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Abstract

A primary challenge for structural genomics is the automated functional characterization of protein
structures. We have developed a sequence-independent method called S-BLEST (Structure-Based
Local Environment Search Tool) for the annotation of previously uncharacterized protein structures.
S-BLEST encodes the local environment of an amino acid as a vector of structural property values.
It has been applied to all amino acids in a nonredundant database of protein structures to generate a
searchable structural resource. Given a query amino acid from an experimentally determined or
modeled structure, S-BLEST quickly identifies similar amino acid environments using a K-nearest
neighbor search. In addition, the method gives an estimation of the statistical significance of each
result. We validated S-BLEST on X-ray crystal structures from the ASTRAL 40 nonredundant
dataset. We then applied it to 86 crystallographically determined proteins in the protein data bank
(PDB) with unknown function and with no significant sequence neighbors in the PDB. S-BLEST
was able to associate 20 proteins with at least one local structural neighbor and identify the amino
acid environments that are most similar between those neighbors.
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INTRODUCTION

Understanding the relationship between protein structure and chemical function is a problem
of growing importance.l In particular, structural genomics initiatives are determining the
structures of targets without known or characterized function. Some of these initiatives have
prioritized targets with potentially novel folds based on sequence with little similarity to known
structure. Currently, conservation within a sequence alignment or phylogenetic tree remains
the primary method for computationally identifying functional residues, and many
experimental methods rely on site-directed mutagenesis in combination with other functional
assays.

Generally, function is inferred computationally by assessing similarity to proteins of known
function. This guilt-by-association approach has proven to be valuable. In addition to sequence
comparative methods, current structural methods for identifying function rely on one of the
following:

*Correspondence to: Sean D. Mooney, Center for Computational Biology and Bioinformatics, Department of Medical and Molecular
Genetics, Indiana University School of Medicine, Indianapolis, IN 46202. E-mail: sdmooney@iupui.edu; russ.altman@stanford.edu



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Mooney et al.

Page 2

1. phylogenetic trees derived from sequence similarity,2
2. hand curated molecular fingerprints,3'4 or
3. fold recognition and alignment methods.”

Few clustering methods can identify functional residues automatically based on structural
properties alone. Sequence-based methods for functional characterization rely on identifying
conserved residues within protein structures. More sophisticated methods, such as the
evolutionary trace method, use phylogenies combined with structure to define residues of
functional importance.~ It is important to develop sequence-independent methods for
identifying function to complement sequence-based methods when they are limited by lack of
sequence similarity or small datasets.

Methods for identifying key functional residues, or molecular fingerprints, can classify
function. These include Fuzzy Functional Forms,4 PROCAT,3 a neural network method
developed by Stawiski et al.,° and FEATURE.’ FEATURE describes a local environment
around an arbitrary three-dimensional point in space by building a vector of property values
that lie within several radial shells centered about the point. The properties are discrete
structural property values for each atom within a shell. These values contain the number of
atoms associated with a given residue type, secondary structure, van der Waals volume, and
solvent accessibility. Given two sets of vectors, one set associated with some common
functional or structural attribute and the other set lacking that attribute, FEATURE uses
supervised machine learning to predict new positions within a protein structure that share the
common attribute.

SCOP has proven to be a powerful tool for studying known protein structures.8 By maintaining
a complete, annotated classification of all known proteins based on sequence, structure, and
functional information, the structural components that classify a family can be determined.
SCOP is a manually curated database and often is used as a gold standard for structural
classification of proteins.

Sequence-independent structure-based methods for function assignment are challenging for
several reasons. First, aligning local structure is a difficult computational task.9 Second,
estimating the statistical significance of the results is challenging.10 Third, scanning through
the entire protein data bank (PDB)11 can be computationally demanding. Finally, and perhaps
vexing, structural similarity and functional similarity are not always well correlated.

