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Abstract

Background: Polyadenylated, mRNA-like transcripts with no coding potential are abundant in eukaryotes, but the functions
of these long non-coding RNAs (ncRNAs) are enigmatic. In meiosis, Rec12 (Spo11) catalyzes the formation of dsDNA breaks
(DSBs) that initiate homologous recombination. Most meiotic recombination is positioned at hotspots, but knowledge of
the mechanisms is nebulous. In the fission yeast genome DSBs are located within 194 prominent peaks separated on
average by 65-kbp intervals of DNA that are largely free of DSBs.

Methodology/Principal Findings: We compared the genome-wide distribution of DSB peaks to that of polyadenylated
ncRNA molecules of the prl class. DSB peaks map to ncRNA loci that may be situated within ORFs, near the boundaries of
ORFs and intergenic regions, or most often within intergenic regions. Unconditional statistical tests revealed that this
colocalization is non-random and robust (P<5.5x10"®). Furthermore, we tested and rejected the hypothesis that the ncRNA
loci and DSB peaks localize preferentially, but independently, to a third entity on the chromosomes.

Conclusions/Significance: Meiotic DSB hotspots are directed to loci that express polyadenylated ncRNAs. This reveals an
unexpected, possibly unitary mechanism for what directs meiotic recombination to hotspots. It also reveals a likely
biological function for enigmatic ncRNAs. We propose specific mechanisms by which ncRNA molecules, or some aspect of
RNA metabolism associated with ncRNA loci, help to position recombination protein complexes at DSB hotspots within

chromosomes.
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Introduction

Over the past decade it has become clear that non-coding RNA
(ncRNA) molecules have a major role in a vast array of diverse
cellular processes. Small (~20-30 nt) ncRNAs such as siRNA and
miRNA can trigger the formation of euchromatin or heterochro-
matin, affect positively or negatively transcription, induce the
deadenylation of mRNA, trigger the targeted degradation of
mRNA, and regulate positively or negatively the translation of
functional mRNAs (reviewed by [1,2]). Nucleotide sequence
complementarity between the small ncRNAs and target molecules
serves to guide various protein complexes to the appropriate targets
within mRNA (e.g., for cleavage by Argonaute) [3] or within DNA of
chromosomes (e.g., for heterochromatinization by RITS) [4].

Another class of ncRNA molecules, the larger mRNA-like
transcripts with little or no coding potential, are ubiquitous in
eukaryotes ranging from fission yeast to humans [5,6]. While the
precise values are unknown and vary from organism to organism,
the total number of polyadenylated ncRNAs may exceed the
number of protein-coding mRNAs. With a few exceptions (e.g., [7—
10]) the function of these long ncRNAs is completely obscure, but
it seems almost certain that they (like small ncRINAs) will be found
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to play important roles in the cell [1,2]. We report here an
unexpected, robust connection between such ncRNAs and meiotic
chromosome dynamics.

In meiosis, a combination of crossover recombination structures
(chiasmata) and sister chromatid cohesion distal to chiasmata help
to align homologous chromosome pairs and ensure their proper
segregation in the first meiotic division (Figure 1) [11].
Consequently, meiotic recombination is not distributed randomly,
but is tightly regulated to ensure that each chromosome pair
receives at least one chiasma. Furthermore, recombination is
positioned preferentially at hotspots along each chromosome, but
current knowledge of the mechanisms for this clustering is
knowledge of mechanisms for this clustering is nebulous (reviewed
by [12-14]). The DNA binding sites for some transcription factors
are hotspots [15-22], but there is no obvious DNA sequence
preference (i.e., specific consensus sequence) for hotspots across the
genome [23,24]. The relative accessibility of DNA in regions of
“open” chromatin associated with transcription might facilitate
the entry of meiotic recombination enzymes [16,25-28], but open
chromatin is insufficient to promote recombination [29] and some
hotspots lack open chromatin [30,31]. The binding of certain
transcription factors [16,22,32], chromatin remodeling by tran-
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scription factors [25,33], and transcription levels [19,34,35] either
influence or are essential for local hotspot activity. Despite all of
these seemingly clear connections to transcription, and paradox-
ically, hotspots in diverse organisms tend to cluster preferentially in
non-coding regions [23,24,30]. It is therefore likely that additional,
yet-unidentified factors help to regulate where meiotic recombi-
nation occurs.

