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Abstract
Malaria transmission intensity is modeled from the starting perspective of individual vector
mosquitoes and is expressed directly as the entomologic inoculation rate (EIR). The potential of
individual mosquitoes to transmit malaria during their lifetime is presented graphically as a function
of their feeding cycle length and survival, human biting preferences, and the parasite sporogonic
incubation period. The EIR is then calculated as the product of 1) the potential of individual vectors
to transmit malaria during their lifetime, 2) vector emergence rate relative to human population size,
and 3) the infectiousness of the human population to vectors. Thus, impacts on more than one of
these parameters will amplify each other’s effects. The EIRs transmitted by the dominant vector
species at four malaria-endemic sites from Papua New Guinea, Tanzania, and Nigeria were predicted
using field measurements of these characteristics together with human biting rate and human
reservoir infectiousness. This model predicted EIRs (± SD) that are 1.13 ± 0.37 (range = 0.84–1.59)
times those measured in the field. For these four sites, mosquito emergence rate and lifetime
transmission potential were more important determinants of the EIR than human reservoir
infectiousness. This model and the input parameters from the four sites allow the potential impacts
of various control measures on malaria transmission intensity to be tested under a range of endemic
conditions. The model has potential applications for the development and implementation of
transmission control measures and for public health education.

INTRODUCTION
Complex mathematical models are often incomprehensible to non-specialists and few have
been applied by anyone other than their original authors. The pitfalls of over-elaboration and
tenuous assumptions in the modeling of malaria transmission have been summarized by Koella,
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“The qualitative predictions of simple models may be more biologically meaningful than the
precise quantitative predictions of complex models involving many parameters.”1 This is an
especially important point in the context of disease control because the majority of those who
might use such models come from medicine or public health backgrounds, rather than the basic
sciences.1 It is therefore essential that simple models are made available that are broadly
accessible and conceptually straightforward, and that use input and output variables that are
meaningful in the field.

The impact of malaria on mortality and morbidity are determined by vector-mediated
transmission intensity2–4 and post-inoculation factors that include pre-existing immunity, age,
nutrition, genetic background, and access to anti-malarial drugs.5–10 Ideally, mortality and
morbidity should be the final outputs of malaria models.2,11–13 The relationship between
malaria transmission intensity and disease burden is poorly understood and recently has been
a topic of considerable debate.2–4,14 Nevertheless, available evidence indicates that malaria
prevalence, incidence, morbidity, and mortality all increase with transmission intensity.2–4,
15 We propose that models should express the transmission component of this combination as
the entomologic inoculation rate (EIR) because it is a direct index of human exposure to malaria
parasites that can be measured directly in the field.4,16,17 Unlike vectorial capacity or stability
index, EIR is a direct determinant of malaria prevalence, parasite density, incidence, and
mortality.2–4,17,18 Furthermore, the impacts of control measures on these important outcomes
of malaria exposure all depend on the baseline EIR of the area to which they are applied.2,4,
15

We describe the adaptation of a relatively simple cyclical model19 to allow the calculation of
transmission intensity as a function of its three fundamental contributors: 1) the infectiousness
of the human reservoir, 2) the capacity of individual mosquitoes to transmit malaria, and 3)
the mosquito emergence rate relative to human population density. The model was used to
predict the EIR of four disparate malaria endemic sites and found to be quite accurate at
assessing the potential impact of malaria transmission control on EIR in endemic settings.20

METHODS
Malaria transmission model framework

The major conceptual difference between previous models and the one presented here is the
perspective. Malaria transmission is generally modeled from the starting perspective of
individual humans and the vector biting densities they experience.1,19,21 Here we model
malaria transmission based on the life histories of individual mosquitoes, which when
combined with mosquito emergence rates relative to human population size and infectiousness,
define the transmission intensity experienced by any given human population. Thus, malaria
transmission is resolved into three components that are conceptually easy to separate and are
independently relevant to malaria epidemiology and control.

