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      I N T R O D U C T I O N 

 Ion channels are ubiquitously distributed proteins that 

control the passive fl ux of ions through cell membranes 

by opening and closing (gating) their pores ( Hille, 

2001 ). As gatekeepers, ion channels play key roles in 

many physiological processes, including generation and 

propagation of action potentials, synaptic transmission, 

and sensory reception ( Hille, 2001 ). Ion channels gate 

their pores by passing through a series of conformational 

states ( Jiang et al., 2002 ;  Blunck et al., 2006 ;  Tombola 

et al., 2006 ;  Purohit et al., 2007 ). The gating can be 

described in terms of kinetic reaction schemes that give 

the number of open and closed states entered during 

gating, the transition pathways among the states, the 

rate constants for the transitions, and the voltage and li-

gand modulation of the rate constants ( Colquhoun and 

Hawkes, 1982, 1995b ). Such discrete state Markov mod-

els have proven highly useful for describing the under-

lying gating mechanisms ( Horn and Vandenberg, 1984 ; 

 Zagotta et al., 1994 ;  Cox et al., 1997 ;  Schoppa and 

Sigworth, 1998 ;  Horrigan et al., 1999 ;  Cox and Aldrich, 

2000 ;  Rothberg and Magleby, 1998, 2000 ;  Gil et al., 

2001 ;  Zhang et al., 2001 ;  Sigg and Bezanilla, 2003 ; 

 Chakrapani et al., 2004 ), and critical tests of single-

channel gating for BK channels ( McManus and Magleby, 

1989 ) and NMDA receptors ( Gibb and Colquhoun, 1992 ) 

are consistent with Markov gating. 

 Single channel recordings from ion channels indicate 

transitions between open and closed states by character-

istic step changes in the single-channel current level. 

Ion channels can also make transitions among states 

with the same conductance, such as transitions among 

closed states and transitions among open states. Con-

nected states of the same conductance are referred to as 

compound states, and transitions among compound 

states are hidden because the current level does not 

change. Nevertheless, information about these hidden 

transitions is contained in the interval durations, which 

are lengthened by such transitions. 

 A standard method used to display data recorded 

from single channels is to plot the number of observed 

intervals against their durations, giving open and closed 

dwell-time histograms, also referred to as dwell-time dis-

tributions, or open and closed period distributions. Nor-

malizing the area of the distribution to 1.0 by dividing by 

the number of intervals in the distribution gives a prob-

ability density function, where the area under the curve 

between any two time values gives the probability of ob-

serving an interval with a lifetime (dwell time) between 

those values ( Colquhoun and Hawkes, 1994, 1995b ). 
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methods used in the calculations ( Horn and Lange, 

1983 ;  Colquhoun and Hawkes, 1995a ; Colquhoun et al., 

1996;  Qin et al., 1997 ). 

 Hence, the standard dogma is that it is not possible 

to place physical interpretations on the time con-

stants and magnitudes of the exponential components 

(Colquhoun and Hawkes, 1995b) except in special cases 

with extreme differences in some of the rate constants 

(Colquhoun and Hawkes, 1994), although it should be 

mentioned that some information relating observed ex-

ponentials in experimental data to the underlying states 

can be obtained when the starting state is known, by ex-

amining either fi rst latencies to the next opening/shut-

ting interval or the rise times of macroscopic currents 

following step changes in agonist concentration or volt-

age ( Edmonds and Colquhoun, 1992 ; Colquhoun et al., 

1996;  Wyllie et al., 1998 ;  Horrigan and Aldrich, 2002 ). 

 We now present an approach to resolve the relation-

ship between components and states for a model with 

one open and two closed states in series. We examine 

simulated gating to determine directly the contributions 

of the various states to the exponential components, 

and quantify the contributions in terms of linkage. Our 

systematic analysis reveals both intuitive and highly par-

adoxical relationships between components and states, 

depending on the lifetime ratios of the closed states. 

Nevertheless, both the intuitive and paradoxical results 

can be described within a consistent framework. 

 Our observations should facilitate an understanding of 

single channel data by providing a physical basis for the 

origins of the exponential components and of the relation-

ship between components and states. Our observations 

should also provide suffi cient insight to prevent incorrect 

conclusions when interpreting dwell-time distributions in 

terms of underlying states and transition probabilities. 

 Commonly used abbreviations are listed in  Table I .  

 M AT E R I A L S  A N D  M E T H O D S 

 Using Simulation to Determine the Constituent Dwell-Time 
Distributions Arising from Designated Gating Sequences for a 
Three State Model 
  Colquhoun and Hawkes (1982, 1994, 1995b ) have presented 
detailed methods for calculating the exponential components 
that sum to describe the dwell-time distributions generated by 
discrete state Markov models (Colquhoun and Hawkes, 1982, 
1994, 1995b). We use their Q-matrix methods (Colquhoun and 
Hawkes, 1995a) and also their analytical approach (equations in 
the Appendix) to calculate the exponential components for the 
models examined. The fi rst step we use to examine the relation-
ship between the exponential components and the underlying 
states is to determine the specifi c contributions of the individual 
states and compound states to the distribution of all closed inter-
vals. Whereas such information can be obtained by the Laplace 
transform, convolution, and Q matrix methods of  Colquhoun 
and Hawkes (1982) , we have chosen to obtain this information 
by simulating the process by which a hypothetical channel gates, 
as we found this approach more transparent for revealing the 
underlying physical basis for the various intervals. This section 

 Markov models used to describe single channel ki-

netics predict that the open and closed dwell-time distri-

butions are comprised of the sums of exponential 

components (more correctly mixtures because the areas 

sum to 1.0), with the total number of open and closed 

exponential components equal to the number of open 

and closed states, respectively (Colquhoun and Hawkes, 

1982, 1995b). Consequently, the experimentally observed 

dwell-time distributions are typically fi t with sums of ex-

ponential components to describe the data, such that 

      (1) 

f t w t w t w t( ) = -( ) + -( ) + -( ) +1 1 2 2 3 3exp / exp / exp / .....,t t t
 

 where  f(t)  is the dwell-time distribution,  w  i  and  �  i  are the 

magnitude and time constant of each exponential compo-

nent  i , respectively, and  t  is interval duration. The area of 

each component,  a  i , which gives the number of intervals 

in that component, is given by  a  i  =  w  i  �  i . It is the exponential 

components that are typically listed in tables and discussed 

in papers on single channel kinetics, and the exponential 

components are often the output (solutions) of gating 

mechanism calculated with analytical or Q matrix meth-

ods ( Colquhoun and Hawkes, 1981, 1982, 1995a ). 

 In spite of the emphasis on the exponential compo-

nents and the many hundreds of papers published with 

plotted dwell-time distributions and tables of exponen-

tial components, there is little practical understanding of 

how the components relate to specifi c states in kinetic 

gating mechanisms ( Colquhoun and Hawkes, 1994, 

1995b ). The reason for this is that all of the rate constants 

that determine the lifetimes of any of the states in a com-

pound state also contribute to each of the exponential 

components generated by those states (Colquhoun and 

Hawkes, 1982, 1995b). Consequently, it is well known for 

gating mechanisms with compound states that the time 

constants of the exponential components cannot simply 

be interpreted as the mean lifetimes of certain states and 

that the areas of the components cannot be interpreted 

as the numbers of sojourns to those states (Colquhoun 

and Hawkes, 1994, 1995b). The problem is further com-

pounded because the methods used to calculate the 

exponential components from gating mechanisms give 

little practical information about the relationships be-

tween specifi c components and states. For analytic so-

lutions, which can be derived for models with a limited 

number of states, the relationship between components 

and states is obscured in the equations, as shown in the 

Appendix and  Covernton et al., (1994)  for a three state 

model, and in  Colquhoun and Hawkes (1977, 1981 ), 

 Magleby and Pallotta (1983) , and  Jackson (1997)  for 

more complex models. For the numeric methods that can 

be used to solve any gating mechanism (Colquhoun and 

Hawkes, 1981, 1982), there is even less practical infor-

mation about the contributions of specifi c states to the 

various exponential components because of the matrix 
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specifi c constituent distribution  { C 1 -(C 2 -C 1 )  n   }  for  n  = 0 to effec-
tively infi nity (see below) was simulated with N × (P C1-C2 ) n  × P C1-O1  
random intervals of duration 
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 where  d  C1  and  d  C2  are random dwell times described by 

   d t RndC1 C1 elog= - ´ ( )    (4) 

   d t RndC2 C2 elog= - ´ ( ),    (5) 

 where  t  C1  and  t  C2  are the mean lifetimes of states C 1  and C 2 , and 
 Rnd  is a random number between 0 and 1. N is typically 10 7  for 
the simulations. 

 When  n  = 0, the constituent distribution includes all unitary so-
journs to C 1  and is designated  { C 1  } ; there are no transitions to C 2 . In 
contrast, for values of  n  between 1 and infi nity, each interval results 
from the sum of 2n+1 exponentially distributed dwell times. Conse-
quently, the constituent distribution  { C 1 -(C 2 -C 1 -)  n   }  for each value of 
 n  is described by the convolution of 2n+1 exponential distributions. 
(Convolutions are discussed in  Colquhoun and Hawkes (1995b). ) 
Unlike exponentials, which have a maximum amplitude at zero 
time, convolutions have a zero magnitude at zero time, increase to 
a maximum, and then decay (Colquhoun and Hawkes, 1995b). 

 The sum of all the constituent distributions for values of  n  from 1 to 
infi nity will be designated as  { C 1 C 2  } , as all intervals in this distribution 
arise from one or more sojourns to both C 1  and C 2 .  { C 1 C 2  }  is calculated 
with an algorithm that sums all of the constituent distributions. 

   C C C - C -C -2
n 1

1 2 1 n1{ } = ( ) }{
=

¥

å    (6) 

 Because the  { C 1  }  and  { C 1 C 2  }  constituent distributions include the 
closed intervals from all possible gating sequences, the sum of  { C 1  }  
and  { C 1 C 2  }  will give the dwell-time distribution for all observed 
closed intervals. This is the frequency histogram that would be 
observed experimentally, assuming that all closings are detected. 
Dividing the number of intervals in each constituent distribution 
by N, the total number of closed intervals in all constituent distri-
butions, gives the fraction of all intervals in each constituent dis-
tribution. Dividing the number of intervals in each bin of the 
distribution of all closed intervals by N converts the distribution 
to a probability density function with an area of 1. 