The meiotic recombination protein Spoll (Recl2 in fission
yeast) is a conserved, topoisomerase Il-like enzyme which
introduces dsDNA breaks (DSBs) that initiate recombination
[36]. These meiotic DSBs have been well characterized in two
highly-diverged [37] organisms, budding yeast and fission yeast,
and likely reflect a common mechanism for the initiation of
recombination in all eukaryotes (reviewed by [14]). A recent
analysis of DNA tiling microarrays revealed the genome-wide
distribution of DSBs in fission yeast [23]. Most of the DSBs are
clustered within 194 prominent peaks that are spaced on average
about 65 kbp apart, and between the peaks there are few, if any,
detectable DSBs. The DSB clusters are found in both coding
regions (i.e., genes) and in intergenic regions (IGRs), but they
localize preferentially to large IGRs. Other than this general bias
towards IGRs, no discrete features which might be responsible for
DSB hotspot clustering were identified [23]. We report here that
the DSB hotspots are directed preferentially to loci that express

Diploid cell

Meiosis |
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Meiosis I

f%ﬁ* f%*

Haploid products

Figure 1. Hallmarks of meiosis. After DNA replication, homologous
chromosomes (light and dark) pair and undergo a high rate of
recombination. Recombination events are not distributed randomly,
but cluster at hotspots. Structures created by crossover recombination
(chiasmata) and sister chromatid cohesion (stars) facilitate the
alignment and segregation of homologs in the first meiotic division.
The second meiotic division is similar to mitosis, where sister
chromatids segregate to opposite poles.
doi:10.1371/journal.pone.0002887.g001
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polyadenylated ncRNAs. We propose specific mechanisms by
which ncRNA molecules, or features of ncRNA loci, help to
regulate the positioning of meiotic recombination.

Results

Loci that express polyadenylated, ncRNAs are embedded
within DSB peaks

Our long-term interest is to define how meiotic homologous
recombination becomes localized at hotspots. We therefore
examined the genomic DNA sequences surrounding meiotic
DSB peaks of fission yeast, and we discovered that several of the
peaks encompass DNA sequences which express ncRNA mole-
cules. For example, a prominent DSB peak within the rec7 gene
encompasses three polyadenylated, transcript from opposite strand
RNA molecules, tos!, tos2, and tos3 (Figure 2A). These non-
coding fos transcripts are induced only in meiosis [38] and are
therefore present when Recl2 (Spoll) catalyses the formation of
DSBs. Similarly, some prominent DSB peaks contain prl
transcripts (polyA-bearing RNA without long open reading frames
[5]) (e.g, Figure 2B). Such non-coding pr/ transcripts are
expressed in meiosis, are found within both coding regions and
IGRs but localize preferentially to large IGRs, and some of them
are spliced [5,39]. In other words, the distribution and
developmental regulation of some polyadenylated, ncRNA
molecules seem to coincide with those of prominent DSB peaks.

Genome-wide analyses of association between pr/ loci
and DSB peaks

The fission yeast genome contains about 5,000 coding genes
[40]. Among 987 cDNA clones of a random library derived from
cells in mitosis and meiosis, 68 correspond to polyadenylated,
ncRNAs of the prl class [5]. This sample is of sufficient size and
complexity to be representative of the distribution and abundance
of prl molecules expressed from the genome. We therefore
compared the genome-wide distribution of DSB peaks obtained
from microarray analysis [23] to that of genomic DNA sequences
from which the representative pr/ molecules are transcribed [5]
(Table 1). Since a subset of the DSB peaks were classified
previously as being “prominent” (as opposed to “weak”) [23], we
analyzed both the prominent peaks alone and all peaks together
(prominent plus weak).

The average distance between prominent DSB peaks is 65 kbp
and the average distance between the representative prl loci is 185
kbp. One might expect these prlloci to map, on average, about 33
kbp away from DSB peaks. However, the distribution of distances
between prl loci and their neighboring DSB peaks is skewed
markedly towards a much shorter distance (Figure 3A-B).
Furthermore, there is an unexpectedly high frequency of perfect
colocalization (Figure 2, Table 1): Of the 68 ncRNA molecules
analyzed, 18 (26.5%) map entirely within prominent DSB peaks.
Six additional ncRNAs (8.8%) map entirely within weak DSB
peaks. Fourteen more (20.5%) fall on or near the flanks of DSB
peaks (within 5 kbp). In toto, about 56% of the representative
ncRNA loci are associated with DSB peaks by these criteria. To
analyze these data further, we calculated the unconditional
genome-wide probabilities of perfect colocalization, which are
the most conservative and rigorous criteria possible.