We have developed a method for unsupervised mining of structural datasets and automatically
identifying local regions within protein structures that are statistically associated with a given
annotation. Methods exist for unsupervised mining of structural topology. These include
VAST,13 DALI,4 the method of Singh and Saha,1® Dubey et al.,16 and PINTS.17 Our
method is complementary to these methods by defining the most structurally significant residue
environments for given a classification, based on the structural environments represented in
that database. S-BLEST (Structure-Based Local Environment Search Tool) is based on the
FEATURE representation of a local environment, and rapidly searches databases of vectors of
local structure properties. This method is a structural analog to sequence-based similarity
search methods such as BLAST.18 we parameterized and evaluated the method by evaluating
how well selected residue environments in the ASTRAL 40 dataset are associated with their
annotated SCOP family.
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MATERIALS AND METHODS
Residue-Based K Nearest Neighbor (KNN) Searches Against Structural Databases

A residue is encoded as a vector of properties using the following procedure, similar to others.
7,19 10 describe the local environment for each residue, a vector of properties is taken from a
set of concentric shells extending outward from the position of the residue’s beta-carbon
(Cp) atom. CP atom positions for glycine residues were estimated by determining the average
position of a Cp (relative to the Ca, N, and C atoms) from serine protease 1DSU. Each shell
contains 66 properties, which include the number of atoms associated with a given residue
type, the number of positively and negatively charged ions, the van der Waals volume of the
shell, and the solvent accessibility. Each vector contains three shells with the following radial
boundaries: 1.875, 3.75, 5.625, and 7.5 A. With three shells each having 66 properties, the
resulting vector that describes the local environment of a residue has 264 dimensions. The
properties are identical to the ones used by Bagley and Altman.” This representation is
orientation independent and can be used on arbitrary coordinates within a protein structure.

To encode the entire PDB, the CB of each amino acid from each structure in the ASTRAL 40
nonredundant structure database was encoded as a vector as described above. We use a
nonredundant database so that features derived from recent common descent are minimized.
All hetero-atoms were removed before encoding, as was all atomic information not associated
with the chain the input residue is associated with. A vector set containing the entire PDB with
other chains included was also built and tested. Each component of the vectors was normalized
as integers from 0 to 255 with the formula:

Xinorm= [ (x; — min;) /(max; — min;)*255]

where min;j and max; are the minimum and maximum value of the ith component across the
entire vector set. In addition, the minimum and maximum are capped at a maximum of 18
standard deviations from the mean, in order to prevent odd outliers from skewing the results.
Only X-ray crystal structures were used in the analysis. Approximately one million vectors
were in the ASTRAL 40 v1.65 vector set. This set was stored in a binary file that contains the
normalization factors, min; and max;, for each dimension and the vector data. Each vector is
encoded with the PDB id and chain (5 bytes), the residue type (1 byte), the residue number (1
byte), the insertion code (1 byte), and the vector data (264 bytes).

The S-BLEST method relies on nearest-neighbor searches using a Manhattan distance metric.
Manhattan distance was chosen because it is inexpensive to calculate and the most derivative
statistics are easy to determine. The closest vector from each chain in the dataset is determined,
sorted, and output. A significance score (z-score) is calculated by estimating the mean and
variance of all distances between the query residue and the residues in the dataset using the
following formula:

z — score= (distance; — mean) /standard deviation.

Given a query residue, S-BLEST can find the most similar residue in each chain in the dataset
and provide a score for the similarity using the z-score.

Identification of Residue Environments Associated With a Structural or Functional

Annotation

If a query protein is a member of a known class (such as SCOP family), the residue
environments most associated with that family can be readily determined by performing an S-
BLEST query on each residue and performing the following protocol. The performance of each
residue can be determined by creating a receiver operator characteristics (ROC) plot of the
ranking, where the true-positive rate is plotted against the false-positive rate. A true positive
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is a protein structure that belongs to the same SCOP family as the query protein with a z-score
of greater magnitude than the threshold. A false positive is a protein structure that does not
belong to the same SCOP family but has a z-score of greater magnitude than the threshold.
Each point on the plot represents the true-positive rate and false-positive rate of the ranking at
a given z-score threshold. The ROC plot can be summarized by calculating the area under the
curve (AUC). The AUC of a residue in a query structure of known function indicates how well
the residue environment classifies the SCOP family of the structure and can range from 0.0
(perfect reverse classification) to 1.0 (perfect classification).