 In theory,  n  should go to infi nity in Eq. 6, but in practice, to in-
clude all gating sequences with a probability of occurrence of 
 > 10  � 9 , the maximum needed value of  n  is given by:  � 9/(log10
(P C1-C2 )). When P C1-C2  = 0.5, n max   � 30. Note the parallel between the 
analytical Eqs. 149 and 150 of Colquhoun and Hawkes (Colquhoun 
and Hawkes, 1995b) and the approach described above to gener-
ate the various distributions by simulation. The above example of 
simulating the dwell-time distributions of intervals for each spe-
cifi c gating sequence for a three-state model is also extended to a 
four state model and could be extended to any gating sequence. 
The methods used to simulate the single channel current records 
have been described previously ( Blatz and Magleby, 1986 ). 

 R E S U LT S 

 For a Two-State Model there Is Exact Linkage between 
Exponential Components and Kinetic States 
 To approach the question of the relationship between 

components and states, we start with the simplest possible 

describes how the constituent dwell-time distributions that sum to 
form the dwell-time distribution of all intervals were generated. 

 The probability for a given gating sequence among states in a 
kinetic scheme is the product of the probabilities for each of the 
individual gating steps in the sequence. The probability of a tran-
sition from state  i  to state  j , P ij , is given by 

   P k iij ij= ( )/ ,sum of all rate constants away from state    (2) 

 where  k  ij  is the rate constant from state  i  to state  j  ( Colquhoun and 
Hawkes, 1995b ). 

 Consider the following gating mechanism 

 where the rate constants in this scheme (and all following 
schemes) are in units of per second, and C 2 , C 1 , and O 1  represent 
two closed and one open state connected in series, with C 2 -C 1  
forming a compound state. From this scheme and Eq. 2 the prob-
abilities of various gating transitions and sequences can be calcu-
lated. P O1-C1 , the probability of the transition from O 1  to C 1  is 1, as 
there is only one possible route away from O 1,  P C1-O1  is 0.5, P C1-C2  is 
0.5, and P C2-C1  is 1.0 Thus, the probability of the gating sequence 
O 1 -C 1 -O 1  is 1  ×  0.5 = 0.5. The probability of the gating sequence 
O 1 -C 1 -C 2 -C 1 -O 1  is: 1.0  ×  0.5  ×  1.0  ×  0.5 = 0.25. Because closed inter-
vals are always initiated by transitions from O 1  to C 1  and always 
terminate by transitions from C 1  back to O 1 , the general case for 
any gating sequence in the closed states can be abbreviated as C 1 -
(C 2 -C 1 -)  n  , where  n  indicates the number of transitions from C 2  to 
C 1 . The probability of a gating sequence with  n  transitions from 
C 2  to C 1 , referred to as gating sequence  n , is 

   Prob.   C - C -C - P P1 2 1 n C1-C2

n

C1 O1( )( ) = ( ) ´ - ,    (3) 

 where  n  can have integer values ranging from 0 to infi nity. For a 
sample size of N intervals for all possible gating sequences, each 

 TA B L E  I 

 Commonly Used Abbreviations 

O 1 Open state O 1 

C 1 , C 2 Closed states C 1  and C 2 

 t  C1 ,  t  C2 Mean lifetimes of closed states C 1  and C 2 

E 1 , E 2 Exponential components E 1  and E 2 

 �  E1,   �  E2 Time constants of exponential components E 1  and E 2 

 a  E1,   a  E2 Areas of exponential components E 1  and E 2 

 { C 1  } Distribution of all closed intervals arising from all sojourns 

to C 1  in the gating sequence: O 1 -C 1 -O 1  (see  Table II , gating 

sequence 0). This distribution is a single exponential.

 { C 1 C 2  } Distribution of all closed intervals arising from all possible 

sojourns through both C 1  and C 2  in the gating sequences: 

O 1 -C 1 -(C 2 -C 1 -)  n  -O 1 , for  n  = 1 to infi nity (see  Table II  and 

Eq. 6). This distribution is 0 at zero time, rises with an 

infl ection to a peak, and then decays exponentially at 

longer times.

 �   { C1 }  Time constant of the  { C 1  }  distribution, which is given by  t  C1 

 �   { C1C2 }  Time constant of the decaying phase of the  { C 1 C 2  }  

distribution at long times

 a   { C1 }  Area of  { C 1  } 

 a   { C1C2 }  Area of  { C 1 C 2  } 
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duration of the interval the greater the frequency of oc-

currence. It is the exponentially distributed dwell times 

shown in  Fig. 1 (B and C)  that give rise to the wide varia-

tion in interval durations in  Fig. 1 A . 

 For Scheme 1 with one open and one closed state and 

perfect time resolution, the closed exponential compo-

nent would arise entirely from and include all sojourns 

to C 1 , and the open exponential component would arise 

entirely from and include all sojourns to O 1 . Hence, 

model for a channel that can gate its pore, having one 

open and one closed state (Scheme 1). Infi nite frequency 

response is assumed so that all intervals are detected. 

(SCHEME 1)

 In this example, both the opening and closing rate con-

stants are 1,000/s, giving mean lifetimes (dwell times) 

of 1 ms for both the open and closed states. 

  Fig. 1  A presents an example of simulated single-chan-

nel data for the gating mechanism described by Scheme 

1.  The wide range of durations of the open and closed 

intervals refl ect natural stochastic variation arising from 

the exponentially distributed dwell times in states of 

Markov models (Colquhoun and Hawkes, 1995b). As a 

typical fi rst step in analysis, single-channel current rec-

ords like that in  Fig. 1 A , but of much longer duration, 

are sampled to determine the durations of the open and 

closed intervals. These durations are then binned into 

frequency histograms (dwell-time distributions) and fi t-

ted with sums of exponential components to quantify 

the description of the data. For Scheme 1, the open and 

closed dwell-time distributions are the same because of 

identical closing and opening rates, so only the closed 

distribution will be shown.  Fig. 1 (B and C)  plots the 

closed dwell-time distribution in two different ways often 

used in single-channel analysis. Both distributions use 

log binning so that bin width increases geometrically 

with time. Log binning gives the ability to quantify inter-

val durations ranging from picoseconds to the age of the 

universe with constant minimal error in just a few hun-

dred bins ( McManus et al., 1987 ).  Fig. 1 B  presents the 

data plotted with the  Sigworth and Sine (1987)  trans-

form, in which the square root of the number of inter-

vals per bin is plotted against mean bin time on a log 

scale. The log binning gives a constant apparent bin 

width on the logarithmic abscissa.  Fig. 1 C  presents the 

data displayed on linear coordinates, where the abscissa 

indicates the mid time of each bin and the ordinate in-

dicates the numbers of intervals per microsecond of bin 

width, rather than intervals per bin, to transform the 

log-binned data to the appearance it would have on lin-

ear coordinates with constant bin width. 

 The distributions using either the linear or the Sig-

worth and Sine transforms are described by a single 

exponential (continuous lines) with a time constant 

of 1 ms (arrows). Whereas the Sigworth and Sine plots 

are highly useful in indicating the time constant of the 

distribution of intervals by the time at the peak of the 

distribution, it needs to be remembered in the inter-

pretation of single-channel data that such plots are 

transforms. The actual distribution of dwell times from 

a discrete state are like that in  Fig. 1 C ; the shorter the 

 Figure 1.   Simulated single-channel data and closed dwell-time 
distributions for the two state model described by Scheme 1. 
(A) Simulated single-channel current record with both opening 
and closing rates constants set to 1,000/s. Channel openings are 
shown as upward steps. (B) Sigworth and Sine (1987) plot of the 
closed dwell-time distribution for 10 6  simulated intervals. The dis-
tribution is described by a single exponential (continuous black 
line). The time constant (arrow at 1 ms) falls at the peak of the 
distribution due to the transform of the data. (C) Same data as in 
B on linear coordinates. The linear plot reveals the exponential 
nature of the data: the briefer the interval duration, the greater 
the number of observed intervals. The arrow indicates the time 
constant of 1 ms, which indicates the mean duration of the in-
tervals in the distribution, given by the time at which the initial 
magnitude of the distribution decays to 1/e.   
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such unitary sojourns when  n  = 0 is designated  { C 1  }  and 

can be calculated as described in the Materials and 

methods. For Scheme 2 the probability of a unitary so-

journ is 0.5 ( Table II ), indicating that half of all closed 

intervals are in  { C 1  } . 

 For a compound sojourn, the initiation of the closed 

interval starts the same as for a unitary sojourn, by a 

transition from O 1  to C 1 . Each closed interval is then ex-

tended by one or more repeated transitions from C 1  to 

C 2  and back to C 1  before termination by a transition to 

O 1 . The gating sequences and also the probabilities of 

there is perfect linkage between the exponential com-

ponents and states. 

 For Kinetic Schemes with a Compound State, Exponential 
Components Are Not Directly Linked to Kinetic States 
 To determine the effect of a compound state on the re-

lationship between components and states, we exam-

ined a linear gating mechanism with two closed states in 

series, as described by Scheme 2. 

(SCHEME 2)

 As with Scheme 1, each state has a mean lifetime of 1 

ms. The two connected closed states C 1  and C 2  in 

Scheme 2 form a compound closed state. Compound 

states arise when transitions can occur directly between 

two or more states of indistinguishable conductance. 

Simulated single channel records from Scheme 2 are 

shown in  Fig. 2 A , where there are brief duration closed 

intervals, as in  Fig. 1 A , and also longer duration closed 

intervals.  As was the case for Scheme 1, which also had 

one open state, the open dwell-time distribution would 

be described by a single exponential component with a 

time constant identical to the mean lifetime of the open 

state and would be identical to the distributions in  Fig. 