The 194 prominent DSB peaks encompass about 700 kbp
(5.6%) of the genome sequence and those peaks are separated by
regions essentially devoid of DSBs [23]. One can view the ncRNA
molecules as having a binomial distribution with respect to landing
successfully (yes or no) within a DSB peak. We therefore analyzed
the data using the exact binomial test of a single proportion. The
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Figure 2. Colocalization of DSB hotspots with ncRNA. The frequencies of DSBs for each oligonucleotide tile (circles) and DSB peaks (curves)
were plotted as a function of distance and are shown relative to the positions of protein-coding ORFs (boxes) and long ncRNAs (tos and prl, arrowhead
indicates poly-A tail). The ncRNAs can be found within “weak” (C, 1) and “prominent” (A, B, D-H) DSB peaks. Peaks and ncRNAs can map together
within ORFs (A), near ORF-IGR boundaries (D, E), or within IGRs (B, C, F-I). The DSB-associated, polyadenylated ncRNAs may be spliced (H, I) or not (A-

G).
doi:10.1371/journal.pone.0002887.g002

probability of success under the null hypothesis of random
placement anywhere within the genome would be 5.6% per
molecule. This yields an expected value of 3.8 out of 68 prl
molecules falling within a prominent DSB peak, and 96.4%
confidence that the number of molecules within a prominent peak
should be seven or less. The probability of observing 18 or more prl
molecules out of 68 landing within a prominent DSB peak by
chance is low (P=2.5x10"% (Figure 3C). We conclude that
there is a positive, non-random association between loci which
express the prl class of ncRNA molecules and the positions of
prominent DSB clusters that initiate meiotic recombination.

The preceding analyses considered the 194 prominent DSB
peaks that collectively contain most of the meiotic DSBs catalyzed
by Recl2 (Spoll). However, there are an additional 159 “weak”
DSB peaks that encompass less than 5% of the genome and whose
aggregate area integrals contribute 12% of the total DSBs
measured across the genome [23]. Within these weak peaks we
found six additional ncRNA transcripts of the pr/ data set (e.g.,
Figure 2C, I). Therefore 35.3% (24 of 68) of the pr/ molecules fall
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entirely within a DSB peak (weak or prominent). The complete set
of all detectable DSB peaks (weak and prominent) map to about
10.6% of the genome sequence [23]. Under a null-hypothesis
success probability of 10.6% per molecule, one would expect 7.2 of
the 68 prl molecules to fall within a peak by chance, and have
97.4% confidence that the number falling within a peak would be
12 or less. The probability of observing 24 or more occurrences
out of 68 is low (P=5.5x10"% (Figure 3C). We conclude that
there is a positive, non-random association between pr{ loci and
DSB peaks for the entire contingent of all known DSB peaks
(prominent and weak) across the genome.

Test of an alternative hypothesis: Independent
localization to IGRs?

About 81% of the prominent DSB peaks, 61% of the weak DSB
peaks, and 87% of the representative prl/ loci are within IGRs
[5,23]. This raises the possibility that the apparent non-random
associations noted above arise simply from p/ loci and DSB peaks
localizing preferentially, but independently, to IGRs. To explore
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Table 1. Genome-wide distribution of representative prl loci and their proximity to DSB peaks.

