of a C*-algebra A is said to be a pri-
mary (or factor) representation of A when π�A�′′, the von
Neumann algebra generated by π�A�, is a factor. We say that
π is a primary representation of type In, II1, II:, or III, when
π�A�′′ is a factor of the corresponding type. The finite factors
are those of type In, with n finite, or of type II1. A primary
representation π is of finite type when π�A�′′ is a factor of fi-
nite type. A state ρ of A is a primary (or factor) state of A (of
type In, II1, II:, III, of finite type) when its GNS representa-
tion πρ is of the corresponding type.

The finite canonical anticommutation relations were intro-
duced in 1928 and studied by Jordan and Wigner. The rela-
tions (∗) (for C1; : : : ; Cn) are satisfied by the algebraic com-
binations of spin matrices described before (an assignment
known as the “Jordan–Wigner transform”). These Cj gener-
ate the same algebra as A1; : : : ;An (as noted). This algebra is
the full matrix algebra of complex 2n 3 2n matrices. It has just
one irreducible representation (up to unitary equivalence)—
its usual action on 2n-dimensional Hilbert space. It was felt,
for a number of years, that the same would be true of the
(infinite) CAR; aside from the technical, analytic details en-
countered in passing from the finite to the infinite, there ought
not be “qualitative” differences. In ref. 4, Gårding and Wight-
man displayed an infinite number of inequivalent, irreducible
representations of the CAR.

The powerful techniques of the theory of operator alge-
bras make it routine, now, to produce inequivalent, irreducible

representations of the CAR. (In example 10.4.19, an uncount-
able infinity of inequivalent irreducible representations of A
are constructed.) These methods produce representations of
A that are not of type I. In effect, Murray and von Neumann
(10) exhibit a type II1 representation of the CAR by construct-
ing a factor - of type II1 with A as a C*-subalgebra such that
A′′ is -. In ref. 11, R. T. Powers finds a family of states �ρt�
of A of type III, with t in �0; 1

2 �, for which the GNS rep-
resentations are not only unitarily inequivalent, but are “al-
gebraically” inequivalent as well [that is, πt�A�′′ and πt ′ �A�′′
are not isomorphic when t 6= t ′—compare, section 12.3]. That
deep work remains one of the cornerstones of the impressive
body of results clarifying the structure of type III factors, de-
veloped over the past 30 years. A definitive classification of
the “quasi-free” states of the CAR algebra (defined in terms
of “annihilation” and “creation” operators), by Powers and
Størmer, appears in ref. 13.

The type II1 representations of the CAR are to a large
extent, the subject of the sections of this article that follow.
Their algebraic equivalence is a difficult result established in
ref. 10. The algebraic equivalence of the type II: representa-
tions remained a major challenge until its (brilliant!) proof by
A. Connes (1).

If ρ is a primary state of finite type of the CAR algebra
A, then πρ�A�′′ is a finite factor acting on (ρ with a (unit)
cyclic vector xρ. It follows (from proposition 9.1.2 and theo-
rem 9.1.3) that πρ�A�′, the commutant of πρ�A�′′, is a finite
factor (of type II1 when πρ�A�′′ is of type II1). Let - and its
commutant -′, acting on a Hilbert space ( be finite factors
and τ and τ′ their respective tracial states. If x is a non-zero
vector in ( and E and E′ are the projections whose ranges
are the closures of -′x and -x, respectively, then E � -
and E′ � -′. A difficult result of Murray and von Neumann
(9) tells us that the ratio τ�E�/τ′�E′� does not depend on the
vector x we choose. This ratio is called the coupling constant
for - and -′. It is the starting point for the celebrated work
of Jones (6) on the “index of subfactors.”

If ρ is a primary state of finite type of a C*-algebra A, we
say that ρ has coupling a when the finite factors πρ�A�′′ and
πρ�A�′ have coupling constant a. In case xρ is a separating
vector for πρ�A�′′, it is generating for πρ�A�′, and the cou-
pling is 1. When ρ is a faithful state of A, xρ is a separating
vector for πρ�A�, which is dense in πρ�A�′′ in the strong-
operator topology (corresponding to convergence on vectors
in (ρ). With the added structure of finite factors and the ma-
tricial structure of the CAR algebra, does this force xρ to be
separating for πρ�A�′′ as well? In other words, must a faith-
ful, primary, state of finite type of a C*-algebra, in general,
or the CAR algebra, in particular, have coupling 1? We shall
show (Theorem 4), by construction, that there are such states
of the CAR algebra with coupling a for each a in �0; 1� and
that the parameter a determines the GNS representations for
these states up to unitary equivalence.

