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Abstract

Trimeric autotransporter adhesins (TAAs) are a major class of proteins by which pathogenic proteobacteria adhere to their
hosts. Prominent examples include Yersinia YadA, Haemophilus Hia and Hsf, Moraxella UspA1 and A2, and Neisseria NadA.
TAAs also occur in symbiotic and environmental species and presumably represent a general solution to the problem of
adhesion in proteobacteria. The general structure of TAAs follows a head-stalk-anchor architecture, where the heads are the
primary mediators of attachment and autoagglutination. In the major adhesin of Bartonella henselae, BadA, the head
consists of three domains, the N-terminal of which shows strong sequence similarity to the head of Yersinia YadA. The two
other domains were not recognizably similar to any protein of known structure. We therefore determined their crystal
structure to a resolution of 1.1 Å. Both domains are b-prisms, the N-terminal one formed by interleaved, five-stranded b-
meanders parallel to the trimer axis and the C-terminal one by five-stranded b-meanders orthogonal to the axis. Despite the
absence of statistically significant sequence similarity, the two domains are structurally similar to domains from Haemophilus
Hia, albeit in permuted order. Thus, the BadA head appears to be a chimera of domains seen in two other TAAs, YadA and
Hia, highlighting the combinatorial evolutionary strategy taken by pathogens.
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Introduction

Adherence to the host is a key event in bacterial pathogenesis.

The mediators of this process, called adhesins, form a heteroge-

nous group that vary in architecture, domain content and

mechanism of binding. Trimeric autotransporter adhesins, also

referred to as OCAs for oligomeric coiled-coil adhesins, form a

new class of adhesins recently defined from pathogenic proteo-

bacteria [1–4]. The best studied TAAs are important virulence

factors: YadA of Yersinia enterocolitica, a species causing enteritis,

mesenteric lymphadenitis, and reactive arthritis in humans [5,6];

NadA of Neisseria meningitidis [7], an agent of meningitis and sepsis;

UspA1 and A2 of Moraxella catarrhalis [4,8], a prominent species in

respiratory tract infections; Hia and Hsf of Haemophilus influenzae

[9,10], an organism causing meningitis and respiratory tract

infections, and BadA of Bartonella henselae [11], which is the agent of

cat scratch disease. In the context of the AIDS pandemic, Bartonella

henselae has also emerged as the agent of bacillary angiomatosis, an

uncontrolled proliferation of blood vessels resulting in tumor-like

masses of cells in patients with impaired immune systems.

All TAAs follow a head-stalk-anchor architecture in the direction

from amino- to carboxy-terminus of the protein [4]. Whereas head

and stalk are assembled from an array of analogous domains, the

anchor is homologous in all TAAs and represents the defining

element of this family [3]. It trimerizes in the outer membrane to form

a 12-stranded pore [12], through which the head and the stalk exit the

cell. After export is completed, the C-terminal end of the folded stalk

occludes the pore. The head, which is projected above the cell surface

by the stalk, mediates a range of molecular interactions such as

autoagglutination and attachment to host tissue, typically via proteins

of the extracellular matrix, e.g. collagen, fibronectin, or laminin. Two

head structures, a complete one from YadA [13] and a partial one

from Hia [14], have been solved by X-ray crystallography, revealing

fundamentally different trimeric complexes with novel folds.

Of the experimentally studied TAAs, Bartonella henselae BadA is

the longest representative, at over 3000 residues, and extends

approx. 240 nm from the bacterial cell surface (Figure 1). BadA has

been shown to bind collagen and fibronectin [11]; although the

location of the binding sites has not been determined, comparison to

other TAAs suggests that they reside in the head. The BadA head is

composed of two parts, the N-terminal of which is clearly

homologous to the head of YadA, while the C-terminal has no

detectable similarity to proteins of known structure. We have

recently produced a comprehensive, web-based annotation plat-

form for TAAs [15]; as part of this work, we found that the C-

terminal part of the BadA head in fact consists of two domains. Here

we report the crystal structure of these two domains, which closely

resemble parts of the Hia head structure despite an extremely low

sequence similarity. Based on our data and a homology model to the

YadA head, we present the structure of the full BadA head.