The model described is based on the principles of an existing cyclical model19 that has
previously been used to measure vector infection and transmission parameters in the field21,
22 and to assess the potential of vaccines against the malaria parasite as tools to reduce malaria
transmission.23 This is a deterministic, cyclical model, meaning that estimates are calculated
directly and that blood acquisition by mosquitoes occurs at fixed intervals during its lifetime
rather opportunistically at a fixed rate.19 We have kept symbols and definitions as consistent
with existing terminology as possible (Table 1). In addition to the rigorous descriptions in
Table 1, we also present a schematic outline of the model structure and the role of its parameters
in Figure 1. Like most others, our model assumes that the length of the feeding cycle (f), the
probability of surviving per feeding cycle (Pf), the number of days required for parasite
development (n), and the susceptibility of the vector to infection as well as ability to become

KILLEEN et al. Page 2

Am J Trop Med Hyg. Author manuscript; available in PMC 2008 July 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



infectious (κ) do not change with age. Mathematically, this means that f, Pf, n, and κ are
independent of the number of feeding cycles a given mosquito has completed (i) and whether
the mosquito is infected or not, at any cycle. This model also assumes that each vector feeds
from a single host during each feeding cycle and that the vector and human populations mix
homogeneously. Deviations from such assumptions and their quantitative importance have
been discussed elsewhere.1,18,24 The only major difference between this model and the
cyclical form from which it was derived is that the first cycle starts at emergence rather than
the first bloodmeal. This approach is consistent with the intended perspective of the model and
allows the effects of control measures that act before the first bloodmeal to be modeled.

Modeling malaria transmission by individual mosquitoes
Pi, the probability of survival to any given feeding cycle (i), is defined either in terms of the
daily survival parameter of classical models (P) and the mean interval between blood meals
(f, the feeding cycle length) or in terms of the survivorship per feeding cycle (Pf) as defined
previously:19

(1)

Here we define bh as the mean number of human blood-meals a vector will acquire during its
lifetime. During its lifetime, a typical mosquito will bite humans in proportion to its probability
of reaching each possible feeding cycle and Q, its preference for human hosts:19,25

(2)

The overwhelming proportion of the total bites on humans by mosquitoes are by those in the
youngest age groups. Thus, bh can be approximated by summing the probabilities of surviving
to each feeding cycle, up to feeding cycle 20 or less and multiplying this sum by Q. Note that
because the first cycle in our form begins at emergence rather than at recruitment to the human-
feeding population, this differs fundamentally from equivalent forms of the original model in
which terms are summed from the power of zero upwards (i = 0, 1, 2 …).19 A possible
disadvantage of our approach is that the sums cannot be solved as simply and elegantly, as in
the original model,19 using limits. However, the advantage of such an approach is that the
impacts of control measures that occur before the first bloodmeal (e.g., bed nets) can be
included in calculations. This approach and derived mathematical form is also more consistent
with the intended perspective of the model and is applied throughout.

Assuming that multiple infections are negligible, the probability of a mosquito being infectious
at a given feeding cycle is related directly to the number of infectious blood-meals taken from
humans that have had sufficient time to allow infectious sporozoites to appear in the salivary
glands (n). This interval is expressed as F, the mean number of feeding cycles required for
sporogonic development of the parasite:

(3)

Clearly, no mosquito can be infectious unless they have survived at least F feeding cycles
(Si = 0 where i < F). Here we define δ as the number of previous bloodmeals that occurred too
recently for any ingested parasites to have fully developed into infectious sporozoites.
Mathematically, δ is simply the next integer less than F. The probability of becoming infected
is directly related to the proportion of human hosts that are infectious (x), the susceptibility of
the vectors to infection (k), and the proportion of vectors that progress from being infected to
infectious if they live long enough (v). These three factors represent the probabilities of a vector
feeding on an infectious host and of the ingested gametocytes successfully transforming to
gametes, zygotes, ookinetes, oocysts, and then infectious sporozoites. The original model
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considered x, k, and v separately, but for the purposes of applying the model, x and k were
treated together as K.19,21 Also, v was assumed to be 1 and ignored because losses at these
separate stages of vector infection and sporogony could not be resolved in the field.19,21 Thus,
we will refer only to the product of x, k, and v as κ, which reflects the overall capacity of a
human reservoir to produce infectious vectors. Thus, if we assume that superinfections of
mosquitoes are negligible, Si, the probability of a mosquito being infectious after surviving to
a given feeding cycle i, can be expressed as a function of the number of blood-meals it has
taken which have the potential to result in infectious status:

(4)

Thus, for any given age group, i, the probability of a mosquito surviving from emergence and
being infective (Ii) is the product of these two possible occurrences:

(5)

The cyclical nature of this model allows the probable mean number of infectious bites
transmitted by a typical emerging mosquito over the course of its lifetime (β) to be calculated
as the product of the human biting preference and the sum of the probabilities being alive and
infectious at each cycle:

(6)

However, as will be seen in the results, the contributions of individual age classes to overall
transmission level peaks between the fourth and ninth feeding cycle, and does not increase
indefinitely with i when modeled using field-based estimates for Pf, κ, Q, and F. Thus, it is
only necessary to sum those feeding cycles which contribute significantly to transmission. For
our purposes, we will only consider the first 20 cycles because these are the most quantitatively
important (see Results). Furthermore, in field populations of mosquitoes, the assumption that
survivorship is independent of age is not strictly true and as mosquitoes age and senesce, their
mortality increases exponentially.26 Although senescence usually has little impact on the
relative abundance of earlier age groups, very few females live beyond their tenth feeding
cycle26 and the oldest reported field-collected vector mosquito that we are aware of is an
Anopheles funestus female from Muheza, Tanzania, which completed 14 gonotrophic cycles.
27 For the purposes of examining its contributing factors, by substituting equation 4 into
equation 5 and then equation 5 into equation 6, β can be expressed in more detail as

(7)

which by rearrangement yields

(8)

For the purpose of resolving malaria transmission by individual mosquitoes into two distinct
contributing factors, this equation can be broken down into κ and L, a life–history function for
the local vector population:

(9)

where

(10)

Thus, the transmission capacity of individual mosquitoes becomes the product of two separate
variables with real meaning in the field. κ reflects the effective infectiousness of the human
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reservoir and the physiologic compatibility of the local vector and parasite populations. L
reflects the ability of an individual vector to transmit malaria from infectious human hosts over
its lifetime, based on its longevity (Pf) and blood-feeding habits (Q). Equation 9 allows the
contributions of the infectious reservoir and the mosquito life–histories to be considered
separately as two crucial determinants of overall transmission intensity. Note that L differs
from individual vectorial capacity, a parameter derived for similar purposes,19,22 in that it
reflects the potential of a mosquito to transmit malaria per lifetime rather than per bite.

Modeling malaria transmission by vector populations in human communities
For both the immediate purpose of modeling individual sites under specific conditions, and for
the longer-term aim of modeling malaria dynamics on larger scales, it is useful to treat malaria
transmission foci as discrete entities. Malaria vectors, parasites, and human hosts occur
predominantly as patchworks of quite distinct populations, such as towns or villages, with
varying degrees of connectivity or exchange. Discrete populations can be reasonably modeled
at the community level.23,28,29 Furthermore, models of discrete foci may subsequently allow
the interactions between such populations over larger scales to be studied as networks of inter-
linked populations.30 The importance of heterogeneities in malaria dynamics is well
established31–33 and models for studying interactions among patchworks of populations are
being developed by ecologists.30 The simplest definition of the EIR4 is the product of the
human biting rate and the prevalence of sporozoites in the vector population:

(11)

However, this model offers an alternative form in which to calculate EIR. Intuitively, the EIR
experienced by an individual person in such a discrete transmission focus is the product of the
mean number of infections transmitted by individual mosquitoes over their lifetimes (β) and
the mean rate at which vector mosquitoes emerge (E) divided by the number of humans
available for them to feed upon (Nh):

(12)

Expressed in terms that are meaningful to those concerned with controlling transmission, we
substitute equation 9 into equation 12:

(13)