The physical significance of the finite-type representations
of operator algebras can be seen best in the context of quan-
tum thermodynamical systems. For such a system with a large
(though, finite) number of degrees of freedom, Gibbs de-
scribes an equilibrium state ωT for temperature T . The kine-
matical model (algebra of bounded observables) is a full ma-
trix algebra over � whose order depends on the number of
degrees of freedom. The “expectation functional” correspond-
ing to ωT is given in terms of the (unique) tracial state on this
matrix algebra and a “density matrix” exp�−H/kT � (up to
choices of units and normalizations), where H is the hamil-
tonian of the system and k is Boltzmann’s constant. The ex-
pectation ωT �A� of an observable A in the equilibrium state
is τ�A exp�−H/kT ��. As the temperature T tends to infinity
exp�−H/kT �, tends to I, the unit matrix; the equilibrium state
at “infinite” temperature is τ, the tracial state.



13394 Mathematics: Kadison Proc. Natl. Acad. Sci. USA 95 (1998)

Many of the phenomena we seem to observe in such sys-
tems (e.g., phase transitions) occur, in a mathematically pre-
cise sense, only when the system is infinite. Viewing large sys-
tems (with 71023 molecules) makes us feel that we are observ-
ing them as if they were infinite. To study these phenomena
by mathematical methods, we deal with the infinite system.
This is achieved, traditionally, by “taking the thermodynami-
cal limit”—allowing the finite system (the system “in a box”)
to expand to infinity (maintaining control of “density”). Calcu-
lations are made in the finite system and the (“thermodynam-
ical”) limit taken as the systems expand. There are, of course,
difficulties in passing to these limits.

By using operator algebra techniques, we can start with the
operator algebra model of the infinite system, define the ther-
modynamical functions and features of interest, intrinsically,
and eliminate the passage to the thermodynamical limit. A
case in point, is the prescription for equilibrium states, in
the C*-algebra setting, given by Haag, Hugenholtz, and Win-
nink (5). Without details, these states are boundary values of
a function analytic in a strip in the complex plane of width
1/kT . Moving from one point on the boundary (correspond-
ing to a particular time in the dynamical evolution of the sys-
tem), orthogonally, to the point on the other boundary of the
strip, the expectation value undergoes a trace-like interchange
of variables. Such states are called “KMS states” in ref. 5 to
note the starting point for the development in ref. 5 in the
work of Kubo, Martin, and Schwinger. The presence of sev-
eral KMS states for a given system at a given temperature
indicates the presence of phase transition at that tempera-
ture. Again, at infinite temperature, the strip has 0 width and
a KMS state will be a tracial state. If our kinematical model
is the CAR algebra, there is just one tracial state [and this is
the case for other C*-algebras such as those stemming from
the free groups on 2 or more generators (12)]. In these cases,
the GNS representations for the tracial state is primary and
of finite type, as we shall note in the next section. The states
associated with this representation (the normal states for that
representation) are “local” (or “quasi-local”) perturbations of
the infinite temperature equilibrium state. Among them are
the states we construct with coupling in the parameter inter-
val �0; 1�. Is this parameter physically detectable in systems at
very high temperatures?

2. States of Finite Type

We begin with a technical concept, separating projection, that
we shall need for our construction of the coupling parameter.

Definition 1: With A a C*-subalgebra of a von Neumann
algebra 2, a projection E in 2 is said to be separating for A
if A = 0 when A � A and AE = 0. A separating projection
E for A is said to be a-separating for A, with a in the interval
�0; 1�, when a = sup�bx �AE� , b; A � �A�1�, where �A�1 =
�A � Ax �A� = 1�.

If E is a-separating for A, then �AE� � a for each A
in �A�1. Since �AE� � �A� = 1 for A in �A�1, if E is a-
separating, then a � 1. Of course, I is 1-separating for each
C*-subalgebra. Moreover, if E is a-separating for A and E �
F , with F in 2, then F is a′-separating for A and a � a′. To
see this, note that if �AE� , b for A in �A�1, then

b + �AE� = �AFE� � �AF��E� = �AF�:
For the most part, our aim is to find “small” a-separating
projections with a as large as possible.