Congruence Approach for Combining S-BLEST Searches

RESULTS

Congruence approaches are a useful way to combine several searches to increase statistical
significance.20 When given a query with multiple residues, such as all the residues in a query
chain, S-BLEST can identify chains in the dataset that are most similar to the query chain and
pinpoint the residues between the query chain and the dataset chain that are similar. The score
for the dataset chain is the average z-score of the k most similar residues in the chain.

The following procedure is used to identify and score the most similar chain in the dataset to
a query chain. For each residue in the query chain, the most similar residue in each dataset
chain is identified and scored (using the above z-score). If there were n residues in the query
chain, there would be n residues (possibly redundant) in the dataset chain that are identified as
most similar to each of the n residues in the query each with a z-score. The score for the chain
is the average of the top k z-scores. Each chain can then be ranked according to this averaged
z-score, and the top k residues are reported as the residues bringing the query chain and database
chain together. Because of the large computational task of building and ranking a table, z-
scores of less than -2.5 are filtered out. Although it is possible that filtering out low-scoring
hits may affect the results, we did not observe any significant differences in the test cases (data
not shown).

We empirically determined the z-score threshold for search results by taking 100 random SCOP
families in ASTRAL 40. We then calculated the best cutoff by balancing a high positive
predictive value and a large number of true positive hits. This analysis is displayed in Figure
1.

Identification of Structurally Similar Residue Environments in ASTRAL 40 v1.65

ASTRAL 40 v1.65 encoded 4,129 crystallographically determined structures. Each search
takes approximately 2 s to encode and query as single vector on an Intel Xeon 2.8-GHz
processor. Figure 2 shows example background distributions used to calculate the z-scores.
These distributions are generally not Gaussian and often contain shoulders or evidence of
higher complexity.

Identification of the Residue Environments Associated With a Structural Class

To illustrate the utility of using the AUC of an ROC plot, we determined how well each residue
environment in a protein was associated with the protein’s annotated SCOP family. We looked
in detail at the S-BLEST search results for residues in P38 mitogen-activated protein kinase
from Homo sapiens 1DI9 chain A (1DI9:A)21 and found that S-BLEST identifies residues
near functional regions of the structure as being associated with the protein’s SCOP family of
protein kinases. The functional environments were considered to be the adenosine 5'-
triphosphate (ATP) binding site, the peptide binding channel residues, and residues known to
be phosphorylated. Figure 3 illustrates how the top scoring residues discriminate function. The
functional residues were identified by ranking the AUC for S-BLEST search of each residue
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in the protein. The top 10 residues are shown in Figure 3. The residues that are good at
classification form a core that is close to all three of the functionally interesting regions of the
enzyme, the peptide binding channel, the ATP binding site, and the activating phosphorylated
residues.

Congruence Approach to Characterize Protein Structures

Our goal is to show that S-BLEST finds structurally similar environments with potential
implications for fold, family, and function. To do this, we selected 100 random SCOP families
in ASTRAL 40. For each protein structure, an S-BLEST search was performed for every amino
acid in the structure. The result of each search is a list of residue environments from a database
of protein structures ranked by their similarity to the query residue based on a significance
score (z-score). Only one residue, the one with highest similarity, is selected from each structure
in the dataset. The datasets developed include all analyzable X-ray crystallographic structures
from the ASTRAL 40 nonredundant dataset.22 To evaluate how well the environmental
similarity of a residue from each structure can be used to assign the SCOP family of the
structure, we examined the rankings of the members of the SCOP family associated with each
structure using the procedure described in Materials and Methods.

A z-score threshold for each protein was offset at -5.5. The positive predicted value (PPV) of
the search can be defined as the number of true positives above the threshold divided by the
total number of hits above the threshold.

Analysis of Uncharacterized PDB Structures

We next applied S-BLEST to crystal structures of proteins with unknown function. Eighty-six
of these structures had no significant hits when searched against the PDB using BLAST with
e-value cutoff of 1e-4 (Table I). These proteins were selected from the PDB by searching for
the phrase “unknown function.” Because the search phrase “unknown function” can have
several intended meanings, these proteins represent a broad spectrum of proteins whose
function is understood to variable degrees of precision. Table I lists the 86 structures and
highlights the structures that were returned for each query protein with an average z-score
better than the threshold of -5.00. With this procedure, we have identified residues in the PDB
that have similar local environments as those in the query structure with potential structural
significance.