Relating the model to entomologic measurements and estimating emergence rates
The proportion of Anopheles mosquitoes in wild populations that are infectious is usually
measured as the sporozoite rate, by circumsporozoite protein ELISA, or by salivary gland
dissection.4 The proportion of mosquitoes that are infectious at any given time fluctuates with
emergence rate, reflecting changes in the age distribution of the mosquito population. However,
over complete seasons or long periods of perennial transmission, such fluctuations are likely
to balance themselves out so that S, the mean proportion of adult vectors which are infectious,
reflects the proportion of bites that are infectious over the lifetime of an individual mosquito.
Thus, S is equal to the number of infectious bites divided by the number of total bites for an
individual mosquito over its lifetime:

(14)

This model also allows us to estimate emergence rates of vectors from the overall human biting
rate (HBt) and average number of bites per lifetime (bh). Combining equations 11 and 12:

(15)

So by substituting equation 14 for S and rearranging:
(16)
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and

(17)

Thus it becomes possible to estimate the emergence rate of mosquitoes per human host or,
where the human population size is known, for the whole site with relatively straightforward
adult mosquito sampling and age-grading methods.

Modeling specific malaria endemic sites
Four Plasmodium falciparum-endemic sites, Kankiya and Kaduna in Nigeria, Namawala in
Tanzania, and Butelgut in Papua New Guinea were identified in the literature where values for
EIR, S, HBt, κ, Q, Pf, and F have all been either measured directly or where reported values
for other parameters allow their calculation (Table 2). All of these sites are intense foci of P.
falciparum transmission, morbidity, and mortality from the southwest Pacific and both sides
of the African continent, spanning an approximately ten-fold range of annual EIR with varying
degrees of seasonality. It is also noteworthy that the sampling and analytical methods used to
study these four sites have been similarly disparate. Although other vector species do occur at
these sites, for simplicity we consider only the dominant vector species of that area. Where
these parameters have been measured for Anopheles gambiae sensu lato (Kaduna and
Namawala), or where a complete set of parameters for the species complex can only be obtained
by considering both An. gambiae sensu stricto and An. arabiensis (Namawala), these are treated
as a single, homogenous population. Note also that at Butelgut, P. vivax is also quite prevalent
and the methods used to estimate κ and F could not distinguish these species.21 Therefore the
values output from this model for β, S, and EIR represent combined or mean estimates for the
mixture of the two Plasmodium species. For the other three sites, these values pertain to P.
falciparum only, although other parasite species are present at much lower levels.

RESULTS
Contributions of vector age classes to malaria transmission

Figure 2 shows the survival and infectious status probabilities of individual mosquitoes over
their lifetimes at each of the four sites, as calculated using this model and the input parameter
values for κ, Pf, F, and Q listed in Table 1. The probable number of infectious bites transmitted
by a mosquito is clearly defined by the overlap of the two functions, mortality and
infectiousness, over the course of its lifetime (Figure 2). The probability of infectious survival
(Ii) peaks at feeding cycles 8, 10, 5, and 4 for Kankiya, Kaduna, Namawala, and Butelgut,
respectively (Figure 2A, B, C, and D, respectively).

The life-histories of mosquitoes in Butelgut (Figure 2D) and Namawala (Figure 2C) are
particularly well suited to the simple model described here. Indeed, the predicted peak of Ii at
Namawala (Figure 2C) is consistent with direct measurements of age–specific sporozoite rates
in An. gambiae s.s. at other sites in Tanzania.27 However, both sites from Nigeria, Kaduna in
particular, diverge appreciably from the assumptions of this simple model. According to the
calculations of this model, age classes as old as the twentieth feeding cycle contribute to
transmission at both sites and, in the case of Kaduna, the high level of human reservoir
infectiousness results in infectious probabilities of up to 70% in these older mosquitoes.