Lemma 2. If A is a countably generated C*-subalgebra of a
factor - of type II1, then for each positive ε, there is a 1-
separating projection E in - such that τ�E� + ε, where τ is
the �unique� tracial state on -.

Proof: Since A is countably generated, it is norm sep-
arable. With T1; T2; : : : a countable, dense subset of (non-
zero) elements of A, we have that �T1�−1T1; �T2�−1T2; : : : is

a countable, dense subset of the unit sphere, �A � Ax �A� =
1�, of A. (If Aj → A and �A� = 1, then �Aj�−1Aj → A.)
We write A1;A2; : : : in place of �T1�−1T1; �T2�−1T2; : : : : If F
is a projection that commutes with A∗A, then

�AF�2 = �FA∗AF� = �A∗AF�:
Thus �AF� = 1 if and only if �A∗AF� = 1. At the same time,
if �AF� = 1 = �A�, and F is a subprojection of G, then

1 = �AF� = �AGF� � �AG��F� = �AG� � �A� = 1;

whence �AG� = 1.
With A in �A�1 and a positive ε′ given, let �Eλ� be the

spectral resolution for A∗A (in the form defined on pp. 310–
312). Then

∧
λ+1 I−Eλ = F1, where F1 is the projection on the

eigenspace [possibly (0)] for A∗A for the eigenvalue 1. Since
limλ→1−�I − Eλ� is F1 in the strong-operator topology, and τ
is ultraweakly continuous on - (compare, theorem 8.2.8), we
have that limλ→1− τ�I − Eλ� = τ�F1�. In addition, I − Eλ 6= 0
when λ + 1, since �A∗A� = 1. Thus 0 + τ�I − Eλ� + ε′ if
F1 = 0 and λ is near 1. If F1 6= 0, then there is a subprojection
F0 of F1 in - such that 0 + τ�F0� + ε′, since - is a factor of
type II1. As A∗AF1 = F1, A∗AF0 = F0, and F0 commutes with
A∗A. In any event, there is a projection F in - commuting
with A∗A such that �A∗AF� = 1 and 0 + τ�F� + ε′.

Applying this result to each Aj , with ε/2j in place of ε′,
we find a projection Ej in -, commuting with A∗jAj , such
that 0 + τ�Ej� + ε/2j and �A∗jAjEj� = 1. As noted, this
implies that �AjEj� = 1. From the Kaplansky formula (ref. 8;
cf. theorem 6.1.7), F ∨ G − G 7 F − F ∧ G, where F and
G are projections in a von Neumann algebra. Thus τ�F ∨
G� + τ�F ∧ G� = τ�F� + τ�G�, when F and G are in -,
and τ�F ∨G� � τ�F� + τ�G�. Applying this, successively, we
conclude that τ�E1 ∨ E2 ∨ · · · ∨ En� � τ�E1� + · · · + τ�En�.
Since �E1 ∨ E2 ∨ · · · ∨ En� is strong-operator convergent to∨:
j=1 Ej (= E),

τ�E� �
:∑
j=1

τ�Ej� +
:∑
j=1

ε

2j
= ε:

The function, T → �TE� is norm continuous on A and takes
the constant value 1 on �Aj�, hence on the norm closure of
�Aj�, the unit sphere �A�1 of A. Thus E is a 1-separating
projection for A such that τ�E� + ε.

We certainly don’t expect that the hypothesis of Lemma 2
can be weakened to encompass all C*-subalgebras of -; for
-, itself, �I −E�E = 0 and I −E 6= 0 when τ�E� + 1. There
is no separating projection for - (in -) with small trace. Are
there proper C*-subalgebras of - without separating projec-
tions? Are there any without 1-separating projections? Each
proper von Neumann subalgebra has a separating projection
different from I. “Separation” [related to the Jones Index (6)]
will be defined and discussed elsewhere.

With very little change, the proof of Lemma 2 applies to fi-
nite von Neumann algebras, in general (in place of factors).
In this case the tracial state is replaced with the center-valued
trace on the von Neumann algebra. What we have proved in
Lemma 2 is what we need to construct faithful, primary states
of the fermion algebra with arbitrary coupling. This is ef-
fected in Theorem 4. We make use of some other results in its
proof.

Proposition 3. If A is a self-adjoint operator algebra acting
essentially on a Hilbert space (, 2 is the strong-operator closure
of A, u is a trace vector for A, and P is the projection with range
�2′u�, then P is a central projection in 2. If u is also generating
for A, then u is separating for 2.