1 (B and C) . The closed dwell-time distribution from 

Scheme 2 is shown in  Fig. 2 B  for the Sigworth and Sine 

transform and in  Fig. 2 C  for linear coordinates. In con-

trast to the single exponential for Scheme 1, the closed 

dwell-time distribution for Scheme 2 (continuous line) 

is now described by the sum of two exponential compo-

nents, E 1  and E 2  (dashed lines), with time constants of 

0.586 ms and 3.41 ms (arrows) and areas of 0.146 and 

0.854, respectively. Neither of these time constants match 

the 1-ms mean lifetime of either closed state. Hence, 

when a kinetic scheme contains a compound state, 

exponential components are not necessarily directly 

linked to states, as previously noted (Colquhoun and 

Hawkes, 1994, 1995b). 

 The Contribution of Specifi c Gating Sequences to the 
Dwell-Time Distribution of All Closed Intervals 
 To explore the relationship between exponential com-

ponents and states, the origin of the intervals in the 

closed dwell-time distribution generated by Scheme 2 

was examined. Each closed interval arises from either a 

unitary sojourn to C 1  or a compound sojourn that in-

cludes both C 1  and C 2 . In a unitary sojourn, the closed 

interval is initiated by entry from O 1  into C 1  and is then 

terminated by a transition from C 1  to O 1  without ever 

transitioning to C 2 , as indicated by gating sequence 0 in 

 Table II .  The constituent dwell-time distribution of all 

 Figure 2.   Simulated single-channel data and closed dwell-time 
distributions for the three-state model described by Scheme 2. 
(A) Simulated single-channel current record. Channel openings 
are shown as upward steps. (B) Sigworth and Sine plot of the 
closed-dwell time distribution for 10 6  simulated intervals. (C) Same 
data as in B on linear coordinates. The dashed lines in both plots 
indicate the fast E 1  and slow E 2  exponential components. The 
time constants (arrows) and areas, which are identical in both 
B and C, are listed.   
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decreased amplitudes as  n  increases refl ect that each 

successive distribution has 50% fewer intervals than the 

previous one ( Table II ) and that the interval durations 

are spread over a greater range (more dwell times con-

tribute to each interval) so that there are fewer intervals 

of any specifi c duration. Interestingly, none of the con-

stituent distributions for the individual gating sequences 

for  n  = 1 to infi nity decay exponentially after reaching 

their peaks, as indicated by the curved decays of the 

purple lines in  Fig. 3 B . However, the sum of all the con-

stituent distributions for the individual gating sequences 

for  n  = 1 to infi nity does decay exponentially, as indi-

cated by the straight line decay of  { C 1 C 2  }  in  Fig. 3 B  (blue 

line) after  � 6 ms. 

 The  { C 1  }  and  { C 1 C 2  }  dwell-time distributions shown 

in  Fig. 3 (A – D)  would not be apparent as individual 

distributions in the experimental data. Rather,  { C 1  }  

and  { C 1 C 2  }  sum to form the distribution of all experi-

mentally observed intervals, referred to as the closed 

dwell-time distribution (continuous black lines in  Fig. 

3, A and B ). 

 Comparing Exponential Components to States 
for Scheme 2 
 To describe the data, the experimentally observed dwell-

time distribution would be fi tted with the sum of fast 

and slow exponential components (as in  Fig. 2 ) indi-

cated as E 1  (black dashed lines) and E 2  (red dashed 

lines) in  Fig. 3 (A – D) . The predicted dwell-time distri-

bution that would be calculated for Scheme 2 using ei-

ther Q-matrix or analytical methods would also be given 

as the sum of the exponential components E 1  and E 2 . 

Hence, both the description of the data and the pre-

dicted gating of Scheme 2 would be expressed in terms 

of the exponential components E 1  and E 2  rather than in 

terms of the distributions  { C 1  }  and  { C 1 C 2  }  that refl ect the 

actual underlying gating of the channel. 

 In the interpretation of single-channel data it is some-

times inferred that the  { C 1  }  sojourns generate the fast 

exponential component. A comparison of the  { C 1  }  and 

E 1  distributions in  Fig. 3 (A – C) , shows that this is not 

the case for Scheme 2. The area of E 1  is 0.146 and of  { C 1  }  

compound sojourns arising from 1, 2, or 3 repeated so-

journs to C 2 , together with the general case gating se-

quence for  n  repeated sojourns, are listed in  Table II . 

The constituent dwell-time distribution for each spe-

cifi c gating sequence can be calculated as described in 

the Materials and methods. The sum of all the constitu-

ent dwell-time distributions from all gating sequences 

for  n  = 1 to infi nity in  Table II  is designated  { C 1 C 2  }  and 

can be calculated using Eq. 6 in the Materials and meth-

ods. For Scheme 2 the probabilities of the compound 

gating sequences for  n  = 1 to infi nity sum to 0.5, indicat-

ing that half of all the closed intervals are in  { C 1 C 2  }  

( Table II ). 

 The  { C 1  }  and  { C 1 C 2  }  distributions are plotted in  Fig. 3 

(A and B)  on linear and semilogarithmic coordinates, 

respectively, together with the E 1  and E 2  exponential 

components from  Fig. 2 .  (Recall that an exponential on 

a plot with a logarithmic ordinate and linear abscissa 

gives a straight line.) E 1  together with  { C 1  }  and E 2  to-

gether with  { C 1 C 2  }  are also plotted in  Fig. 3 (C and D) , 

respectively, for ease of comparison.  { C 1  }  is a single ex-

ponential (green lines) with maximum amplitude at zero 

time and a time constant of decay of 1 ms, equal to  t  C1 , 

the mean lifetime of state C 1 . In contrast,  { C 1 C 2  }  has a 

zero magnitude at zero time, rises with a slight infl ec-

tion to reach a peak at  � 2.5 ms, and then decays, with 

the decay becoming exponential for durations longer 

than  � 6 ms (blue lines). The  { C 1 C 2  }  distribution has 

some characteristics in common with distributions 

arising from convolutions of exponential functions, be-

cause it is comprised of the sum of an infi nite number 

of constituent distributions, each arising from convolu-

tions of exponentially distributed dwell times. Each gat-

ing sequence in  Table II , as  n  goes from 1 to infi nity, 

contributes a constituent distribution. 

 The various constituent distributions for  n  = 1 to 6 in 

 Table II  are plotted as numbered purple lines in  Fig. 3 B . 

As  n  increases, the time to the peak increases, the 

amplitude of the peak decreases, and the decay after 

the peak is slower. The increased time to peak and 

slower decay refl ects the increased numbers of sojourns 

through C 2 -C 1  contributing to each closed interval. The 

 TA B L E  I I 

 Gating Sequences for Scheme 2, their Probabilities, and State Composition 

 n Gating sequence P No. of C 1 No. of C 2 

0 O 1 -C 1 -O 1 0.5 1 0

1 O 1 -C 1 -(C 2 -C 1 -) 1 -O 1 0.25 2 1

2 O 1 -C 1 -(C 2 -C 1 -) 2 -O 1 0.125 3 2

3 O 1 -C 1 -(C 2 -C 1 -) 3 -O 1 0.0625 4 3

 n O 1 -C 1 -(C 2 -C 1 -)  n  -O 1 0.5 n+1  n +1  n 

P is the probability of the indicated gating sequences out of all possible gating sequences for  n  = 0 to infi nity. The  { C 1  }  distribution is comprised of all closed 

intervals arising from gating sequence  n  = 0, and the  { C 1 C 2  }  distribution is comprised of all closed intervals for gating sequences for integer values of  n  = 

1 to infi nity (Eq. 6). The sum of the probabilities for gating sequences 1 through infi nity is 0.5. Thus, half of all closed intervals are to  { C 1  }  with the other 

half to  { C 1 C 2  } . No. of C 1  and No. of C 2  indicate the number of sojourns through C 1  and C 2 , respectively, that contribute to each interval generated by the 

specifi c gating sequence.
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cient to account for the tail of the slow exponential 

component, as indicated by the superposition of the de-

cay of  { C 1 C 2  }  and E 2  at longer times ( Fig. 3, A, B, and D ). 

Hence, the relationship between components and states 

changes with the duration of the intervals. At very short 

times, E 2  arises almost exclusively from  { C 1  } , whereas at 

very long times, E 2  arises almost exclusively from  { C 1 C 2  } . 

The lack of direct correspondence between  { C 1  }  and E 1  

and also between  { C 1 C 2  }  and E 2  clearly shows that expo-

nential components and kinetic states are not directly 

linked for Scheme 2. 

 The Composition of E 1  and E 2  for Scheme 2 
 Although components and states are not directly linked 

for Scheme 2, they can be related to each other through 

the experimentally observed dwell-time distribution of 

all closed intervals (continuous black lines in  Fig. 3, A 

and B ). This distribution can be described in two different 

is 0.5. Thus, no more than 29.2% of the  { C 1  }  sojourns 

could contribute to the E 1  component. In addition, the 

E 1  intervals have a mean duration of 0.586 ms compared 

with a mean duration of 1 ms for  { C 1  }  sojourns. Hence, 

E 1  intervals from  { C 1  }  would have to be selectively drawn 

from the briefer intervals in  { C 1  } . 