Results/Discussion

Sequence analysis
With a size of 3082 residues per monomer, BadA

(gi|119890727|) is considerably larger than other well-studied
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TAAs, such as YadA (455 res.), Hia (1098 res.), UspA1 (863 res.)

or NadA (364 res.). Although very long (240 nm+/210 nm,

Figure 1), it preserves the head-stalk-anchor architecture typical of

TAAs. The sequence is highly repetitive and the presence of 24

conserved connectors, called neck sequences [4], allowed us to

define domain boundaries and to parse out the head, stalk and

anchor regions [11]. We found that the head region falls into two

parts, separated by a neck sequence (Figure 2A). The first part was

evidently similar to the head of YadA (Protein Data Bank (PDB)

code 1p9h), as well as to the heads of many other TAAs of

unknown structure, due to the periodic occurrence of degenerate

SVAIG motifs, which form the inner b-strands of the trimeric b-

helix [13]. The second part however showed no discernible

similarity to any protein of known structure, even when using

advanced sequence comparison and fold prediction tools (see

Methods). By sequence comparisons to other TAAs, we deter-

mined that this part in fact consists of two separate domains, one

containing a highly conserved Gly-Trp (GW) motif near its N-

terminus and the other a conspicuous Gly-Ile-Asn (GIN) motif

near its C-terminus [15]; we therefore named the former ‘‘Trp-

ring domain‘‘ and the latter ‘‘GIN domain’’. Based on this

analysis, we decided to determine the structure of these two

domains. The fragment chosen for crystallization extended from

the end of the YadA-like head domain to the end of the first stalk

segment (residues 375 to 536, Figure 2A).

Determination of trimer stability and proteolytic
processing

The recombinantly expressed BadA construct runs as a trimer

of three 17 kDa subunits on calibrated size exclusion columns

(data not shown). To assay the stability of the trimers, we subjected

the protein to proteolytic treatment with trypsin and chymotryp-

sin. In both cases we obtained fragments of approx. 14 kDa

(Figure 2B, Figure S1), which could still form trimers. Mass

spectrometric analysis showed that the carboxy-terminal part of

the construct was particularly prone to digestion, suggesting a

flexible conformation. The termini of the protease-resistant

fragment are marked by red arrows in Figure 2A.

The CD spectra of the digested and undigested forms indicated

well-folded proteins consisting primarily of b-sheets (Figure 2C).

Thermal denaturation curves with CD detection showed that

unfolding was also very similar in these proteins and proceeded

cooperatively as a two-step process (Figure 2D), with a first plateau at

75uC and complete unfolding at 92uC. This elevated stability seems

common to TAA domains, as shown for the anchor of YadA [16] and

for the complete YadA protein [17]. The two-step denaturation may

reflect the presence of two domains in our construct.

The single tryptophan residue close to the amino-terminus

(Trp387) allowed us to perform fluorescence measurements. The

lmax of 320 nm, which is typical for buried Trp residues in folded

proteins, does not change significantly in the trypsinized and

chymotrypsinized fragments, but the intensity of the emission

signal increases substantially (Figure 2E). Proteolysis of the amino-

terminal sequence may have removed quenching residues from the

vicinity of the tryptophans.

Crystallization
The undigested protein was crystallized under a variety of

conditions. The crystals typically grew to 3006200 mm in size, were

well ordered, and diffracted up to a resolution of 1.1 Å. All crystals

tested, although of different shape and from different crystallization

conditions, belonged to space group P1 with cell constants of

a = 29.87, b = 51.14, c = 58.62, a= 65.87u, b= 76.6u, c= 82.08u. In

order to solve the structure of this fragment, a variety of heavy atom

derivatives were prepared and data were collected, but none of the

crystals showed binding. This was not unexpected, as the protein

does not contain cysteine or methionine residues, which commonly

bind heavy metal compounds. For the same reason, we could not

use selenomethionine-based MAD-phasing.

Homology Modeling and Structure Determination
The continued failure to determine the structure experimentally

led us to re-explore the protein with bioinformatic tools. We had

failed to identify potential homologs through either sequence

comparisons or fold recognition, but a new method for detecting

distant sequence similarity by comparing profile Hidden Markov

Models with each other had just been developed in our department

(see Methods). The two best matches obtained with this method,

albeit with low statistical confidence, were to the structure of

Haemophilus Hia (PDB code 1s7m). The two BadA domains each

gave a separate match – the first domain to the C-terminal part of

Hia and the second to the N-terminal part. These matches were

intriguing, as Hia is also a TAA and the conserved GW and GIN

motifs, which we had identified as key signatures of these domains

[15], were also present in the domains from Hia. The inverted order

of the two domains in the Hia structure relative to BadA provides a

rationale for the inability of less sensitive methods to detect the

relationship between the two proteins.

We therefore attempted to solve the BadA structure by molecular

replacement with homology models based on the Hia structure. To

this end, we built full-atom models for each domain, as described in

the Methods section. Molecular replacement searches returned two

solutions, which were further refined, and a trimeric model of

residues 385 to 498 of BadA could be built into the electron density

map (underlined in Figure 2A). The statistics given in Table 1

demonstrate the high overall quality of this structure. The termini of

the construct were not resolved, as expected from the results of

proteolytic digestion, which suggested that they are unstructured.