Proof: Since A acts essentially on ( [that is, A�(� is
dense in (], I is in 2, 2 is a von Neumann algebra, and
P is in 2. If Gu = 0, with G a projection in 2, then
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0 = 2′Gu = G2′u, and GP = 0. Thus G � I − P . If U is a
unitary operator in 2, then U∗�I − P�U is a projection in 2
and since u is a trace vector for 2,

�U∗�I − P�Uu; u�= �UU∗�I − P�u; u�= ��I − P�u; u�= 0:

Thus U∗�I − P�Uu = 0 and U∗�I − P�U � I − P . With U∗
in place of U , we have that U�I − P�U∗ � I − P , and I −
P � U∗�I − P�U . It follows that I − P = U∗�I − P�U for
each unitary operator U in 2. Thus I − P and P are central
projections in 2.

If u is generating for A, then u is separating for 2′. (See
corollary 5.5.12.) Since I − P is in 2′ (as well as 2) and
�I − P�u = 0, I − P = 0. Thus u is generating for 2′, hence,
separating for 2.

Theorem 4. If A is an infinite-dimensional, countably gen-
erated C*-algebra with a unique tracial state τ that is faithful,
and a in �0; 1� is given, then there is a faithful, type II1, primary
state of A with coupling a that is quasi-equivalent to τ.

Each faithful, type II1, primary, cyclic representation of a
countably generated C*-algebra is the GNS representation for
some faithful state of the algebra.

Two faithful, primary, cyclic representations of finite type of a
C*-algebra with a unique tracial state are unitarily equivalent if
and only if they have the same coupling.

Proof: Considering πτ�A� acting on (τ, where πτ is the
GNS representation of A corresponding to τ (see pp. 278–279
of ref. 7), we may assume that A acts on ( with a generating
(unit) trace vector u. Thus u is a generating trace vector for
-, the strong-operator closure of A. From Proposition 3, u
is separating for -. If P is a central projection in -, and
neither P nor I − P is 0, then A → �Pu�−2�APu; u� and
A→ ��I − P�u�−2�A�I − P�u; u� are tracial states of A. By
assumption, these tracial states coincide. Since A is strong-
operator dense in -, there is an A in A such that APu is
close to PPu (= Pu) and A�I − P�u is close to P�I − P�u
(= 0). For such an A, �Pu�−2�APu; u� is near 1, while ��I −
P�u�−2�A�I − P�u; u� is near 0. Thus one of P and I − P is
0, and - is a factor. Since A is infinite dimensional and -
has a tracial state, - is a factor of type II1. We denote by τ,
again, the (unique) tracial state on -.

From Lemma 2, there is a 1-separating projection E0 for
A in - such that τ�E0� + a. Since - is a factor of type
II1, there is a subprojection E1 of I − E0 in - such that
τ�E1� = a−τ�E0�. Let E be E0+E1. Then E is a 1-separating
projection for A (from the discussion preceding Lemma 2),
and τ�E� = a.

Since u is separating for -, Eu 6= 0. Let x be the unit
vector �Eu�−1Eu and E′ be the projection in -′ with range
�-x�. From proposition 5.5.5, if π�T � = TE′ for T in -,
then π is a * isomorphism of - onto the factor -E′ acting
on E′�(� with commutant E′-′E′, a factor of type II1 acting
on E′�(�. Now, x is generating for -E′ [in E′�(�] and

�E′-′E′x� = �E′-′Eu� = �EE′-′u� = EE′�(�;
the range of π�E� (= EE′) in -E′. The trace is preserved by
π so that EE′ has trace a in -E′. Thus -E′ and E′-′E′

have coupling constant a.
As E is separating for A and u is separating for -, if

π�A�x = 0, for some A in A, then 0 = AE′Eu = AEu,
and A = 0. Thus, letting ρ�A� be �π�A�x; x�, for A in A,
we have that ρ is a faithful state of A. Since π is an ultra-
weak homeomorphism between - and -E′ (compare re-
mark 7.4.4), π�A� is ultraweakly dense in -E′. Thus x is
generating for π�A� in E′�(�. It follows, from uniqueness of
the GNS representation (proposition 4.5.3), that π restricted
to A is unitarily equivalent to the GNS representation corre-
sponding to ρ. Hence ρ is a type II1, faithful, primary state of
A with coupling a. By choice, A acting on ( is the GNS rep-
resentation corresponding to τ, and π restricted to A is the

GNS representation corresponding to ρ. But π restricted to
A extends to the * isomorphism π of the ultraweak closure
- of A onto the ultraweak closure -E′ of π�A�. Thus τ and
ρ are quasi-equivalent (see definition 10.3.1).