 In the interpretation of single-channel data it is also 

sometimes inferred that  { C 1 C 2  }  sojourns (those sojourns 

to the compound state C 1 C 2 ) generate the slow expo-

nential component. A comparison of the  { C 1 C 2  }  and E 2  

distributions in  Fig. 3 (A, B, and D)  indicates that this is 

also not the case for Scheme 2. Intervals from  { C 1 C 2  }  do 

not generate an exponential, but a distribution with 

zero amplitude at zero time compared with maximum 

amplitude at 0 time for the E 2  exponential. Conse-

quently, there is a severe defi cit of intervals in  { C 1 C 2  }  at 

short times compared with E 2  ( Fig. 3 D , gray area). For 

durations  > 6 ms, however, intervals in  { C 1 C 2  }  are suffi -

 Figure 3.   Composition of the 
dwell-time distribution of all in-
tervals for Scheme 2 in which the 
 t  C2 / t  C1  ratio is 1. (A) The observed 
distribution of all interval dura-
tions (black line) is comprised 
of all  { C 1  }  intervals (green line) 
plus all  { C 1 C 2  }  intervals (blue line) 
and is also described by the sum 
of the exponential components 
E 1  (black dashed line) plus E 2  
(red dashed line). (B) Semiloga-
rithmic plots of the distributions 
shown in A plus the constituent 
distributions (purple lines) for 
specifi c gating sequences  n  = 1 – 6 
in  Table II , where  n  indicates the 
number of C 1  to C 2  transitions for 
each interval in that distribution. 
The constituent distributions for 
 n  = 1 to infi nity sum to generate 
 { C 1 C 2  } . (C) The difference be-
tween  { C 1  }  and E 1  (shaded area) 
indicates the  “ excess ”  intervals in 
 { C 1  }  over those required for E 1 . 
(D) The difference between E 2  
and  { C 1 C 2  }  (shaded area) indicates 
the  “ missing ”  intervals needed to 
fi ll in the gap between  { C 1 C 2  }  and 
E 2  to complete E 2 . (E) A plot of 
the  “ missing ”  intervals, E 2 - { C 1 C 2  } , 
exactly superimposes a plot of the 
 “ excess ”  intervals,  { C 1  } -E 1 , for all 
interval durations, indicating that 
the excess intervals are exactly suf-
fi cient to fi ll in the missing inter-
vals at each point in time. Clearly, 
E 1  is not equal to  { C 1  }  and E 2  is not 
equal to  { C 1 C 2  }  when the ratio of 
 t  C2 / t  C1  is 1.  Figs. 3 – 5 and 8  can be 
converted into probability density 
functions by dividing the values 
on the ordinate by 2.   
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in  { C 1 C 2  }  to complete E 2  indicates that the missing 

intervals come from  { C 1  } , as there are no other inter-

vals available. 

  Fig. 3 C  shows that the  { C 1  }  distribution is greater than 

the E 1  distribution for all interval durations. Hence,  { C 1  }  

 –  E 1  indicates the number of  “ excess intervals ”  in  { C 1  }  

that are not required for E 1  ( Fig. 3 C , shaded area). Eq. 

8 shows that the missing intervals in  Fig. 3 D  should ex-

actly equal the excess intervals in  Fig. 3 C  at every point 

in time.  Fig. 3 E  shows that this is the case because the 

lines plotting the numbers of missing and excess inter-

vals superimpose. 

 Further rearrangement of Eq. 7 indicates the compo-

sition of the exponential components 

   E C C C E2 2 1= }{ + }{ -1 1
   (9) 

   E C E C C1 2 2= }{ - - }{( )1 1 .    (10) 

ways: by the sum of the two exponential components E 1  

and E 2 , and also by the sum of  { C 1  }  and  { C 1 C 2  } . Thus, for 

each interval duration in these distributions 

   E E C C C1 2 2+ = }{ + }{1 1
   (7) 

 and by rearrangement 

   E C C C E2 2 1- }{ = }{ -1 1 .    (8) 

  Fig. 3 D  shows that the  { C 1 C 2  }  and E 2  distributions are 

identical at longer interval durations but that  { C 1 C 2  }  

is less than E 2  at shorter interval durations. E 2   –   { C 1 C 2  }  

then gives the number of  “ missing intervals ”  ( Fig. 3 D , 

shaded area) that would be required to fi ll in the gap 

between  { C 1 C 2  }  and E 2  to complete the E 2  exponential 

component. Because all intervals in the exponential 

components arise from  { C 1  }  and  { C 1 C 2  } , the observa-

tion in  Fig. 3 D  that there are insuffi cient intervals 

 Figure 4.   Composition of the 
dwell-time distribution of all in-
tervals for Scheme 2 in which  k  C2-

C1  is set to 200/s, giving a  t  C2 / t  C1  
ratio of 5. See legend of  Fig. 3  
for plot details. Compared with 
 Fig. 3  where the  t  C2 / t  C1  ratio is 1, 
increasing  t  C2 / t  C1  fi vefold greatly 
decreases the number of  { C 1  }  in-
tervals used to fi ll in the gap be-
tween  { C 1 C 2  }  and E 2  to complete 
E 2  at shorter times (gray areas in 
C and D and plot in E). Conse-
quently, most of the  { C 1  }  inter-
vals go to generate E 1  so that 
E 1  approaches  { C 1  }  (compare 
black dashed and green lines in 
A – C). Because so few  { C 1  }  inter-
vals go to E 2 , E 2  is now described 
by  { C 1 C 2  }  for all but the shorter 
duration intervals (compare red 
dashed line to blue line in A, 
B, and D).   
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in Scheme 2 was altered by changing  k  C2-C1,  the rate con-

stant for the transition from C 2  to C 1.  Changing  t  C2  in 

this manner did not change the lifetime of C 1 ,  t  C1  (which 

remained at 1 ms), did not change the probability of 

entering C 2  from C 1  (which remained at 0.5), did not 

change the probability of the transition from C 2  to C 1  

(which remained at 1), and did not change the relative 

areas of  { C 1  }  and  { C 1 C 2  } , both of which remained at 0.5. 

Changing  t  C2  without changing any other aspects of the 

gating was found to have profound effects on the rela-

tionship between components and states. 

 Results are shown in  Fig. 4  for  t  C2  of 5 ms, and in  Fig. 

5  for  t  C2  of 0.2 ms.  These changes in  t  C2  were obtained by 

changing  k  C2-C1  in Scheme 2 from 1,000/s to either 200/s 

or 5,000/s, respectively. The fi ndings in  Figs. 4 and 5  

should be compared with those in  Fig. 3  where  t  C2  was 1 

ms.  Table III  lists the time constants and areas of E 1  and 

E 2  for these and other values of  t  C2 .  Calculations over a 

wide range of state lifetimes for C 1  and C 2  showed that 

 Thus, E 2  is comprised of all the  { C 1 C 2  }  intervals plus those 

excess intervals in  { C1 }  required to fi ll in the gap between 

 { C1C2 }  and E 2  to complete the E 2  exponential, and E 1  is 

comprised of the leftover intervals in  { C 1  }  not used to fi ll 

in the E 2  exponential. Because intervals arising from 

transitions through the compound state C 1 C 2  will always 

form a convolution type of distribution with too few in-

tervals at brief times to complete the E 2  exponential, 

then some intervals from  { C 1  }  will always be required to 

fi ll in the E 2  exponential. The fraction of  { C 1  }  intervals 

required to fi ll in the gap at any point in time depends 

on interval duration, ranging from 0.5 at zero time to es-

sentially 0 at very long times for Scheme 2 ( Fig. 3 D ). 

 Changing the Ratio of the Lifetime of C 2  to C 1  in Scheme 2 
while Keeping All Other Aspects of Gating Constant Greatly 
Alters the Relationship between Components and States 
 To explore the effect of changing the lifetime of C 2 ,  t  C2  

on the relationship between components and states,  t  C2  

 Figure 5.   Composition of the 
dwell-time distribution of all in-
tervals for Scheme 2 in which 
 k  C2-C1  is 5,000/s, giving a  t  C2 / t  C1  
ratio of 0.2. See legend of  Fig. 3  
for plot details. Compared with 
 Fig. 3  where the  t  C2 / t  C1  ratio 1, 
decreasing  t  C2 / t  C1  fi vefold greatly 
increases the number of  { C 1  }  in-
tervals needed to fi ll in the gap 
between  { C 1 C 2  }  and E2 to com-
plete E 2  (gray areas in C and D 
and plot in E). Consequently, 
most of the  { C 1  }  intervals go to 
E 2 , leaving very few  { C 1  }  intervals 
to generate E 1 . The net result is 
that E 1  has a low magnitude and 
fast time constant (A – C).   
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 (d) That  { C 1  }  intervals mainly go to E 1  when  t  C2   >  >   t  C1  

and to E 2  when  t  C2   <  <   t  C1  is readily seen by comparing 

 Fig. 4 (C – E)  to  Fig. 5 (C – E) , respectively. 

 Paradoxical Shifts in the Time Constants and Areas of 
the Exponential Components as the  t  C2 / t  C1  Ratio Passes 
through 1 
 The observations in  Figs. 3 – 5  and  Table III  suggest that 

the relative contribution of the  { C1 }  and  { C 1 C 2  }  intervals 

to E 1  and E 2  shifts with the  t  C2 / t  C1  ratio. To investigate 

these shifts further,  Fig. 6 B  plots the time constants of 

E 1  and E 2 ,  �  E1  and  �  E2 , and the lifetimes of C 1  and C 2 ,  t  C1  

and  t  C2 , and  Fig. 6 E  plots the areas of E 1 , E 2 ,  { C 1  } , and 

 { C 1 C 2  }  as  k  C2-C1  in Scheme 2 is changed over six orders of 

magnitude to change the  t  C2 / t  C1  ratio from 10 3  to 10  � 3  

(see bottom of  Fig. 6 ).  This change in  k  C2-C1  changes  t  C2  

from 1 s to 1  μ s ( Fig. 6 B , red dashed line) while having 

no effect on  t  C1 , which remains constant at 1 ms ( Fig. 6 

B , black continuous line). As  t  C2  decreases, decreasing 

the  t  C2 / t  C1  ratio,  �  E1  fi rst tracks  t  C1  and then switches to 

track  t  C2  ( Fig. 6 B , black dashed line). The switch in 

tracking occurs as the  t  C2 / t  C1  ratio passes through 1, 

with  �  E1  equal to  t  C1  when  t  C2   >  >   t  C11  and then equal to  t  C2  

when  t  C2   <  <   t  C1 . 

 Just as there is a shift in the tracking of  �  E1  from  t  C1  to 

 t  C2  as the  t  C2 / t  C1  ratio passes through 1, there is also a 

shift in the tracking  �  E2  from  t  C2  to  t  C1 .  �  E2  ( Fig. 6 B , red 

continuous line) fi rst tracks  t  C2  when  t  C2   >  >   t  C1  and then 

switches to track  t  C1  when  t  C2   <  <   t  C1 . This tracking occurs 

with an offset.  �  E2  is twice  t  C2  when  t  C2   >  >   t  C1  and then 

switches to become twice  t  C1  when  t  C2   <  <   t  C1 . 