Distance from pr/ locus to DSB peaks (kbp)>
Characteristics of pr/locus expressing ncRNA' Prominent peaks All peaks
Locus Chr. Position (bp) Dir. Left Right Left Right
prl19 1 0051158 to 0051583 f 422 13,5 422 13,5
pri37 1 0071982 to 0072380 r 63.2 7.3 34 43
prlo3 1 0237074 to 0237848 r 0.0 0.0 0.0 0.0
pri27 1 0299464 to 0299610 f 56.8 78.7 421 78.7
prlos 1 0434104 to 0434843 f 488 2.5 2.7 2.5
prl47 1 0491816 to 0492201 r 27.7 165.6 27.7 25.3
pri50 1 0977075 to 0977568 r 8.1 169.6 8.1 154
pris8 1 1393082 to 1393528 r 143 85.8 14.3 58.8
prl57 1 2327258 to 2327629 R 0.0 0.0 0.0 0.0
prl59 1 2362411 to 2362747 f 323 16.8 0.7 16.8
pri55 1 2416235 to 2416706 f 16.0 5.0 16.0 5.0
prl43 1 2432340 to 2432921 r 52 158 5.2 158
prl65 1 2472399 to 2472897 r 18.8 438 0.0 0.0
prls6 1 2885670 to 2886792 r 6.6 43 6.6 43
pri31 1 2975608 to 2976007 r 0.0 0.0 0.0 0.0
prio1 1 3003816 to 3004916 f 27.6 23.5 27.6 23.5
prl14 1 3190456 to 3191217 f 285 80.1 285 80.1
prl18 1 3699381 to 3700010 r 118.0 453 342 453
prl48 1 3942128 to 3942906 R 0.1 457 0.1 457
prl49 1 4008184 to 4008423 r 0.0 0.0 0.0 0.0
prl63 1 4008184 to 4008423 r 0.0 0.0 0.0 0.0
pri53 1 4008172 to 4008681 f 0.0 0.0 0.0 0.0
prl13 1 4259371 to 4259795 r 13.2 98.4 13.2 98.4
prl12 1 4439118 to 4439451 f 0.0 0.0 0.0 0.0
prl46 1 4651351 to 4651792 r 2112 20.2 436 20.2
pri54 1 4820804 to 4821352 f 29.5 57.2 29.5 20.7
pri52 1 5023945 to 5024116 f 108.7 131.5 60.4 383
pri28 1 5441748 to 5442341 r 0.0 0.0 0.0 0.0
pri21 1 5454229 to 5454498 r 2.7 485 2.7 109
prl61 1 5546205 to 5546648 f 39.4 na’ 39.4 na’
pri11 2 0028624 to 0028796 f na.’ 97.0 na’ 97.0
prl62 2 0227372 to 0227760 f 0.0 0.0 0.0 0.0
prl66 2 0547325 to 0547761 f 18.7 25.0 18.7 25.0
pri34 2 0835871 to 0836243 f 0.0 0.0 0.0 0.0
pri42 2 1032324 to 1032771 f 64.4 1.2 64.4 1.2
prl15 2 1329046 to 1329760 r 57.6 309 9.8 309
pri24 2 1497664 to 1498394 r 388 449 388 449
prl41 2 1652051 to 1652489 f 76.9 23.7 76.9 23.7
prl17 2 1777375 to 1777788 r 236 107.6 0.0 0.0
plr60 2 2005290 to 2005716 r 50.7 190.8 214 136
pri38 2 2186474 to 2186908 r 2320 9.6 71.8 9.6
prl68 2 2204841 to 2205295 r 22 130.7 22 60.6
prlog 2 2485488 to 2486126 r 10.7 38.7 0.0 0.0
prlo9 2 2485500 to 2486230 r 10.7 387 0.0 0.0
pri25 2 2567830 to 2568256 f 359 139 123 5.2
pri39 2 2804337 to 2804580 r 0.0 0.0 0.0 0.0
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this possibility further, we restricted the analysis to the 40% of the
fission yeast genome comprised of IGRs, and we computed the
corresponding conditional probabilities under the binomial
distribution and null hypothesis of no association. DSB peaks
(prominent and weak) cover 22% of DNA within IGRs, prominent
peaks cover 14% of DNA within IGRs, and 59 prl loci are specific
to IGRs. Twenty four of the 59 IGR-specific prl loci (41%) occur
within a DSB peak (P=9.6x10"%, 18 of which (31%) occur
within a prominent peak (P=8.6x10"%. We conclude that the
intimate association between DSB peaks and pr/loci does not arise
from independently preferential localization of each to an IGR.
Rather, the DSB peaks colocalize specifically with ncRNA loci
that may be situated within ORFs, near ORF-IGR boundaries, or
most often within IGRs (e.g., Figure 2).