Suppose, now, that A is a countably generated C*-algebra
and π is a faithful, type II1, primary representation of A on
a Hilbert space ( with generating unit vector x. Let - be
the strong-operator closure of π�A� and F the projection (in
-) with range �-′x�. While F may not be separating for
A, from Lemma 2, there is a projection E in - that is 1-
separating for π�A� and has the same trace as F . In this case,
there is a partial isometry V in - with initial projection F
and final projection E. Let y be the (unit) vector Vx. Then
�-y� � �-V ∗Vx� = �-x� = (. Thus y is generating for -
and for the strong-operator-dense subalgebra π�A� of -. It
follows that π is the GNS representation for ωy ◦ π.

We note that y is separating for π�A�. Suppose that
π�A�y = 0 for some A in A. Then

0 =-′π�A�y = π�A�-′y = π�A�-′Vx = π�A�V-′x;

whence π�A�E = 0. Thus π�A� = 0, since E is separating for
π�A�. As π is faithful, A = 0, and ωy ◦ π is a faithful state
of A. Thus π is the GNS representation for the faithful state
ωy ◦ π of A.

Suppose that ϕ and ψ are unitarily equivalent primary rep-
resentations of a C*-algebra A on Hilbert spaces ( and +,
respectively. There is a unitary transformation U of ( onto
+ such that Uϕ�A�U−1 = ψ�A� for each A in A. In this
case, Uϕ�A�−U−1 = ψ�A�−, where ϕ�A�− and ψ�A�− are the
strong-operator closures of ϕ�A� in "�(� and ψ�A� in "�+�,
respectively. In addition, Uϕ�A�′U−1 = Uψ�A�′U−1. Thus ϕ
and ψ have the same coupling when they are cyclic of finite
type.

Assume, now, that A is a C*-algebra with a unique tracial
state and that ϕ and ψ are faithful, primary, cyclic represen-
tations of A of finite type with the same coupling on Hilbert
spaces ( and +, respectively. Since ϕ and ψ are primary, they
are either quasi-equivalent or disjoint [proposition 10.3.12(ii)].
Suppose that they are quasi-equivalent. Then there is a * iso-
morphism α of ϕ�A�− onto ψ�A�− such that α ◦ϕ = ψ (from
the definition of “quasi-equivalence”). Since ϕ�A�−, ϕ�A�′
and ψ�A�−, ψ�A�′ have the same coupling, α is implemented
by a unitary transformation (exercise 9.6.30). Thus ϕ and ψ
are unitarily equivalent in this case.

Suppose that ϕ and ψ are disjoint. We shall derive a con-
tradiction from this assumption. Let π be ϕ⊕ψ. Then π is a
faithful representation of A of finite type on (⊕+. [By defi-
nition, π�A��x; y� = �ϕ�A�x;ψ�A�y� when �x; y� � (⊕ +.]
Since ϕ and ψ are disjoint, π�A�− = ϕ�A�− ⊕ ψ�A�− (theo-
rem 10.3.5). With P the orthogonal projection of (⊕+ onto
(, I − P is the projection on +, and P is in π�A�−. Let
x and y be unit vectors in ( and +, respectively, and x̃, ỹ
be the unit vectors �x; 0� and �0; y� in ( ⊕ +. With τ the
center-valued trace on π�A�− (theorem 8.2.8), the function-
als A → �τ�π�A��x̃; x̃� and A → �τ�π�A��ỹ; ỹ� (A � A)
are tracial states of A. By assumption, these states are equal.
Since they coincide on π�A�, and τ is ultraweakly continu-
ous, they coincide on the weak (and strong)-operator closure
of the unit ball in π�A�. By the Kaplansky Density Theorem
(theorem 5.3.5), P is in this closure. Moreover, τ�P� = P .
Thus 1 = �Px̃; x̃� = �Pỹ; ỹ� = 0; a contradiction. It follows
that ϕ and ψ are not disjoint, that they are quasi-equivalent,
and that they are unitarily equivalent.