Predicted life history characteristics of malaria transmission by individual vectors
The greater longevity of vectors at both Nigerian sites result in higher numbers of infectious
bites per mosquito (Table 3), even in Kankiya where the An. arabiensis vectors are only
moderately anthropophilic and the human reservoir is less infectious than any of the other sites
except Namawala (Table 2). This is also reflected in values for L, the lifetime transmission
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potential of individual vectors, indicating that vectors at the two Nigerian sites are
approximately eight-fold more efficient than those at Namawala and Butelgut (Table 3). Note
that L represents a more meaningful expression of the efficiency with which individual
mosquitoes transmit malaria than individual vectorial capacity19,22 because it represents the
potential number of infective bites transmitted per lifetime rather than per bite (see equations
9 and 10). Examination of bh, the lifetime biting potential of vectors at the four sites, shows
just how much this can vary and how much it can contribute to the higher L values seen in
Kankiya and Kaduna (Table 3). Predicted sporozoite rates (S) at all four sites compare
reasonably well with published estimates (Table 3) ± SD, being 1.22 ± 0.38 (range = 0.69–
1.60) of reported values from the literature, and not significantly different (degrees of freedom
[df] = 3, t = −1.61, P = 0.21, by paired t-test). This is particularly encouraging, given that
inspection of the predicted life–histories of vectors at Kaduna and Kankiya (Figure 2) indicates
that lifetime infective bites and thus sporozoite rates are probably somewhat overestimated at
these sites.

Predicted EIR values
Predictions of the annual EIR are also quite good (Table 3). The predicted EIR ± SD values
are 1.13 ± 0.37 times (range = 0.84–1.59) and do not differ significantly from (df = 3, t = −0.81,
P = 0.48, by paired t-test) those measured in the field. It is also noteworthy that by far the most
deviant estimate (59% higher than field estimate) is Kaduna, the site that most clearly deviates
from the assumptions of the model. For comparison, the same input parameters with classical
models34 predict EIRs that are 0.76 ± 0.30 (range = 0.39–1.15) of those measured in the field
and do not differ significantly from those of this model (df = 3, t = −2.06, P = 0.13, by paired
t-test).

Relative importance of contributing factors to malaria transmission intensity
The relative contributions of κ, L, and E/Nh to the EIR at each of the four sites modeled are
presented graphically in Figure 3. There is greater between-site variation in L and E/Nh than
in κ, their standard deviations being 95%, 108%, and 61% of their mean values, respectively.
This suggests that the infectiousness of the human reservoir may be the least important factor
in determining the level of transmission intensity in an area. Note also that the order of the sites
in terms of L is approximately opposite to that in terms of the EIR, whereas the two sites with
the highest EIR also have the highest E/Nh. This demonstrates how at Butelgut and Namawala
moderately efficient vectors transmit extremely intense malaria by sheer weight of numbers,
whereas at Kaduna and Kankiya small numbers of highly efficient vectors readily maintain
intense, if somewhat lower, transmission.

DISCUSSION
The most important feature of this model is that EIR, the main output variable, is both
meaningful and testable (Table 3). Other advantages of this model are the clarity with which
it illustrates the role of different vector age classes in malaria transmission (Figure 2) and the
relative importance of human reservoir infectiousness, vector life-history, vector emergence
rates, and human population size as determinants of transmission intensity (Figure 3). The
model has potential applications for the development and implementation of transmission
control measures and for public health education.

The accuracy and precision of all malaria models are limited by the necessity to simplify the
complex life cycle of the parasite, by the absence or inherent imprecision of field estimates,
and by deviations from fundamental assumptions. Calculated infection rates at Kaduna and
Kankiya deviate clearly from assumptions of the model and reality in the field. First, sporozoite
rates exceed 20% among vector age classes contributing to transmission, indicating that super-
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infections are likely to occur and sporozoite rates in the older age groups are overestimated.
Second, mosquitoes that have completed more than 10 feeding cycles contribute little to malaria
transmission in the field because of increasing mortality caused by senescence.26,35 It is
noteworthy that Kaduna gives by far the most deviant estimate of EIR. This overestimation
probably results from the assumption, rather than estimation, of a very short feeding cycle by
the original authors, highlighting the importance of field estimates in malaria models. Despite
these sources of error, this model predicts EIR quite accurately over the broad spectrum of
epidemiologic circumstances that the four endemic sites represent. This indicates that the input
parameters used can explain most of the heterogeneity of EIR in endemic areas and that
research, implementation, and education in the malaria vector-control field should focus on
the underlying determinants of these fundamental parameters.