 These paradoxical shifts in the tracking of the time 

constants are also associated with dramatic shifts in the 

areas of E 1  and E 2,   a  E1  and  a  E2  ( Fig. 6 E ). When  t  C2   >  >   t  C1 , 

 a  E1  and  a  E2  approach 0.5, essentially the same as the 0.5 

areas of  { C 1  }  and  { C 1 C 2  }  ( Fig. 6 E , left;  Table III ). As the 

 t  C2 / t  C1  ratio decreases so that  t  C2   <  <   t  C1 , then  a  E1  ap-

proaches 0 and  a  E2  approaches 1 ( Fig. 6 E , right;  Table 

III ). Note that the dramatic shifts in the time constants 

it is the lifetime ratio  t  C2 / t  C1  rather than the absolute 

values of the lifetimes that determines the relationship 

between components and states when the transition 

probabilities are fi xed (not depicted). Consequently, 

the observations will be discussed in terms of the  t  C2 / t  C1  

ratio in order to make them more general. The  t  C2 / t  C1  

ratios for  Figs. 3 – 5  are 1, 5, and 0.2, respectively. 

 The key observations to be made from a systematic 

examination of  Figs. 3 – 5  are as follows. 

 (a)  { C 1  }  (continuous green lines) is identical in each 

fi gure (A, B, and C), with a time constant of 1 ms, be-

cause changing  k  C2-C1  has no effect on  t  C1  or on the frac-

tion of intervals in  { C 1  } , which remains constant at 0.5. 

 (b) Increasing  t  C2  fi vefold compared with  t  C1  decreases 

the peak amplitude of  { C 1 C 2  }  while increasing the time 

to peak and greatly slowing the decay (compare  Fig. 4  

to  Fig. 3 , A, B, and D). These changes in  { C 1 C 2  }  greatly 

decrease the defi cit of intervals required to fi ll in the 

gap between  { C 1 C 2  }  and E 2  to complete the E 2  exponen-

tial at shorter times (compare gray area in  Fig. 4 D  to 

 Fig. 3 D ). Consequently, because fewer  { C 1  }  intervals are 

required to fi ll in the gap when  t  C2   >  >   t  C1 , most of the 

 { C 1  }  intervals go to E 1  (compare  Fig. 4 C  to  Fig. 3 C ). As 

a result, the time constant and area of E 1  approach that 

of  { C 1  }  when  t  C2   >  >   t  C1  ( Fig. 4, A – C ;  Table III ), 

 (c) In contrast, decreasing  t  C2  fi vefold compared with 

 t  C1  increases the peak amplitude of  { C 1 C 2  } , while de-

creasing the time to peak and accelerating the decay 

(compare  Fig. 5  to  Fig. 3 , A, B, and D). These changes 

in  { C 1 C 2  }  greatly increase the number of intervals re-

quired to fi ll in the gap between  { C 1 C 2  }  and E 2  to com-

plete the E 2  exponential at shorter times (compare gray 

area in  Fig. 5 D  to  Fig. 3 D ). Consequently, because most 

of the  { C 1  }  intervals are required to fi ll in the missing in-

tervals when  t  C2   <  <   t  C1 , then very few of the  { C 1  }  intervals 

go to E 1  (compare  Fig. 5 C  to  Fig. 3 C ). As a result, the 

time constant and area of E 1  become markedly less than 

that of  { C 1  }  when  t  C2   <  <   t  C1  ( Fig. 5, A – C ;  Table III ), so 

that E 1  becomes uncoupled from  { C 1  } . 

 TA B L E  I I I 

 Exponential Components and States for Scheme 2 with the Indicated Rate Constants for k C2-C1 . 

 k  C2-C1  (s  � 1 ) 1 10 100 200 1,000 5,000 10,000 100,000

Components and states

 t  C1  (ms) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

 t  C2  (ms) 1000 100 10 5 1 0.2 0.1 0.010

 �  E1  (ms) 0.999 0.995 0.950 0.901 0.586 0.180 0.095 0.010

 �  E2  (ms) 2001 201.0 21.05 11.10 3.414 2.220 2.105 2.010

 a  E1 0.499 0.495 0.450 0.402 0.146 0.010 0.0025 0.00003

 a  E2 0.501 0.505 0.550 0.598 0.854 0.990 0.9975 0.99997

 �   { C1 }   (ms) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

 �   { C1C2 }   (ms) The  �  of the decay of  { C1C2 }  approaches that of E 2  at longer times

 a   { C1 }  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

 a   { C1C2 }  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

The abbreviations designating the exponential components and states are defi ned in  Table I .
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B and E ) follow directly from the graphical origins of the 

exponential components shown in  Figs. 3 – 5  and from 

the equations in the Appendix. The shifts do not arise 

from a swapping of the fast and slow exponential compo-

nents between Eqs. A2 and A3 and Eqs. A4 and A6 in the 

Appendix, but are self contained in the equation for 

each component. This is shown graphically in  Fig. 6 B , 

where  �  E1  is always faster than  �  E2, , and in  Fig. 6 B  by the 

smooth functions for changes in area. The shifts can be 

explained visually from the graphical origins of the ex-

ponential components detailed in  Figs. 3 – 5 . As the  t  C2 / t  C1  

ratio decreases, the shape of  { C 1 C 2  }  changes so that an 

increasing number of  { C 1  }  intervals are required to fi ll in 

the gap between  { C 1 C 2  }  and E 2  to complete the E 2  expo-

nential, with any leftover  { C 1  }  intervals going to generate 

E 1 . It is this shift of  { C 1  }  intervals from E 1  to E 2  that shifts 

the areas and time constants of E 1  and E 2 . 

and areas of E 1  and E 2  occur even though the areas of 

 { C 1  }  and of  { C 1 C 2  }  remain constant at 0.5 ( Fig. 6, B and 

E ;  Table III ). 

 The plotted areas in  Fig. 6 E  quantify the observations 

shown in  Figs. 3 – 5  (C and D). When  t  C2   >  >   t  C1 , the areas 

(and distributions) of E 1  and  { C 1  }  are essentially identical 

and the areas (and distributions) of E 2  and  { C1C2 }  are 

also essentially identical. When  t  C2   <  <   t  C1 , then the area of 

E 1  approaches 0 and the area of E 2  approaches the area of 

 { C 1  }  +  { C 1 C 2  } . Hence, when  t  C2   >  >   t  C  E 1  is comprised of es-

sentially all of the C 1  intervals and E 2  is comprised of es-

sentially all  { C 1 C 2  }  intervals. The shift in the  { C1 }  intervals 

from E 1  to E 2  as the lifetime ratio shifts is shown by the de-

crease in  a  E1  and increase in  a  E2 , such that when  t  C2   <  <   t  C1  

essentially all of the  { C 1  }  and  { C 1 C 2  }  intervals go to E 2 . 

 The paradoxical shifts in the time constants and areas 

of E 1  and E 2  as the  t  C2 / t  C1  ratio passes through 1 ( Fig. 6, 

 Figure 6.   It is the  t  C2 / t  C1  ratio in Scheme 2 
rather than the transition probabilities that 
determine the paradoxical shifts in the link-
age between components and states. (A – C) 
Plots of  �  E1  and  �  E2  against  k  (C2-C1)  in Scheme 
2 as  k  (C2-C1)  is changed over six orders of mag-
nitude. These changes in  k  (C2-C1)  change  t  C2  
from 1 s to 1  μ s as  t  C1  remains constant at 1 
ms. The resulting change in the  t  C2 / t  C1  ratio is 
plotted at the bottom of the fi gure. Plots are 
presented for three different transition prob-
abilities ratios for P C1-C2 /P C1-O1  of 0.999/0.001 
(A), 0.5/0.5 (B), and 0.001/0.999 (C). For all 
three transition probability ratios,  �  E1  tracks 
 t  C1  and  �  E2  tracks  t  C2  (with an offset in A and B) 
when  t  C2   >  >   t  C1  and then  �  E1  tracks  t  C2  and 
 �  E2  tracks  t  C1  (with an offset in A and B) when 
 t  C2   <  <   t  C1 . The inset in C shows the switch in 
tracking follows the same pattern as in A and 
B. (D – F) Areas of E 1 , E 2 ,  { C 1  } , and  { C 1 C 2  }  as 
a function of  k  C1-C2  and the resulting  t  C2 / t  C1  
ratio. In D, a log scale is used so that the 
change in the small area of E 1  can be seen. 
The corresponding change in the area of E 2  
is too small compared with the large area of 
E 2  to be seen. Note that the paradoxical shifts 
in time constants and areas of the exponen-
tial components as a function of the  t  C2 / t  C1  
ratio are still observed for a 10 6 -fold change 
in transition probabilities.   
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( Fig. 5 and Fig. 6 E ), with the sojourns to C 2  having 

such brief durations that the dwell time in C 2  does not 

contribute to interval duration. That  �  E2  is twice  t  C1  

when  t  C2   <  <   t  C1  ( Fig. 6 B ) is readily calculated from  Ta-

ble II  by setting  t  C2  to zero and calculating the mean 

closed interval duration for  n  = 0 to infi nity, with  n  

starting at 0 because essentially all  { C 1  }  and  { C 1 C 2  }  in-

tervals go to E 2 . Thus, the paradoxical shift in the 

tracking of  �  E2  from twice  t  C2  when  t  C2   >  >   t  C1  to twice  t  C1  

when  t  C2   <  <   t  C1 , as determined by the equations in the 

Appendix, is readily accounted for mechanistically as 

well as analytically. 

 Why  �  E1  Tracks  t  C1  when  t  C2   >  >   t  C1  and then Tracks  t  C2  
when  t  C2   <  <   t  C1  
 The time constant of E 1  directly tracks  t  C1  when  t  C2   >  >   t  C1  

( Fig. 6 B ), because under these conditions an insignifi -

cant number of intervals in  { C 1  }  are required to fi ll in 

the gap between  { C 1 C 2  }  and E 2 , so (essentially) all  { C 1  }  

intervals go to E 1  ( Fig. 4 and Fig. 6 B ). Consequently, 

when  t  C2   >  >   t  C1,  E 1  and  { C 1  }  become synonymous (they 

contain the same numbers and durations of intervals) 

so that  �  E1  directly tracks and is equal to  t  C1 . As  t  C2  be-

comes less than  t  C1 ,  �  E1  switches over to track  t  C2  ( Fig. 

