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ABSTRACT Complex diffusive dynamics are often observed when one is investigating the mobility of macromolecules in living
cells and other complex environments, yet the underlying physical or chemical causes of anomalous diffusion are often not fully
understood and are thus a topic of ongoing research interest. Theoretical models capturing anomalous dynamics are widely used
to analyze mobility data from fluorescence correlation spectroscopy and other experimental measurements, yet there is significant
confusion regarding these models because published versions are not entirely consistent and in some cases do not appear to
satisfy the diffusion equation. Further confusion is introduced through variations in how fitting parameters are reported. A clear
definition of fitting parameters and their physical significance is essential for accurate interpretation of experimental data and
comparison of results from different studies acquired under varied experimental conditions. This article aims to clarify the physical
meaning of the time-dependent diffusion coefficients associated with commonly used fitting models to facilitate their use for
investigating the underlying causes of anomalous diffusion. We discuss a propagator for anomalous diffusion that captures the
power law dependence of the mean-square displacement and can be shown to rigorously satisfy the extended diffusion equation
provided one correctly defines the time-dependent diffusion coefficient. We also clarify explicitly the relation between the time-
dependent diffusion coefficient and fitting parameters in fluorescence correlation spectroscopy.

INTRODUCTION

In systems where particles or molecules diffuse freely via

Brownian dynamics, the mean-square displacement (MSD)

of the particles in n-dimensional space is proportional to time,

written as ÆDr2æ ¼ 2nDt; where D and t represent the diffu-

sion coefficient and time, respectively. In contrast, diffusion

within complex media such as within living cells may be

hindered by various factors that can inhibit mobility, such as

interactions with obstacles, transient binding events, or mo-

lecular crowding. In such cases, the mobility of the molecules

is often anomalous, indicating a distribution of diffusion

times, and the MSD does not increase linearly with time.

Anomalous diffusion has been observed in a wide variety of

experimental systems, and detailed characterization of the

nature and origin of such observations is of widespread in-

terest (1,2). A number of experimental tools are available to

measure diffusion dynamics within complex environments,

and we here focus on the use of fluorescence correlation

spectroscopy (FCS) (3,4) to investigate anomalous mobility.

Analysis of FCS data showing anomalous diffusion is com-

plicated by several factors. First, there is significant confu-

sion in the field regarding the mathematical validity of the

widely used model for anomalous diffusion in FCS (5–7) as

well as confusion about the physical significance of the

model parameters. Second, additional confusion is intro-

duced by differing procedures in reporting the fitting pa-

rameters recovered from FCS analysis. Last, although FCS

curves provide significant information content when correct

fitting models are used for data analysis, individual FCS

curves can typically be well fit by a variety of physical

models, which can make model discrimination challenging.

Efforts to identify appropriate fitting models and thus the

underlying physical and chemical basis for the anamolous

mobility therefore require careful analysis of how experi-

mentally recovered parameters vary as the experimental

system and/or measurement conditions are systematically

manipulated. Comparing experimental parameters recovered

with varied measurement conditions requires a clear under-

standing of the physical significance of the fitting parameters

used in curve-fitting models. This article aims to clarify the

mathematical basis for anomalous diffusion fitting models

and the physical significance of the fitting parameters. We

suggest that a detailed understanding of this model can play

an important role in further investagations aimed at better

understanding the underlying causes of anomalous diffusion

in different experimental systems.

THEORY AND RESULT

A variety of theoretical approaches have been introduced to

model complex diffusive dynamics based on various as-

sumptions about the underlying physical basis for the

anomalous mobility (8). We here focus exclusively on the

most widely used model for anomalous diffusion in FCS, for

which the MSD versus time is assumed to exhibit power law

scaling (1) with

ÆDr
2æ ¼ Gt

a
: (1)
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The magnitude of the anomalous exponent, a, determines

whether the mobility is called anomalous subdiffusion

ða , 1Þ or superdiffusion ða . 1Þ: The constant prefactor G

is usually referred to as the transport factor and has dimen-

sions of length-squared per fractional time. We show below

that with appropriate definitions for the time-dependent

diffusion coefficient, the propagator associated with this

power law scaling is mathematically sound and that the

model parameters can be rigorously understood in terms of

the physical parameters of the sample and measurement

system.