Discussion

It is implausible, statistically, that the association between DSB
peaks and ncRNAs of the prl class is coincidental (P<5.5x10"%,
Figure 3C). The strength of this association was documented
using the most strict criteria possible (perfect colocalization) and it
takes into account all of those instances where DSB peaks and
representative ncRNA loci do not colocalize precisely. It applies

@ PLoS ONE | www.plosone.org

Table 1. cont.
Distance from pr/ locus to DSB peaks (kbp)>

Characteristics of pr/locus expressing ncRNA' Prominent peaks All peaks

Locus Chr. Position (bp) Dir. Left Right Left Right
pri26 2 2827281 to 2827631 f 0.0 0.0 0.0 0.0
pri23 2 3120779 to 3120982 f 48.7 321 48.7 143
prlo4 2 3295176 to 3295428 r 136.5 824 50.3 824
pri36 2 3313372 to 3313800 f 154.5 64.2 68.3 64.2
pri20 2 3934357 to 3934809 r 704 3.2 0.0 0.0
prlo7 3 0041985 to 0042728 f na’ 10.1 245 4.0
pri22 3 0084683 to 0085096 r 5.0 320 5.0 320
prlo2 3 0394354 to 0394798 f 39.1 166.8 39.1 349
prl64 3 0827254 to 0827546 f 14.3 125.4 1.6 111.1
prl16 3 0882518 to 0882834 r 69.2 70.6 56.6 56.2
pri33 3 0953976 to 0954331 f 0.0 0.0 0.0 0.0
pri44 3 0955413 to 0955760 f 0.0 0.0 0.0 0.0
prlo6 3 0968168 to 0968477 r 0.0 0.0 0.0 0.0
prl67 3 1432003 to 1432625 f 304 113.1 16.7 113.1
pri51 3 1514062 to 1514343 f 1125 31.2 98.7 31.2
pri32 3 1702505 to 1702934 r 28.9 7.0 0.0 0.0
prl10 3 1837689 to 1838380 r 0.0 0.0 0.0 0.0
pri30 3 2009624 to 2010229 r 88.2 283 88.2 11.6
pri45 3 2299407 to 2300209 r 0.0 0.0 0.0 0.0
pri35 3 2310377 to 2310786 f 0.0 0.0 0.0 0.0
prl40 3 2391631 to 2391821 f 323 287 9.3 287
pri29 3 2419051 to 2419799 f 59.6 0.7 36.5 0.7
"Indicate the chromosome (Chr.), position, and direction (Dir.) of transcription (F, forward; R, reverse) for loci from which each prl ncRNA is transcribed. Direction of
transcription is relative to the genome sequence.

2Distances between prl loci and the nearest DSB peaks (left and right) were determined as described in the methods section. Because 88% of the observed DSBs (from
peak area integrals) were classified previously as falling within prominent DSB peaks [23], we analyzed the data both for prominent DSB peaks and for all DSB peaks
(prominent plus weak). Ends of prl molecules (loci) that map within DSB peaks were assigned distance values of zero.

3N.a., not applicable. There is no known DSB peak between the prl locus and the end of the chromosome, so no distance could be determined.
doi:10.1371/journal.pone.0002887.t001

whether one examines only the prominent DSB peaks or all
known DSB peaks. Moreover, we tested and rejected the
hypothesis that prl loci and DSB peaks localize preferentially,
but independently, to a third entity on the chromosomes.
Together these findings support an unambiguous, overall
conclusion—meiotic DSB hotspots of fission yeast are directed
preferentially to loci that express long, polyadenylated ncRNA
molecules of the prl class.

DSB hotspots localize to ncRNA loci far more intimately
than to any other known factors

The genome-wide, preferential localization of DSB peaks to
representative  ncRNA  loci is  unconditional and robust
(P=5.5x10"", Figure 3C). For comparison, three other factors
are reported to correlate positively with the genome-wide
distribution of DSB hotpots, at least under conditional parameters
[23,24]. In both fission yeast and budding yeast, DSB peaks are
associated with a slightly elevated G:C content (P>0.05 to
P=0.0001, depending upon window size and the other conditional
parameters applied). In both yeasts there is also an association of
DSB peaks with those IGRs located 5" of protein-coding genes
that are divergently transcribed (P=0.001 to P=0.0001, from
conditional assessment of IGRs alone). This correlation breaks
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Figure 3. Non-random association of ncRNA with DSB hot-
spots. (A) Relative proximity of prl transcripts to prominent DSB peaks.
Shown are the binned distributions of distances between each prl locus
and the nearest DSB peak. Under the null hypothesis of no association,
the mean and mode would fall in the fourth bin. (B) Relative proximity
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doi:10.1371/journal.pone.0002887.g003
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down (P>0.05) in fission yeast when the size of the IGR is
controlled for; such IGR size controls were not reported for
budding yeast. And in fission yeast, the presumptive promoter
regions of genes with DSB peaks are enriched for gene ontology
(GO) terms associated with “interaction between organisms” or
“transcription factor activity” (from conditional assessment of
presumtive promoter regions alone, no P values reported). Among
these various factors, the presence of loci expressing the
polyadenylated prl class of ncRNA is by far the single best
predictor of where meiotic DSB peaks localize in the genome
(P=<5.5x10"", Figure 3C).