6 B ) because the majority of the  { C 1  }  intervals now go to 

fi ll in the gap between  { C 1 C 2  }  and E 2  to complete the E 2  

exponential so that they are no longer available for E1 

( Figs. 5 and 6 ). Interestingly, the few remaining inter-

vals in  { C 1  }  left to generate E 1  have a lifetime equal to  t  C2 . 

It is not readily apparent why this is the case, but it can 

be shown by numerical substitution into Eq. A2 (Ap-

pendix) that when  k  +1   >  >  (  �   +  k  -1 ), i.e., when  t  C2   <  <   t  C1,  

then  �  E1   �  1/( k  +1 ), i.e.,  �  E1   �   t  C2.  

 Generalizing the Observations for All Transition 
Probabilities 
  Figs. 3 – 5  and  Fig. 6 (B and E)  examined the relation-

ship between components and states as a function of 

the  t  C2 / t  C1  ratio for the specifi c case of equal transition 

probabilities away from state C 1  in Scheme 2 where P C1-C2  

is equal to P C1-O1 , with both equal to 0.5. This section ex-

amines whether the same general relationship between 

components and states holds when the ratio of the two 

transition probabilities away from C 1  is changed over six 

orders of magnitude. Data are presented for transition 

probability ratios of P C1-C2 /P C1-O1  of 0.999/0.001 ( Fig. 

6, A and D ) and of 0.001/0.999 ( Fig. 6, C and F ) for 

comparison to data for the transition probability ratio 

of 0.5/0.5 in  Fig. 6, B and E ). 

 A comparison of the data for these three markedly 

different transition probability ratios shows that the 

paradoxical shifts in the relationship between time con-

stants of exponential components and state lifetimes 

occurs independently of the transition probability ratio 

of P C1-C2 /P C1-O1 . For the three transition probability 

ratios considered that span six orders of magnitude 

 Why  �  E2  Tracks  t  C2  when  t  C2   >  >   t  C1  and then Tracks  t  C1  
when  t  C2   <  <   t  C1  
 The time constant of E 2  tracks  t  C2  (with an offset) when 

 t  C2   >  >   t  C1  ( Fig. 6 B ) because under these conditions the 

number of intervals required to fi ll in the gap between 

 { C 1 C 2  }  and E 2  is negligible so that essentially all of the 

intervals in E 2  arise from  { C 1 C 2  }  ( Fig. 4 and Fig. 6 B ), 

where the duration of C 1  is negligible because  t  C2   >  >   t  C1 . 

That the offset for  �  E2  is twice  t  C2  when  t  C2   >  >   t  C1  ( Fig. 

6 B ) is readily calculated from  Table II  by setting  t  C1  to 

zero and then calculating the mean closed interval du-

ration (which gives the time constant of E 2 ) for gating 

sequences of  n  = 1 to infi nity. Note that  n  starts at 1 be-

cause there are essentially no  { C 1  }  intervals in E 2  when 

 t  C2   >  >   t  C1 . The tracking occurs with an offset equal to 

twice the duration of  t  C2  because the average number of 

sojourns through C 2  for intervals generated by gating 

sequences 1 to infi nity is 2. 

 As  t  C2  becomes less than  t  C1,   �  E2  switches over to track 

 t  C1  ( Fig. 6 B ). The tracking now occurs with a time con-

stant equal to twice  t  C1  rather than  t  C2 , because when 

 t  C2   <  <   t  C1 , all of the  { C 1  }  and  { C 1 C 2  }  intervals go to E 2  

 Figure 7.   Quantifying the linkage between the time constants 
of the exponential components and the lifetimes of the states 
as a function of the  t  C2 / t  C1  ratio for the three indicated kinetic 
schemes that encompass a 10 6 -fold change in the various transi-
tion probabilities away from state C 1 . Linkage, L � , was calculated 
with Eq. 11, for the same kinetic schemes as presented in  Fig. 6 . 
The paradoxical switch between components and states becomes 
steeper as the transition probability ratio P C1-C2 /P C1-O1  becomes 
less, i.e., as the area of  { C 1 C 2  }  decreases compared with the area 
of  { C 1  } .   
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 Quantifying the Linkage between the Time Constants of 
Exponential Components and Lifetimes of States 
 If the duration of intervals in an exponential compo-

nent is determined mainly by the dwell times arising 

from sojourns through a particular state, then a frac-

tional change in the lifetime of that state should pro-

duce the same fractional change in the time constant of 

the exponential component. Eq. 11 incorporates this 

rational to quantify the linkage between components 

and states, L  �  , such that 

   L )/Ei Ei Ei Cj Cj Cjt t t t= -[ ] -éë ùû( ’ / ( ’ )/ ,t t t    (11) 

 where   �   Ei  is the time constant of exponential compo-

nent  i  when the mean lifetime of state  j  is  t  Cj , and   �   Ei  ’  is 

the time constant of exponential component  i  after the 

lifetime of state  j  is changed a small fractional amount 

to  t  Cj  ’ . The lifetime of state  j  is changed without chang-

ing the transition probabilities among any of the states 

by increasing (or decreasing) all of the rate constants 

leading away from state  j  by the same small fractional 

amount (typically 10  � 5 ), with   �   Ei  ’  and   �   Ei  calculated using 

analytical (Appendix) or Q-matrix methods (Colquhoun 

and Hawkes, 1995a). 

  Fig. 7  plots linkage as a function of the  t  C2 / t  C1  ratio for 

the same three kinetic schemes that were examined in 

 Fig. 6  encompassing a 10 6 -fold change in the transition 

probabilities away from state C 1 .  When  t  C2   >  >   t  C1 , there is 

near perfect linkage of  �  E1  to  t  C1 , and of  �  E2  to  t  C2,  as in-

dicated by values for L  �   approaching 1, and essentially 

no linkage of  �  E2  to  t  C1 , and of  �  E1  to  t  C2 , as indicated by 

values for L  �   approaching 0. The linkages then reverse 

when  t  C2   <  <   t  C1 , so there is near perfect linkage of  �  E2  to 

 t  C1 , and of  �  E1  to  t  C2  and no linkage of  �  E1  to  t  C1 , and of 

 �  E2  to  t  C2.  The quantifi ed linkage in  Fig. 7  is consistent 

with the observations and mechanisms discussed in the 

previous fi gures. 

 Knowledge of Paradoxical Shifts Can Prevent 
Misinterpretation of Experimental Observations 
 Knowledge of the paradoxical shifts shown in  Figs. 6 

and 7  and their underlying mechanisms can prevent 

possible misinterpretation of the origin of the exponen-

tial components. For example, solving for the exponen-

tial components for Scheme 2 when  k  C2-C1  = 10 5 /s gives 

time constants of 0.01 ms for E 1  and 2.01 ms for E 2  ( Fig. 

6 B , right side, and  Table III , far right column). Since  t  C2  

is 0.01 ms, the same as  �  E1 , it might be tempting to spec-

ulate that E 1  arises in some manner from single sojourns 

to C 2 , rather than from leftover  { C 1  }  intervals, as shown 

in  Fig. 5 . However, this cannot be the case, as every so-

journ to C 2  requires two sojourns through the 1 ms life-

time C 1  in this example, yielding the slower  { C 1 C 2  }  

distribution ( Fig. 5 ;  Table II ). Furthermore, the  { C 1 C 2  }  dis-

tribution has a magnitude of 0 at time 0, whereas the mag-

nitude of E 1  is maximal at time 0 ( Figs. 3 – 5 ). Consequently, 

(upper, middle, and lower parts) and for changes in  t  C2 / t  C1  

also over six orders of magnitude (abscissa),  �  E2  fi rst 

tracks  t  C2  and then switches to track  t  C1 , whereas  �  E1  fi rst 

tracks  t  C1  and then switches to track  t  C2 . The only differ-

ences in the plots are that the magnitudes of the offset 

of  �  E2 , fi rst from  t  C2  and then from  t  C1 , decreases as the 

transition probability ratio P C1-C2 /P C1-O1  decreases (see 

below) and the switch in tracking occurs more rapidly. 

Thus, the same paradoxical shifts in the tracking of the 

exponential components to the state lifetimes as the 

 t  C2 / t  C1  ratio passes through 1 still occur when the transi-

tion probability ratio of P C1-C2 /P C1-O1  is changed a mil-

lion fold. A decreased offset of  �  E2  from the state 

lifetimes would be expected as P C1-C2 /P C1-O1  decreases 

because the average number of repeated transitions 

through C 1 C 2  contributing to each closed interval would 

decrease, leading to a decreased time constant of E 2 . 

For example, when P C1-C2 /P C1-O1  is 0.999/0.001 so that 

999 out of 1,000 transitions away from C 1  are to C 2 , then 

the time constant of E 2  is  � 1,000-fold greater than  t  C2  

when  t  C2   >  >   t  C1  and  � 1,000-fold greater than  t  C1  when 

 t  C2   <  <   t  C1  ( Fig. 6 A ). At the other extreme, when P C1-C2 /

P C1-O1  is 0.001/0.999 so that only 1 out of 1,000 transi-

tions away from C 1  go to C 2 , then the time constant of E 2  

is within 0.1% of  t  C2  when  t  C2   >  >   t  C1  and within 0.1% of 

 t  C1  when  t  C2   <  <   t  C1  ( Fig. 6 C ). 