The prediction of malaria transmission intensity as the EIR is clearly more useful than either
vectorial capacity or reproductive number because this parameter is more meaningful as an
epidemiologic predictor and is testable by measuring the EIR directly. This model predicts the
EIR well and is slightly more accurate than previous classical Mc-Donald-Ross–type models.
34 Here, we have made reasonable estimates of the EIR transmitted by the dominant vector
species at four very different endemic sites based on only five input parameters; κ, Pf, F, Q,
and HBt. The expression of Pf, F, and Q as their combined function, L, the lifetime transmission
potential of individual vectors (equation 10) can be clearly represented graphically (Figure 2).
This allows the five input parameters to be simplified into only three determinants, each
representing distinct targets for transmission control (equation 13). The structure of equation
13 implies that proportionately equivalent changes to any of these contributors will have the
same impact on EIR and that, when combined, these can amplify each other’s effects. This
implies that using a handful of modestly effective tools, in an integrated fashion, may result in
considerable reductions of the EIR.

One of the primary uses of models is to predict the effects of specific intervention measures,
based on assumed or measured impacts on the vector population or infectious reservoir.1,2,
23,36 For example, our predictions of the impact of bed nets on the sporozoite rate in
intervention areas are consistent with observations in the field.20 Such predictions may be
useful for assessing the potential impacts of new transmission control tools37 and for
prioritizing research resources accordingly. New models need to be validated using a handful
of sites that have been studied in considerable detail and that represent as diverse a cross-section
of malaria-endemic settings as possible. Validated models can then assess control strategies
across the spectrum of conditions that may be encountered in the field, using data from these
sites. Additionally, the study of transmission foci in clusters may allow the application of
metapopulation methods30 that model patchworks of populations with respect to connectivity
and stability. These ecologic methods could allow the flux of malaria parasites across larger
scales to be modeled so that we gain quantitative insights into the difference between local
elimination of malaria and its suppression over larger areas.

Compared to such ambitious goals, this is a very simple model that allows EIR to be estimated
by addition, subtraction, multiplication, and division using any commercially available
spreadsheet program or even a pocket calculator. Nevertheless, a striking feature of the
literature is just how few sites exist from which all of the necessary parameters (κ, Pf, F, Q,
and HBt) have been reported. We could only identify four sites that could be modeled and two
of these (Kaduna and Kankiya) required us to assume or calculate values for the length of the
feeding cycle and the sporogonic incubation period because direct estimates were unavailable.
Standard methods for measuring Pf and Q are well established and are discussed in detail
elsewhere.19,21,25 However, the length of the sporogonic cycle in relation to that of the
feeding cycle is an important input for this model that has rarely been measured in the field.
Given that this extrinsic incubation period of the parasite can strongly influence transmission
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intensity and can vary seasonally16 or with longer term climate cycles,38,39 this represents a
considerable gap in our knowledge base for future modeling studies. Also, the infectiousness
of the human reservoir remains a relatively difficult parameter to measure in the field22 and
it is unclear whether determination of κ by direct feeding methods is satisfactory or whether
entomologic methods are necessary.21 In summary, it seems that obtaining good estimates of
these five input parameters is a large task, which can only be justified at a limited number of
research sites, for the purposes outlined in the previous paragraph.