The physical properties of diffusive motion are conve-

niently characterized by a density distribution function,

f ðr9; ðt 1 tÞjr; tÞ; also called the propagator. The propagator

solves the diffusion equation and specifies the probability

that a particle located at position r at time t, will be found at

position r9 at time t 1 t: For normal Brownian motion the

propagator is a Gaussian distribution (9). In general, the

standard diffusion coefficient defined by Fick’s law, and

the corresponding diffusion equation cannot describe the non-

linear time dependence of the MSD, and there is no simple

comparable propagator for anomalous diffusion, although

many sophisticated approaches have been introduced to

model anomalous dynamics (2,10). A mathematically sim-

plified approach that is commonly used to model anomalous

diffusion defines a time-dependent diffusion coefficient D(t)
(11) based on the partial power-law dependence of the MSD

as in Eq. 1. Assuming no spatial heterogeneity in D(t), one

can then obtain an extended diffusion equation from Fick’s

first law and the continuity equation as (6,11)

@

@t
f ðr9; ðt 1 tÞjr; tÞ ¼ DðtÞ=2

f ðr9; ðt 1 tÞjr; tÞ: (2)

The most commonly published form of the time-dependent

diffusion coefficient, which we will refer to as the apparent

diffusion coefficient, is defined as DappðtÞ ¼ Gta�1=2n such

that the MSD can then be written as ÆDr2æ ¼ 2nDappðtÞt (11).

The apparent diffusion coefficient (Fig. 1) is proportional to

the slope of the line that connects the origin with the MSD for

a particular time point. The quantity DappðtÞ specifies the

diffusion coefficient that would produce the observed MSD

at a given diffusion time if the dynamics followed free

diffusion and thus represents the time-averaged mobility.

A previously published propagator based on the extended

diffusion equation and the apparent diffusion coefficient,

DappðtÞ; does correctly capture the power law scaling for

different values of the anomalous exponent (5,6). However,

the published propagator is problematic in that it does not

appear to solve the extended diffusion equation, resulting in

widespread confusion regarding its validity and also leading

to inconsistencies between published fitting functions for

analysis of FCS data and anomalous diffusion models (6,12).

We suggest that much of the confusion regarding pub-

lished propagators for anomalous diffusion lies in the defi-

nition of the time-dependent diffusion coefficient. In

particular, the extended diffusion equation is meant to de-

scribe the temporal behavior of the diffusive density distri-

bution function, and D(t) in Eq. 2 should represent the

instantaneous time dependence of the MSD rather than the

time-average quantity represented by DappðtÞ: Thus, a more

physically correct value to describe the anomalous diffusion

temporal evolution and to use for D(t) in Eq. 2 is the in-

stantaneous diffusion coefficient (Fig. 1), defined in terms of

the time-dependent slope of the MSD versus time, with (13)

DinsðtÞ ¼
1

2n

@ÆDr
2æ

@t
¼ a

2n
Gt

a�1
: (3)

Importantly, this definition for D(t) differs from DappðtÞ by a

factor a.

If DinsðtÞ is used for D(t) in Eq. 2, the anomalous diffusion

propagator is easily obtained by standard methods, yielding

f ðr9; ðt 1 tÞjr; tÞ ¼ 1

ð2pGt
a
=nÞn=2

exp
�jr9� rj2

2Gt
a
=n

� �
: (4)

This format for the propagator is similar to that published

elsewhere (5,6). Significantly, however, by using DinsðtÞ in

Eq. 2 it becomes straightforward to demonstrate that Eq. 4

both rigorously solves the extended diffusion equation and

produces the correct power law scaling of MSD versus time,

removing widespread confusion regarding whether or not

this propagator can be used legitimately for data analysis.

Furthermore, this exact solution to the extended diffusion

equation allows precise clarification of the definition of the

FCS diffusion time and its relation to the anomalous expo-

nent and transport factor. Additionally, with this exact

solution, the correct constant factors for diffusion in two

(n¼ 2) or three (n¼ 3) dimensions are easily determined. We

note that the formal validity of this propagator does not

necessarily imply that it can correctly describe the dynamics

of a particular experimental system, which will in each case

require careful investigation.

FCS has become an important tool for measuring molec-

ular mobility, concentrations, and chemical kinetics

FIGURE 1 Commonly used definition for D(t) (11) is the apparent

diffusion coefficient Dapp; which is found at time t from the slope of a

straight line between the origin and MSD(t) (dotted line). The slope of the

line is 2nDapp. The instantaneous diffusion coefficient Dins is determined by

the local slope of MSD(t) at time t (dashed line), with slope 2nDins.
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(4,14,15). FCS fitting models are derived using a model for

the observation volume (16,17) and an appropriate physical

representation of the underlying molecular dynamics. In FCS

with one- or two-photon excitation, the volume profile is

typically modeled as a three-dimensional Gaussian function

of the form O3DGðrÞ ¼ expð�2mx2=v2
0 � 2my2=v2

0 �
2mz2=z2

0Þ; with radial and axial beam waists v0 and z0; re-

spectively. The index m specifies one- (m ¼ 1) or two-photon

(m ¼ 2) excitation.