 As more transitions from C 1  are directed to either C 2  

or O 1  due to different P C1-C2 /P C1-O1  ratios, the areas of 

 { C 1  }  and  { C 1 C 2  }  change, as would be expected. For P C1-C2 /

P C1-O1  ratios of 0.999/0.001, 0.5/0.5, and 0.001/0.999, 

the area of  { C 1 C 2  }  is 0.999, 0.5, and 0.001, and the area 

of  { C 1  }  is 0.001, 0.5, and 0.999, respectively ( Fig. 6, D, E, 

and F , dotted straight lines). These areas remain con-

stant as  k  C2-C1  is changed. Just as the paradoxical shifts 

in time constants occur independently of the P C1-C2 /P C1-O1  

ratio as the  t  C2 / t  C1  ratio passes through 1, the para-

doxical shifts  a  E1  and  a  E2  also occur independently of 

the P C1-C2 /P C1-O1  ratio, that is, independently of whether 

most of the closed intervals arise from  { C 1  }  or  { C 1 C 2  } . 

When P C1-C2 /P C1-O1  is 0.999/0.001,  a  E1  is small, contain-

ing  < 0.1% of the intervals when  t  C2   >  >   t  C1  ( Fig. 6 D , left). 

Yet, these few intervals in E 1  still shift to E 2  as the  t  C2 / t  C1  

ratio passes through 1, as indicated by the decrease in 

 a  E1  in  Fig. 6 D  that is apparent because of the log ordi-

nate. The accompanying increase in  a  E2  is not appar-

ent because the fractional increase is small compared 

with initial large size of  a  E2 . For the reverse situation in 

which P C1-C2 /P C1-O1  is 0.001/0.999,  a  E1  contains 99.9% of 

the area and  a  E1  only 0.001% when  t  C2   >  >   t  C1  ( Fig. 6 F , 

left). This distribution of areas then fully reverses as the 

 t  C2 / t  C1  ratio passes through 1 ( Fig. 6 F , right). 

 The results in  Fig. 6  then show that the paradoxical 

shifts in the relationship between exponential compo-

nents and states is determined by the lifetime ratio  t  C2 /

 t  C1  rather than by the specifi c lifetimes of the states or 

the specifi c transition probabilities. 
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intervals that include a transition through C 2 , i.e.,  { C 1 C 2  }  

intervals, cannot be the basis for the very fast E 1  expo-

nential component in this example, no matter how brief 

the lifetime of C 2 . The E 1  component always arises from 

the same underlying mechanism, no matter what the 

lifetimes of C 1  and C 2 , from the leftover intervals in  { C 1  }  

not required to fi ll in the  { C 1 C 2  }  distribution to com-

plete the E 2  exponential. 

 Models with Three Closed States in Series 
 The above sections examined Scheme 2 in which two 

connected closed states were followed by an open state. 

We now examine a model with three closed and one 

open state in series, C 3 -C 2 -C 1 -O 1 , which would generate 

three closed exponential components E 1 , E 2 , and E 3 . 

Data are presented in  Fig. 8 (A – C),  where  t  C1  and  t  C2  are 

both 1 ms for all three schemes, and  t  C3  is 1 s in A, 1 ms 

in B, and 1  μ s in C, changed by altering  k  C3-C2  as indicated.  

The transition probabilities P C1-O1 , P C1-C2 , P C2-C1 , and P C2-C3  

are the same for the three schemes, with a value of 

0.5. For each scheme, intervals from  { C 1 C 2 C 3  }  generate 

a convolution type distribution analogous to  { C 1 C 2  }  pre-

sented earlier, but with one more closed state contribut-

ing to the closed intervals. When  t  C3  is 1 s (A), E 3  and 

 { C 1 C 2 C 3  }  have long time courses and very low ampli-

tudes so that they run just above the abscissa and are 

not readily visible. Shortening  t  C3  to 1 ms (B) or 1  μ s (C) 

progressively increases the amplitudes of E 3  and  { C 1 C 2 C 3  }  

and speeds their decays. For all three lifetimes of C 3 , E 3  

superimposes  { C 1 C 2 C 3  }  at longer times, indicating the E 3  

arises from  { C 1 C 2 C 3  }  at longer times. Intervals from 

 { C 1 C 2  }  and  { C 1  }  then fi ll in the gap between the  { C 1 C 2 C 3  }  

distribution and E 3  at shorter times to complete the E 3  

exponential. The remaining intervals from  { C 1 C 2  }  and 

some of the intervals from  { C 1  }  then generate the E 2  ex-

ponential, and fi nally, any remaining intervals in  { C 1  }  

not used to complete the E 3  and E 2  exponentials gener-

ate E 1 . 

 The fraction of intervals in  { C 1 C 2  }  that go to fi ll in E 3  

and E 2  is highly dependent on the  t  C3 / t  C2  ratio. When 

 t  C3   >  >   t  C2  ( Fig. 8 A ), then both E 3  and  { C 1 C 2 C 3  }  are of 

long duration and very low amplitude so that very few of 

the  { C 1 C 2  }  and  { C 1  }  intervals are needed to fi ll in E 3  at 

shorter times. Consequently, most  { C 1 C 2  }  intervals go to E 2 , 

with the decay of E 2  superimposing the decay of  { C 1 C 2  }  

at longer times. Intervals from  { C 1  }  then fi ll in the gap 

between  { C 1 C 2  }  and E 2  at shorter times to complete E 2 , 

with the leftover intervals from  { C 1  }  going to generate 

 Figure 8.   Composition of the dwell-time distribution of all in-
tervals for the indicated four state model when C 3  has a mean 
lifetime of 1 s (A), 1 ms (B), and 1  μ s (C). The time constants 
(and areas) of the exponential components are (A) E 3 : 3003 ms 
(33.4%); E 2 : 2.00 ms (50.0%); E 1 : 0.667 ms (16.6%); (B) E 3 : 7.46 
ms (62.2%); E 2 : 1.00 ms (33.3%); E 1 : 0.536 ms (4.47%); (C) E 3 : 
5.24 ms (72.4%); E 2 : 0.764 ms (27.6%); E 1 : 0.001 ms ( � 0.00%). 
The observed distribution of all interval durations (black continu-
ous lines) can be expressed as either the sum of E 1  (black dashed 

lines), E 2  (red dashed lines), and E3 (gray dashed lines) or as 
the sum of  { C 1  }  (green lines),  { C 1 C 2  }  (blue lines), and  { C 1 C 2 C 3  }  
(orange lines). E 3  is comprised of all intervals from  { C 1 C 2 C 3  }  plus 
intervals from  { C 1 C 2  }  and  { C 1  }  as needed to complete the E 3  expo-
nential. E 2  is comprised of any leftover intervals from  { C 1 C 2  }  plus 
intervals from  { C 1  }  as needed to complete the E 2  exponential, and 
E 1  is comprised of any leftover intervals from  { C 1  } .   
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Hawkes, 1982, 1995b), nor is the question the detection 

of components in histograms, as kinetic mechanisms 

are typically determined by maximum likelihood fi tting 

of rate constants to data, with the numbers of compo-

nents implicit in the mechanism being fi tted ( Horn and 

Lange, 1983 ;  McManus and Magleby, 1991 ; Colquhoun 

et al., 1996). Rather, the question is the physical basis 

for the exponential components, e.g., what is the state 

contribution to each component? As long as any discus-

sion of exponential components in terms of underlying 

gating mechanism is avoided, no specifi c knowledge is 

needed. However, in order to relate exponential com-

ponents to the underlying gating process, it is necessary 

to understand the relationship between components 

and states. In this paper we resolve this problem for 

simple models. 

 To explore this relationship we examined the simple 

gating mechanism described by Scheme 2 for two closed 

and one open state: C 2 -C 1 -O 1 . For this gating mechanism 

the dwell-time distribution of all closed intervals is de-

scribed by the sum of fast E 1 , and slow E 2  exponential 

components ( Fig. 2 ). To relate exponential components 

to underlying states, the closed dwell-time distribution 

was divided into those intervals arising from single so-

journs to C 1  in the gating sequence O 1 -C 1 -O 1 , designated 

 { C 1  } , and into those intervals arising from all sojourns 

through the compound state C 1 -C 2  from the gating se-

quence O1-C 1 -(C 2 -C 1 )  n  -O1 (where  n  has integer values 

from 1 to infi nity,  Table II ), designated  { C 1 C 2  } . 

 Graphical Demonstration of the Origin of the Exponential 
Components from the Underlying States 
 Our analysis shows that  { C 1 C 2  }  and E 2  superimpose at 

longer interval times when the number of  { C1 }  intervals 

approaches 0 ( Figs. 3 – 5,  A – D). This indicates that E 2  at 

longer times is generated by and includes all intervals 

from  { C 1 C 2  } . At shorter interval times, however, there 

are too few intervals in  { C 1 C 2  }  to account for E 2  ( Figs. 

3 – 5,  A, B, and D). To complete E 2  at shorter times, in-

tervals from  { C 1  }  fi ll in the gap between  { C 1 C 2  }  and E 2 , 

as these are the only other intervals available to do so 

(Eq. 9,  Figs. 3 – 5,  C – E  ). The leftover intervals in  { C 1  }  not 

used to fi ll in the gap then generate E 1  (Eq. 10,  Figs. 3 – 5 , 

C – E). This same basic mechanism for the generation 

of E 1  and E 2  generally applies, independent of the 

rate constants in Scheme 2 ( Figs. 3 – 5 ), and allows for a 

graphical/numerical solution for E 1  and E 2 . Although 

such a procedure would not normally be used, it does 

 illustrate the systematic manner in which the exponen-

tial components are generated from the closed states. 

E 2  is given by the projection of a straight line super-

imposed at long times on the decay of  { C 1 C 2  }  plotted on 

semilogarithmic coordinates ( Fig. 3 B , dashed red line 

superimposed on blue line).  { C 1 C 2  }  is then subtracted 

from E 2  to determine the defi cit of intervals required to 

fi ll in the gap between  { C 1 C 2  }  and E 2  at shorter times 

E 1 . This distribution of intervals is very similar to  Fig. 3 

A , except for the addition of the very low amplitude 

long duration  { C 1 C 2 C 3  }  distribution and E 3  component 

in  Fig. 8 A . 