The usefulness of this and other models are very much dependent on the resources available
to those who could use them. For the purpose of vector-control implementation rather than
research, measuring these parameters for every endemic site is impossible. This is particularly
true in malaria-endemic countries, which cannot afford a fraction of the resources applied to
basic weather forecasts in developed nations. This limitation may be overcome in the future
as submodels for predicting such primary input parameters from climatologic and hydrologic
measurements become more refined.11,38,40–42 However, direct measurements of the EIR
remains the gold standard for the quantification of transmission intensity so we emphasize that
the EIR should be measured directly in epidemiologic studies.4,16

Nevertheless, this model does have potential as a decision-making tool for vector-control
planning.20 Vector-control program managers need to know what impact they can expect to
see on EIR for a given expenditure of resources. Additionally, the detailed modeling studies
of control interventions in representative study sites may provide a sufficient set of scenarios
for the tailoring of control programs in comparable settings. This principle has already been
applied to the testing of bed nets and vaccines in a number of settings which span a wide range
of EIR levels.15,43 However, this model only represents a rough guide with which to assess
practically feasible combinations of transmission control measures with respect to their impact
on the EIR. As such, its predictions are only as good as the educated guesses of what can be
practically achieved under local conditions. We also emphasize that, in reality, malaria
transmission distribution is quite heterogeneous within even small communities, and that
control should be appropriately targeted.33

This simple model demonstrates how the intensity of malaria transmission is largely explained
by a few fundamental determinants: human population size and infectiousness, vector
emergence rate, longevity, feeding cycle length and human blood index, and the sporogonic
incubation time of the parasite. The distribution of malaria transmission among older vectors
can be easily visualized and the probable number of infectious bites transmitted by individual
vectors can be readily appreciated as a function of the area under these curves (Figure 2).
Classical continuous models1 and existing simulation models23,28,29 require either calculus
or considerable computer processing, respectively, to complete the equivalent of some of these
tasks. This model therefore represents a promising tool for teaching public health and medical
professionals about the underlying determinants of malaria transmission intensity. In this
context, the feeding cycle-by–feeding cycle spreadsheet approach, as outlined here, may be
more instructive than classical and cyclical models that have more elegant solutions and
summarize entire mosquito life spans with single equations.
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Figure 1.
Schematic outline of the model and its major parameters. See Table 1 for definitions.
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Figure 2.
Predicted proportion of emerging mosquitoes that are alive (Pi; □), infectious (Si; ◇) or both
(Ii; ●) over the course of their lifetime, expressed in terms of the number of bloodmeals taken
(i). See Table 1 for definitions.
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Figure 3.
Between–site comparison of A, the infectiousness of the human reservoir; B, the lifetime
malaria transmission capacity of individual vectors; C, their emergence rates relative to the
size of the human populations; D, entomologic inoculation rates; and E, human biting rates.
See Table 1 for definitions and Tables 2 and 3 for units and derivations.
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Table 2
Reported estimates of entomologic and parasitologic parameters used to model malaria transmission at individual sites

Site name Kankiya Kaduna Namawala Butelgut

Country Nigeria Nigeria Tanzania Papua New Guinea
Nh (persons) Not reported 84646 1,21247 9848
Dominant vector species Anopheles

arabiensis49
A. gambiae s.l.
50 A. gambiae s.l.51 A. punctulatus52

HBt (bites per person per year) 1,12949 2,48050 24,09051 15,33052
P (per day) 0.9449 0.9050 0.8353 0.86*
f (days) 3† 2† 2.722 3.748
Pf (per feeding cycle) 0.83‡ 0.81‡ 0.6222 0.5821
Mean or median temperature (°C) 26.849 25.650 25.622 27.554
n (days) 10.3§ 11.6§ 10.7 or 11.6¶§ 8.3 or 9.6¶§
F (feeding cycles) 3.4# 5.8# 4.0 or 4.3**# 2.321
δ (feeding cycles) 3 5 3 or 4†† 2
Q (human bites per bite) 0.7549 0.9046 0.9555 0.7221
κ (infective bites per human bite) 0.02449‡‡ 0.05546 0.01822, 53 0.07421

*
Back-calculated from f48 and Pf.21

†
Assumed by original authors.

‡
Pf = (P)f.

§
Calculated38 from mean or median temperatures.

¶
Back-calculated from f48 and F.21

#
F = n/f.

**
Calculated from Pf and (Pf)F values, estimated from parity and from sporozoite and delayed oocyst rates, respectively.22

††
The lower value was used in all calculations.

‡‡
Mean of values reported for peak and off-peak transmission periods.
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