Structure of the two BadA head domains at atomic
resolution

The overall structure of the construct is rod-like, with a length of

10 nm and an approximate diameter of 2.5 nm. Superposition of

Author Summary

The ability to adhere is an important aspect of the
interaction between bacteria and their environment.
Adhesion allows them to aggregate into colonies, form
biofilms with other species, and colonize surfaces. Where
the surfaces are provided by other organisms, adhesion
can lead to a wide range of outcomes, from symbiosis to
pathogenicity. In Proteobacteria, colonization of the host
depends on a wide range of adhesive surface molecules,
among which Trimeric Autotransporter Adhesins (TAAs)
represent a major class. In electron micrographs, TAAs
resemble lollipops projecting from the bacterial surface,
and in all investigated cases, the adhesive properties reside
in their heads. We have determined the head structure of
BadA, the major adhesin of Bartonella henselae. This
pathogen causes cat scratch disease in humans, but can
lead to much more severe disease in immunosuppressed
patients, e.g., during chemotherapy or after HIV infection.
Surprisingly, domains previously seen in other TAA heads
are combined in a novel assembly, illustrating how
pathogens rearrange available building blocks to create
new adhesive surface molecules.

Head Structure of the Bartonella Adhesin
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the three protein chains shows root mean square deviations

(r.m.s.d.) of ,1.2 Å, with the main differences in the termini and

in the loops. Although the structural variability near the termini is

probably an artifact of expressing a truncated construct, the overall

r.m.s.d suggest an intrinsic flexibility of the three protein chains

while the B-factors are low and equally distributed all over the

protein chain except for the coiled-coil part. The three chains are

tightly intertwined and each can only assume its structure in the

context of the other two. 72 of 114 residues from each chain (63%)

are involved in intersubunit contacts, including 16 residues in the

hydrophobic core of the trimer (Figure 3). More than 50 hydrogen

bonds (as defined by a cutoff distance of 3.5 Å) are formed between

any two chains. There are, however, no inter-subunit salt bridges

and only two intra-subunit ones (Asp394 - Lys418, and Asp 481 -

Lys469). Overall, 5070 Å2 from each chain, corresponding to half of

its total surface area of 10040 Å2, are buried in the trimer.

The structure consists of four distinct elements, as anticipated

from the sequence analysis (Figures 2A, 3 and 4): the Trp-ring

domain, named for the peculiar arrangement of the highly

conserved Trp residues (Figure 5), the GIN domain, a neck

sequence, and a short segment of the coiled-coil stalk of BadA.

The Trp-ring domain forms a b-prism of interleaved, five-

stranded b-meanders parallel to the trimer axis. Each of the three

b-sheets forming the sides of the prism consists of the b1- b2

hairpin of one chain, b3I of the next chain and the b4II- b5II

hairpin of the last chain, as viewed clockwise from the N-terminus;

the strand order is b2- b1- b3I- b5II- b4II (Figure 4B).

The GIN domain (residues 435–466) also forms a b-prism of 5-

stranded b-meanders, albeit not interleaved and perpendicular to

the trimer axis. Its five b-strands (b7- b11) are extended N-

terminally by the region connecting GIN with the Trp-ring

domain in the next chain (b6)I and C-terminally by the first

Figure 1. EM pictures of BadA. Transmission (left) and scanning electron micrographs (right) of Bartonella henselae. Panels A and B show a mutant
strain deficient in BadA, panels C and D show the wildtype bacteria grown on blood agar plates. The scale bars are 500 nm in the TEM pictures (A and
C) and 2 mm in the SEM pictures (B and D). BadA has a length of 240+/210 nm. The inserts in panels A and C (scale bar 100 nm) show bacteria after
on-section labeling with an antibody raised against the C-terminal head fragment of BadA. The head structure is found exclusively at the tips of the
elongated fibers in panel C.
doi:10.1371/journal.ppat.1000119.g001

Head Structure of the Bartonella Adhesin
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Figure 2. Domain structure of BadA and sequence of the fragment used in this study. (A) The domain arrangement of BadA, with the
YadA-like head in grey, the two domains described in this paper in gold and cyan, respectively, the neck sequences in green and the membrane
anchor in red. The lower panel shows the sequence of the fragment used in this study, colored according to the domain arrangement. Red (trypsin)
and blue (chymotrypsin) arrows indicate protease cleavage sites; several variants of a protease-resistant 14 kDa core fragment were found by mass
spectrometry. Underlined is the part of the sequence that is resolved in the crystal structure, which correlates well with the protease-resistant part of
the protein. (B) SDS-PAGE of the 17 kDa fragment before (lane 1) and after trypsin (lane 2) or chymotrypsin (lane 3) treatment. (C) CD spectra of the
fragments before and after proteolysis. A higher fraction of random coil signal contributes to the spectrum of the undigested fragment. (D) Heat
denaturation of the fragments before and after proteolysis measured at 210 nm wavelength. Unfolding occurs in two steps. (E) Fluorescence spectra
of the fragments before and after proteolysis.
doi:10.1371/journal.ppat.1000119.g002
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residues of the neck sequence in the last chain (b12II), again as

viewed clockwise from the N-terminus (Figure 4C).