 In contrast, when  t  C3   <  <   t  C1  ( Fig. 8 C ), then the  { C 1 C 2 C 3  }  

distribution has a faster decay and a much higher peak 

amplitude than in  Fig. 8 A , which leads to a major defi -

cit of intervals at shorter times in  { C 1 C 2 C 3  }  compared 

with E 3 . Consequently, large numbers of intervals from 

 { C 1 C 2  }  and also from  { C 1  }  are required to fi ll in the gap 

between  { C 1 C 2 C 3  }  and E 3  at shorter times to complete 

the E 3  exponential. The consequence of using so many 

 { C 1 C 2  }  and also  { C 1  }  intervals to complete the E 3  expo-

nential is that there are few leftover  { C 1 C 2  }  intervals to 

contribute to E 2 . Consequently, E 2  is comprised mainly 

of the briefer duration  { C 1  }  intervals and decays much 

faster than  { C 1 C 2  } . Because of the large number of  { C 1  }  

intervals used for E 3  and E 2  there are essentially no  { C 1  }  

intervals left to generate E 1 , which essentially disap-

pears, having a very fast time constant and essentially 

no area. 

 In  Fig. 8 B  when  t  C3  is 1 ms, intermediate in duration 

(log scale) between the 1-s lifetime in A and the 1- μ s 

lifetime in part C, then the response is intermediate 

between those in A and C, with suffi cient leftover  { C 1  }  

intervals to generate a small but detectable E 1 . Thus, 

the same types of paradoxical shifts and underlying 

mechanisms that generate the exponential components 

when there are two closed states in series also apply 

when there are three closed states in series, but with 

the additional requirement that some of the  { C 1 C 2  }  and 

 { C 1  }  intervals go to fi ll in the gap between  { C 1 C 2 C 3  }  

and E 3  at shorter times, leaving fewer intervals for E 2  

and E 1 . 

 D I S C U S S I O N 

 Frequency histograms of the number of open and 

closed intervals vs. their durations are a major means of 

presenting data recorded from single channels. These 

dwell-time distributions are typically characterized by 

fi tting with sums of exponential components, as the 

Markov models used to describe the gating of ion chan-

nels predict that such dwell-time distributions would be 

described by sums of exponential components, with the 

numbers of components equal to the number of states 

in the gating mechanism (Colquhoun and Hawkes, 

1981, 1982; Magleby and Pallotta, 1983; Colquhoun and 

Hawkes, 1995a;  Jackson, 1997 ) and Appendix. In spite 

of the central importance of exponential components 

to the description of single channel data, little is known 

about the specifi c contributions of the various states to 

each of the exponential components. The question is 

not whether components can be calculated for a given 

kinetic scheme, as this is readily accomplished through 

analytical and Q-matrix methods (Colquhoun and 



310  Linking Exponential Components to Kinetic States 

 Diffi culty in Detecting Briefer Lifetime Closed States 
Separated From Open States By Longer Lifetime Closed 
States 
 Whereas it is relatively easy to detect slow exponential 

components of very small areas because of the high likeli-

hood penalties that result if intervals of longer duration are 

not included in an exponential component ( McManus 

and Magleby, 1988 ), it is much more diffi cult to detect fast 

exponential components of small area superimposed on 

slower components. For example, when  t  C2  is fi vefold less 

than  t  C1  in Scheme 2, E 1  has a time constant of 0.18 ms and 

area of 0.01 ( Fig. 5 ,  Table III  for  k  C2-C1  of 5,000/s). It is un-

likely that such a fast component with only 1% of the area 

would be detected in experimental data, leading to an in-

correct conclusion of a single closed state with a lifetime 

of 2.22 ms, rather than two closed states with lifetimes of 

1 ms (C 1 ) and 0.2 ms (C 2 ). It would be even more diffi cult 

to detect components arising from briefer duration closed 

states if there were additional intervening closed states be-

fore the open state, as is likely to be the case for data from 

real channels. Obtaining experimental data over a wide 

range of conditions that could lead to large changes in 

state lifetimes, together with simultaneous fi tting of the 

data to gating mechanisms rather than with components 

could facilitate the detection of states. 

 Extension to More Complex Gating Mechanisms 
 The studies in this paper were performed for simple gat-

ing mechanisms and for data with perfect time resolution. 

With limited time resolution, brief duration intervals can 

go undetected, leading to the formation of compound 

states that include both open and closed states ( Blatz 

and Magleby, 1986 ;  Hawkes et al., 1992 ; Colquhoun and 

Hawkes, 1995b). Such compound states would need to be 

included when relating exponential components to states. 

Calculating the fractional change in exponential compo-

nents for fractional changes in state lifetimes provides a 

method to examine the linkage between components and 

states (Eq. 11) for simple as well as highly complex models 

and also when time resolution is limited. 

 Understanding the relationship between components 

and states provides investigators with a physical interpre-

tation for the exponential components in distributions 

of open and closed dwell times from single channels. 

 A P P E N D I X 

 This section presents the analytical solution for the 

dwell-time distribution of closed intervals for Scheme 2 

following Colquhoun and Hawkes (1981, 1982, 1994). 

The three rate constants that determine the distribu-

tion of closed intervals are designated as: 

( Fig. 3 D , gray area). The intervals used to fi ll the gap, 

which come from  { C 1  } , are then subtracted from  { C 1  }  to 

obtain E 1  ( Fig. 3 C ). E 1  is then plotted on semilogarith-

mic coordinates to defi ne its magnitude and time con-

stant ( Fig. 3 B , dashed black line). Hence, E 2  arises from 

all intervals in  { C 1 C 2  }  plus selected intervals from  { C 1  }  as 

needed to fi ll the gap, and E 1  arises from the leftover in-

tervals in  { C1 } . 

 When Do Exponential Components Equal Kinetic States? 
 It is sometimes inferred that E 1  is comprised of all of the 

 { C 1  }  intervals and that E 2  is comprised of all the  { C 1 C 2  }  

intervals, so that E 1  is tightly linked to C 1  and E 2  is tightly 

linked to the compound state C 1 C 2 . Although the dis-

cussion in the previous section indicates that this as-

sumption is not necessarily correct, it would be useful 

to know under what conditions such an assumption ap-

plies. Our analysis shows that there is negligible error 

associated with this assumption for Scheme 2 when the 

 t  C2 / t  C1  ratio is  > 100 ( Figs. 6 and 7 ;  Table III ), and that 

the error remains negligible for 10 6 -fold changes in the 

transition probability ratio of P C1-O /P C1-C2  ( Fig. 6 ). The 

errors associated with this assumption become progres-

sively greater as the  t  C2 / t  C1  ratio decreases. For  t  C2 / t  C1  

and P C1-O /P C1-C2  ratios of 1, 29% of the  { C 1  }  intervals are 

in E 1  with the rest in E 2  ( Table III ). As the  t  C2 / t  C1  ratio 

becomes  < 1, the assumption that E 1  is comprised of all 

the  { C 1  }  intervals and that E 2  is comprised of all the 

 { C 1 C 2  }  intervals becomes untenable, as the time con-

stant of E 1  switches from tracking  t  C1  to tracking  t  C2 , and 

the  { C 1  }  intervals switch from mainly contributing to E 1  

to mainly contributing to E 2  ( Figs. 3 – 7 ). 

 This paradoxical switch follows as a simple conse-

quence of the mechanism by which E 1  and E 2  are gener-

ated. Because it is the  t  C2 / t  C1  ratio that determines the 

magnitude and shape of the  { C 1 C 2  }  distribution, it is the 

 t  C2 / t  C1  ratio that also determines the number of  { C 1  }  in-

tervals required to fi ll in the gap between  { C 1 C 2  }  and E 2  

at shorter times to complete the E 2  exponential ( Figs. 

3 – 5,  C and D). When  t  C2   >  >   t  C1 , the relative number of 

 { C 1  }  intervals needed to fi ll in the gap is insignifi cant. 

Consequently, most  { C 1  }  intervals go to generate E 1 , and 

E 2  is comprised of mainly  { C 1 C 2  }  intervals ( Figs. 4 and 

6 ). In contrast, when  t  C2   <  <   t  C1 , most of the  { C 1  }  intervals 

are used to fi ll in the gap between the  { C 1 C 2  }  distribu-

tion and E 2 , so there are few intervals available to gener-

ate E 1  ( Figs. 5 and 6 ), and this is the case over six orders 

of magnitude change in the transition probability ratio 

of P C1-O /P C1-C2  ( Fig. 6, D – F ). E 1  has a very small ampli-

tude and very fast time constant when  t  C2   <  <   t  C1  because 

essentially all the  { C 1  }  intervals go to complete the E 2  ex-

ponential at shorter times so that there are few  { C 1  }  in-

tervals left to generate E 1  ( Fig. 5, C and D ;  Fig. 6, D – F ). 

Such a change in E 1  can have severe consequences on 

the interpretation of experimental data, as discussed in 

the following section. 
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time constants. The time constants, magnitudes, and 

areas ( a ) of the exponential components are given by: 
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 From the analytical solution it can be seen that the time 

constants, magnitudes, and areas of both E 1  and E 2  are 

determined by all of the rate constants that affect the life-

times of both closed states. The relationship between 

components and states is not readily apparent from these 

equations, and see also  Colquhoun and Hawkes (1981) , 

 Magleby and Pallotta (1983),  and  Jackson (1997)  for ana-

lytical solutions of more complex gating mechanisms. 

 It can be shown by numerical substitution into Eq. A2 

(or by setting  k  +1  to 0) that when  k  +1   <  <  (  �   +  k  -1 ) ,  i.e., 

when  t  C2   >  >   t  C1 , that 

   t bE  ),1 11~ /( + -k    (A8) 

 indicating that  �  E1  approaches  t  C1  when the  t  C2 / t  C1  ratio 

is  >  > 1, as shown in the Results, and see Colquhoun and 

Hawkes (1994) for an alternative means to express lim-

its for  �  E1 . 

 It can also be shown by numerical substitution into 

Eq. A2 (or by setting  k  -1  and  �  to 0) that when  k  +1   >  >  ( �  

+  k  -1 ), i.e., when  t  C2   <  <   t  C1 , that 

   tE ),1 11~ /(k+    (A9) 

 indicating that  �  E1  approaches  t  C2  when the  t  C2   <  <   t  C1  ra-

tio is  <  < 1, as shown in the Results. 
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