Among all the proteins of unknown function, we chose several interesting results for detailed
analysis. Succinyl diaminopimelate desuccinylase from Neisseria meningitides, 1VGY:A,
illustrates S-BLEST s effectiveness in identifying statistically interesting residues from an
uncharacterized protein structure. S-BLEST found that 1VGY':A shared highly significant
residues with a dinuclear zinc aminopeptidase Pepv from Lactobacillis delbrueckii, 1LFW:A,
with a z-score of -6.36. BLAST matches these proteins with an e-value of 3 x 104, The
matching top five residues from 1VGY:A paired with 1LFW:A are ARG97 with ARG115,
HIS68 with HIS87, ASP70 with ASP89, GLY98 with GLY112, and GLU136 with GLU154.
As illustrated in Figure 4(A), the best matched residues in 1LFW flank the active site of the
protein and are in close contact to the AEP ligand that was crystallized with the structure. This
suggests that the corresponding residues in 1VGY are likely in this region as well. To further
test S-BLEST, we assigned 1VGY to a SCOP family based on the top hit. LLFW:A the protein
with multiple similar residues is associated with SCOP family ¢.56.5.4, bacterial dinuclear zinc
exopeptidases. We hypothesized that 1VGY':A is a member of this SCOP family and, in a
process analogous to the one described earlier, we performed an S-BLEST search on each
residue and determined the residues most associated with that SCOP family. There are five
structures with less than 40% sequence identity (according to ASTRAL 1.65) thatbelong to the
SCOP family of bacterial dinuclear zinc exopeptidases. We find that residues HIS68, GLU135,
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ASP70, ASP134, and HIS350 from 1VGY:A all can be used to annotate the structure very well
(Fig.5). Each of these residues is localized to one region of the structure, and the corresponding
residues in ILFW:A are near the active site.

Sometimes residues sit in an environment that is sufficiently unique to give several hits, but
those hits are based on unique structural properties, and not necessarily the protein’s function.
For example, the hypothetical gene product from Escherichia coli, 10YZ:A, is matched with
protein phosphatase PP2A from H. sapiens, 1B3U:A, with a z-score of -5.21. We observe that
residues found at the helix-loop interface and are oriented toward another secondary structural
element are often identified as being good matches between structures [Fig. 4(B)]. For the strict
purposes of this article, these should be considered as false positives, although the underlying
reason for their uniqueness and any functional relationship between these seemingly unrelated
proteins is intriguing and may deserve follow-up.

Another interesting hit, an archael SM-like protein AF-SM2 from Archeoglobus fulgidus,
1LJO:A, is matched with a small nuclear ribonucleoprotein SM D1 from H. sapiens, 1B34:A,
with a z-score of -5.64. BLAST matches these proteins with an e-value of 1le-7. The top five
matching residues all are close in space and all are close in sequence between the query and
the match [Fig. 4(C)]. The proteins share the same fold, and several matching environments
are identified.

DISCUSSION

The characterization of proteins from their structure is an important goal for the high throughput
structural genomics pipeline. S-BLEST provides a method for quickly identifying similar local
structures and the corresponding residue environments. Furthermore, it does not rely on fold
recognition or the pre-identification of evolutionarily conserved residues. This method is
intended to identify statistically significant environments in protein structures and will be
complementary to both sequence-based methods such as BLAST or HMMs and fold
recognition methods.

S-BLEST can be easily combined with BLAST for a sequence-structure analysis of a query
protein. This allows for identification of highly conserved structural sites, as well as highly
conserved sequence neighbors. For example, with the analysis of a random member from each
of 100 random families, S-BLEST (threshold of -5.1) finds 28 SCOP family members that
BLAST (threshold of 1e-5) does not find, and BLAST finds 89 family members that S-BLEST
does not find, because of local structural variability between the proteins. There is a cost,
however, of 66 false-family positives, all but 13 of which share the superfamily of the query.
Additionally, for each BLAST hit, the degree of structural conservation of each residue
environment can be easily determined using S-BLEST.