Remark 5: The fact that each faithful, type II1, primary,
cyclic representation of a countably generated C*-algebra is
the GNS representation for some faithful state of the C*-
algebra, noted in Theorem 4 does not remain valid under
“beckoning” weakening of the hypotheses. For example, re-
placing “type II1” by “finite-type” or dropping the assumption
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that the C*-algebra is countably generated do not yield valid
statements. To see this, we note that no irreducible represen-
tation of a C*-algebra (other than the 1-dimensional �) is the
GNS representation for a faithful state. Although each irre-
ducible representation π is cyclic with each unit vector x in
the representation space as a generating vector, so that π is
the GNS representation for each of the states ωx ◦π, a state ρ
has an irreducible GNS representation if and only if the null
space of ρ is ,ρ + ,∗ρ, where ,ρ is the left kernel of ρ (theo-
rem 10.2.8). If ρ is faithful, ,ρ must be �0�. Thus ρ is faithful
and has an irreducible GNS representation if and only if its
null space is �0�, in which case, the C*-algebra is �. In par-
ticular, "�(�, acting on (, in its identity representation, acts
irreducibly and is countably generated when ( is finite dimen-
sional. Hence the identity representation of "�(� on ( is the
GNS representation of "�(� for no faithful state when ( has
dimension 2 or more.

To illustrate the need for the hypothesis that our C*-algebra
is countably generated, we examine a factor - of type II1 act-
ing on a Hilbert space ( with coupling a in �0; 1�. If x is a
generating vector for -, then �-′x� is the range of a pro-
jection in - of trace a (+ 1). Hence x is not generating for
-′ and therefore, not separating for - (corollary 5.5.12).
Thus the identity representation of - on ( is a faithful, type
II1, primary, cyclic representation of - that is the GNS rep-
resentation for no faithful state of -. Of course, - is not
countably generated as a C*-algebra in this case.

Theorem 6. �i� If A has a unique tracial state, then each
representation of finite type of A is primary.
�ii� If each cyclic representation of A of finite type is primary,

then A has at most one tracial state.
Proof: (i) Let π be a representation of finite type of A

on a Hilbert space ( and τ be the center-valued trace on
π�A�−. As argued in the last paragraph of the proof of The-
orem 4, �τ�T �x; x� = �τ�T �y; y� for all T in π�A�− and all
unit vectors x and y in (. In particular, if P is a non-zero
central projection in π�A�− and x is a unit vector in its range,
then

1 = �Px; x� = �τ�P�x; x� = �τ�P�y; y� = �Py; y�

for each unit vector y in (. Thus P = I, π�A�− is a factor,
and π is primary.

(ii) Let τ1 and τ2 be tracial states of A, π1 and π2 the
GNS representations of A on the Hilbert spaces (1 and (2,
for π1 and π2, with cyclic unit vectors u1 and u2 such that
τj�T � = �πj�T �uj; uj� (j = 1; 2). From Proposition 3, uj is
a separating trace vector for πj�A�−, and πj�A�− is of finite
type (j = 1; 2).

By assumption πj is primary, and πj�A�− is a finite factor
(j = 1; 2). Thus the sum π1�A�− ⊕ π2�A�− is a finite von
Neumann algebra that is not a factor. In addition, �u1; u2� is a
generating vector for π1�A�− ⊕ π2�A�− (acting on (1 ⊕(2).
If π1 and π2 are disjoint, then �π1 ⊕ π2��A�− = π1�A�− ⊕
π2�A�− (theorem 10.3.5), whence �u1; u2� is a cyclic vector for
�π1 ⊕ π2��A�−: In this case, π1 ⊕ π2 is a cyclic representation
of finite type of A that is not primary, contrary to assumption.
Thus π1 and π2 are not disjoint.

Since π1 and π2 are primary and not disjoint, they are
quasi-equivalent representations [proposition 10.3.12(ii)]. In
particular, there is a normal state ω of π1�A�− such that
ω ◦ π1 = ωu2

◦ π2 (proposition 10.3.13). Thus ω ◦ π1 = τ2,
and ω is a tracial state of π1�A�−. Since π1�A�− is a fi-
nite factor, it has a unique tracial state (compare theorem
8.2.8), whence ω is the restriction of ωu1

to π1�A�−, and
τ1 = ωu1

◦ π1 = ω ◦ π1 = ωu2
◦ π2 = τ2: Hence A has at

most one tracial state.

Dedicated to Erling Størmer on the occasion of his sixtieth birth-
day.
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