With the propagator (Eq. 4), one can then easily derive

the autocorrelation function for anomalous diffusion as

(9,18):

GðtÞ ¼ gnDG

CVnDG

1 1 t=tDð Það Þ�1
1 1 ð1= x

2Þ t=tDð Þa
� ��ðn�2Þ=2

(5)

Here the characteristic time tD is defined in dimensions of

time for m-photon excitation with n-dimensional motion as

tD ¼
v

2

0

4mG=2n

� �1=a

¼ v
2

0

4mDappðtDÞ

� �
¼ av

2

0

4mDinsðtDÞ

� �
:

(6)

The volume and gamma factors (9,19) are gnDG ¼ 2�n=2;
V2DG ¼ 2�mpv2

0; and V3DG ¼ 2�
3m=2 p

3=2 v2
0z0; and the struc-

ture factor, x, is defined as x ¼ z0=v0: Contrary to some

reports, the structure factor does not have an exponent of a in

Eq. 5. The variable C specifies the molecular concentration.

We note that although Eq. 5 has the same visual format as

previously published versions (5,7,12), the clarifications

introduced above allow demonstration that this equation is

consistent with a rigorous solution to Eq. 2 for both two and

three dimensions, and the values of tD can now be defined

unambiguously in terms of physical variables.

The precise definitions for fitting parameters in terms of

physical variables as shown here allow for some clarification

in assigning physical significance to recovered parameters

and interpreting mobility measurements. This capability will

be important in designing research approaches aimed at

uncovering the fundamental mechanisms underlying the

anomalous dynamics in a particular system. FCS curves

and the MSD report only on low-order properties of the

propagator, and therefore, as noted above, it is unlikely

that curve fitting alone will generally be capable of resolving

the applicability of different physical models. Instead it

will be important to measure the anomalous dynamics on

different length scales or timescales and to couple the

analysis of how experimental parameters change with pre-

dictions from different mechanistic models. With impre-

cise parameter definitions, this type of analysis is not

possible, and the clarifications introduced above can be of

significant importance for future investigations of anomalous

dynamics.

One further issue that warrants discussion is parameter

reporting in measurement of anomalous diffusion. In prin-

ciple, the parameters G and a contain all the experimental

information on various length scales or timescales and

are therefore valuable to report directly. On the other hand,

it is complicated to compare mobility using G parameters

directly when the a-values are not the same because G has

different dimensions for different a-values (19). Additional

methods to report the diffusion parameters are thus also

warranted. In many publications, the molecular mobility

has been reported in terms of tD. However, its meaning has

not always been clearly defined, and it cannot be easily

compared between experiments because the value of tD de-

pends on the experimental configuration. With the clarifica-

tions introduced above, it becomes more feasible to

unambiguously report mobility data in terms of either a well-

defined diffusion time or, alternatively, as time-dependent

diffusion coefficients. Diffusion coefficients may be easier to

compare intuitively, and one may compare either DappðtÞ;
which reports the average diffusion coefficient on a particular

length scale, or DinsðtÞ; and both may be of interest in an-

swering particular experimental questions. Comparing time-

dependent diffusion coefficients, whether instantaneous or

apparent, does require selection of a common length scale or

timescale. This scale selection would ideally be dictated by

the properties of the sample but in some cases may also be

defined or limited by the measurement apparatus. If a-values

are essentially the same, then the choice of scale is of minimal

importance for comparing the mobility of different diffusing

entitites. On the other hand, if a-values are significantly

different, then the relative magnitudes of apparent diffusion

coefficients may depend strongly on the choice of scale. In

such cases, it may be most helpful to plot the MSD versus

time, which provides a complete representation of the mo-

bility over all timescales or length scales.

SUMMARY

This work is intended to clarify the parameter definitions in

fitting functions widely used for data analysis of mobility

measurements and to demonstrate that, when properly

interpreted, these fitting models are based on physical

assumptions that can rigorously satisfy the extended diffu-

sion equation. There are many sophisticated theoretical

approaches to understanding anomalous diffusion (2,10) that

attempt to link molecular-level phenomena with the observed

power law behaviors. The discussion presented here has no

direct bearing on the underlying mechanisms leading to the

anomalous behavior. However, using FCS and other tech-

niques to investigate anomalous mobility (11,20,21)

certainly requires a thorough understanding of the theoretical

basis of fitting models and the physical significance of as-

sociated fitting parameters. By attempting to clarify some of

the confusion regarding the use of these fitting models, we

hope to further advance the capability to understand anom-

alous behavior in terms of fundamental mechanisms by

facilitating more precise interpretation of experimental data
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acquired under different experimental conditions, thereby

facilitating the comparison of experimental measurements

with different theoretical models.
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