We were surprised to find that many residues that were annotated as being important for enzyme
chemistry are not the ones that are most useful for recognizing structural similarities. The
method sometimes does not select the critical residues (such as the catalytic triad) likely
because the environments around those residues are structurally variable between members.
The residue environments that are chosen, however, are those environments that are structurally
conserved across a family. There are several possible explanations for why apparently critical
residue environments are not conserved. These residue environments may adopt different
structures in the presence of different ligands, crystallizing conditions, or in the presence of
mutation. Methods that take into account protein may uncover similar ensembles of important
residues that appear different in static structures.

The computational requirements of our method are relatively modest. For a single residue
search, a 3.06-GHz Intel Xeon CPU can complete the search in less than 30 s. Querying with
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a 300-residue protein against the PDB can take as long as 4 h and requires a relatively large
amount of memory (1-2 GB), whereas the same protein takes less than one half of an hour with
ASTRAL 40. The vector data for the entire PDB is currently split between two files, each
around 1.2 GB in size.

CONCLUSION

We developed S-BLEST to meet a need for rapidly identifying similar structures to a query
protein using local structural features. To complement fold-recognition methods, we sought a
method that could identify the local residue environments that correspond to that match. Our
solution, S-BLEST, identifies constellations of structurally similar residues between the query
protein and the full database of known protein structures. Moreover, we find that many of the
structural environments in SCOP have statistically significant local environment neighbors.
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Fig. 1.
The relationship between average PPV and a given threshold S-BLEST z-score. The proteins
used were 100 random members of random SCOP families in ASTRAL 40 v1.65.
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Fig. 2.

[llustration of the background distributions used to calculate z-score. The distance histogram
distribution of the first nine residue environments of pdb 2TRX:A with respect to the ASTRAL
40 v1.65 dataset.
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Fig. 3.

Illustration of classifying residues within map kinase, 1D19. A: The line plot below indicates
the AUC at each position along the chain. The arrows indicate the locations in the sequence
with AUC above 0.90. These classifying residues are shown in green on the structure. 1DI9
illustrates the underlying reason for classification. The good classifiers form a core that is
surrounded by the ATP binding site (in yellow), the peptide binding channel (in gray), and the
residues that, when phosphorylated, activate the enzyme (in red). Additionally, LY S53 directly
interacts with the ATP ligand. Interestingly, residues ASN82, VALS83, and LY S165 form
another environment that classifies the function well. They are directly behind the peptide
binding channel and are in close proximity to the ATP binding site. B: ROC of the ranked
chains outputted from the congruence approach. Of the 27 members in our dataset, the first 25
chains ranked were true positives, whereas the method failed to recognize 1KOA and 1IFMK
as structurally similar (AUC is 0.935).
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Fig. 4.

[llustration of the hit results from the 86 structures with unknown function. A: As an example
of hit that is a true positive, 1VGY:A is matched with 1LFW:A with a z-score of -6.36. The
best matching residues are ARG97 from 1VGY paired with ARG115 from 1LFW, HIS68 with
HIS87, ASP70 with ASP89, GLY98 with GLY112, and GLU136 with GLU154. These
residues are highlighted in yellow in the figure. B: An interesting hit that is of questionable
significance is 1B3U:A, which is matched to the query of 10YZ:A with a slightly below
threshold z-score of -5.21. It is an interesting hit, because the proteins are clearly structurally
related, and the best residue matches occur between secondary structural elements, and are
often observed “bridging” the structural elements. C: An example of a possible unknown hit,
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between 1LJO:A and 1B34:A with a z-score of -5.64. Although the proteins share the same
fold, their functional relationship is not known.
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13)

Fig. 5.

Characterization of a hit (1VGY:A). A: Top hits were associated with acommon SCOP family.
We then calculated the area under an ROC curve for each residue in that structure, quantifying
how well each protein classifies the SCOP family the hits were associated with. The line plot
below indicates the AUC at each position along the chain. The arrows indicate the locations
in the sequence with AUC above 0.90. We highlight these locations in yellow on the structure.
These hits fall into a predicted active site and are localized to a single region. B: The ROC for
the congruence approach is shown. Of the five true positives in our dataset, three were the top
hits, the fourth was in position five, and the fifth was ranked 65th overall (AUC is 0.995).
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