Transcripts of the prl class are expressed in meiosis (many
exclusively in meilosis) [5,38,39], so they are present at the
developmental stage in which Recl2 (Spoll) catalyzes the
formation of DSBs. We therefore propose that ncRNNA molecules
or loci of the prl class help to activate DSB hotspots. This process
may be conserved, because in mice one ncRNA has been shown to
map to a well-defined meiotic recombination hotspot [41] and at
least one other has been implicated to do so [42].

Minimum and maximum estimates of potency

The vast majority of fission yeast ncRNAs remain undiscovered
[5], so the presence and frequency of ncRNA-free DSB peaks is
uninformative scientifically. We note, however, that there are
enough predicted ncRNA loci [5] to populate each of the known
DSB peaks.

About 35% of the representative prlloci are embedded entirely
within DSB peaks (Figures 2-3, Table 1), so if one excludes any
possible function at distance the remaining 65% of prl loci would
not be sufficient to promote recombination. However, two factors
suggest that the fraction of potentially recombinogenic prl loci may
be much greater than 35%. First, the distribution of DSB peaks in
fission yeast was determined using rad50S strains [23], and in
rad50S strains of budding yeast about half of all meiotic DSB peaks
escape detection [43,44]. If this applies to fission yeast, then there
would be about twice as many DSB peaks as reported. In that
case, somewhere between at least 35% (the current observed value)
and approximately 70% (an extrapolated value) of the represen-
tative prl loci would fall entirely within DSB peaks. Second, if one
allows for possible function at even a very short distance (e.g., =5
kbp), then the fraction of prl loci associated with DSB peaks also
increases dramatically (by 58%, Table 1). Such possible function
at distance is indicated clearly by the data (means and modes,
Figure 3A-B). For these reasons, the theoretical maximum value
for functional association may approach unity.

Hypothetical mechanisms: Chromatin structure or guide
RNA

How might long, polyadenylated ncRNA molecules or loci that
express ncRNA molecules help to position the initiation of meiotic
recombination catalyzed by Recl2 (Spol1)? We propose two, not
mutually exclusive, hypotheses on mechanism.

A chromatin docking-site hypothesis for hotspot meiotic
recombination at ncRNA loci. In fission yeast meiotically
induced chromatin remodeling occurs at DSB hotspots [45,46]
and where tested is seemingly required for hotspot activity [25].
Therefore one possibility is that pri-dependent chromatin
remodeling, due either to some aspect of transcription at prl loci
or mediated by the ncRNA molecules themselves, creates a
preferential site for the nucleation of recombination protein
complexes. This hypothesis fits comfortably within the prevailing
orthodoxy, which posits that the relative accessibility of DNA in
regions of “open” chromatin has a role in hotspot activity
(reviewed by [12,14,47,48]).
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recombination.

RNA hypothesis for hotspot meiotic
Small ncRNAs (e.g., siRNA) base pair with
their targets (RNA or DNA) and thereby deliver protein complexes
to those targets [3,4]. Similarly, ncRNA-DNA hybrids (R-loops)
formed by long ncRINAs are implicated to direct the positioning of
class switch recombination during B cell maturation [10,49,50].
We propose that an analogous mechanism operates to direct the
machinery of meiotic recombination to ncRNA loci within
chromosomes. This may involve a homology search of DNA by
protein-RNA complexes (e.g., as is implicated for the siRNA-
containing RITS complex). Alternatively, it may involve the
recognition of R-loop structures by protein complexes (e.g., as 18
implicated for class switch recombination). In either case, the base
pairing between ncRNA molecules and homologous chromosomal
DNA would guide recombination to hotspots.

We emphasize that our proposals are not mutually exclusive
with other hypothetical mechanisms proposed previously (re-
viewed by [12-14]) and the models even overlap to some extent.
For example, R-loops would impart changes in local nucleosome
organization and alter the sensitivity of DNA within chromatin to
nucleases, which is a hallmark of most recombination hotspots and
is invoked as a feature of most current models.

Implications and context

Our findings have two main implications. First, they reveal an
unexpected, potentially unitary mechanism for what directs
melotic recombination to hotspots (expressed ncRNA loci).
Second, they reveal a likely biological function for many of the
enigmatic, polyadenylated ncRNA molecules that are so abundant
in cukaryotes.

One of our two alternative hypotheses is that the polyadenylated
ncRNA molecules help to position meiotic recombination. For
context, this hypothesis is consistent with, and might explain
mechanistically, some of the many connections between transcrip-
tion and recombination documented previously (see Introduction).
A few additional examples are provide here. Hotspot-activating
RNA molecules would in principle confer differential DNA strand
identity at hotspots, and hence could provide an underlying basis
for the seemingly asymmetrical nature of all DSBs (directionality)
[51] and for the preferential transfer of one DNA strand into
heteroduplex DNA (strand identity) [52]. Similarly, our hypothesis
may explain why the known RNA metabolism protein Ski8 (Rec14
of fission yeast) is an essential component of the Spoll (Recl2)
melotic recombination protein complex in several organisms ([53—
55] and our unpublished observations).

Materials and Methods

Relative proximity of DSB peaks to prl loci

Sixty-eight polyadenylated, ncRNA molecules of the prl class
were identified among 987 random cDNA clones [5]. ORF [40],
tos [38], and prl [5] locations were obtained from the fission yeast
genome database at the Sanger institute [40]. Raw data on the
genome-wide distribution of meiotic DSBs from dataset S1 [23]
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were analyzed with permission (Creative Commons Attribution
License). Raw experimental data were averaged and divided by
those of a negative, mitotic control to yield DSB intensity ratio,
and peak curves for display were drawn using a sliding, 5-point
average. Where available, we used the pr/ locations annotated in
the Agilent microarray spreadsheet (Agilent Technologies).
Seventeen prl loci were not annotated in that spreadsheet (pr(7,
pri9, prll 1, pril 5, prll 7, prll 8, pri22, pri25, pri27, pri29, pri30, pri49,
pri56, pri6l, pri63, pri64, plr67). These were added manually. One
locus (prl52) was annotated twice (on chromosomes I and III). The
position for chromosome I was used, as it is congruent with the
location listed in the genome database. The distances between
each prl locus and its two neighboring DSB peaks (left and right)
were determined and tabulated in Excel 2005 (Microsoft
Corporation, Redmond, WA). Ends of pr/ molecules (loci) that
map within DSB peaks were assigned distance values of zero.
Because 88% of the observed DSBs (from area integrals) were
classified previously as falling within prominent DSB peaks [23],
we analyzed the data both for prominent DSB peaks and for all
DSB peaks (prominent plus weak) (Table 1).

Statistical measures

Each locus expressing an ncRNA molecule can map either
within or outside of a DSB peak. Thus, under random genome-
wide placement with constant per-locus “success” probability of
mapping within a peak (the null hypothesis), the set of ncRNA loci
should approximate the binomial distribution with respect to DSB
peaks. We therefore modeled the data using the Binomial
distribution. Binomial proportion parameters (success probabilities
per locus) were estimated as equal to the fraction of the genome
encompassed by “all” and “prominent” DSB peaks. Conditional
binomial proportion parameters (success probabilities per locus,
given that the locus is within an IGR) were similarly set equal to
the fraction of IGRs encompassed by “all” and “prominent” DSB
peaks. For every parameter estimate, the P value for the observed
number of mappings to DSB peaks was calculated using the exact
binomial test of a single proportion. Exact binomial one-sided
upper confidence limits were also calculated for the expected
number of successes under the null hypothesis. Calculations were
performed using the “BINOMDIST” function in a Microsoft
Excel spreadsheet (Microsoft Corporation, Redmond, WA). The
binomial-proportion estimates, sample sizes, observed success
rates, null-hypothesis confidence limits, and calculated P values
for each test scenario are given in the main text.
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