The neck sequence serves as a connector, which makes the

transition from the wide diameter of the b-prisms to the narrower

diameter of the coiled-coil stalk. Although being largely devoid of

regular secondary structure, the neck forms an extended network

of hydrogen bonds (Figure 6). The coiled coil following the neck is

a part of the extended stalk domain of BadA [11]. In our construct,

we had included 50 residues from the N-terminal part of the BadA

stalk, but only two heptads are visible in the structure, the rest

being disordered.

Structure comparison to other TAA domains
Comparison of the BadA structure with the two previously

determined TAA head structures from YadA [13] and Hia [14]

shows that shared domains are structurally nearly identical

(Figure 7), even when, as in the case of the Trp-ring and GIN

domains, their sequence similarity is barely detectable. In

comparing these two domains between BadA and Hia, we find

that the structural conservation extends to the conformation of

hydrophobic residues in their core. The main differences are two

insertions in Hia, one between strands b1 and b2 of the Trp-ring

domain and the other between strands b9 and b10 of the GIN

domain. Two apparent differences, concerning the relative order

of the two domains and the seemingly missing N-terminal strand

in Hia GIN, are in fact artifacts of the way the Hia construct was

cloned out of the full length gene. Hia contains multiple Trp-ring-

GIN-tandems, and the Hia construct was cloned such that the C-

terminal GIN domain of one tandem appeared N-terminally to the

Trp-ring domain of the next tandem. In the process, the N-

terminal strand of the GIN domain, which is detectable in the

sequence, was omitted.

All three proteins contain necks, which are structurally nearly

identical (Figure 7). The similarity of the necks in BadA and YadA

was easily detected at the sequence level. The Hia neck, however,

was not recognized before due to sequence divergence, which

includes the insertion of a domain of 44 residues (Figure 7). The

nearly identical backbone structure in the three necks is the result

of a conserved network of mainchain hydrogen bonds and does

not seem to involve sidechain interactions, beyond the formation

of a small hydrophobic core (Figure 6). The charge network

reported in the YadA neck [13] is not present in BadA or Hia and

seems to be a specific feature of YadA. In light of these

observations, it is hard to understand the exceptional sequence

conservation of necks, which is typically in the range of 50%

identity between any two necks [4].

Model of the full BadA head
The part of the BadA head which is not included in our

construct shows extensive sequence similarity to the YadA head,

allowing us to model it by homology (see Methods). The b-roll

domain was modeled using a template-based approach, since

YadA contains 8 repeats (whose inner strands carry the

conspicuous SVAIG sequence motif) and BadA 11. Two features

of BadA could not be modeled for lack of a structural template: (I)

the N-terminal segment from the signal sequence cleavage site to

the first turn of the b-roll, which is presumably unstructured and

also not resolved in the YadA structure, and (II) an insertion in the

last turn of the b-roll, which is present in many TAA head

domains, but not in YadA [15].

The similarity between YadA and BadA not only encompasses

the left-handed b-roll domain, but also the neck connector and a

short coiled-coil segment. Thus, even though the coiled-coil

segment N-terminal to the Trp-ring domain was not resolved in

our BadA construct, we could merge the model to the structure

without gaps by aligning the registers of the coiled coils and

modeling the missing part with parametric equations [18]. The

resulting model for the complete BadA head is shown in

Figure 8.

Conclusions
We have determined the structure of two domains from the

head of the Bartonella henselae adhesin BadA. Surprisingly, these

domains are structurally nearly identical to two domains from the

Haemophilus adhesin Hia, despite their similarity being essentially

undetectable by sequence comparisons. This is due to the short

length of the individual domains, to two large inserts in Hia, and to

the seemingly reversed order of the domains in the two proteins.

The reversed order is due to the way in which the Hia fragment

was constructed; in fact, Trp-ring and GIN domains also occur in

tandem in Hia, albeit in multiple copy, and the Hia fragment

combines the C-terminal GIN domain of one tandem with the N-

terminal Trp-ring domain of the next. The near-identity of the

structures is underscored by our ability to solve the BadA structure

by molecular replacement, using the Hia structure as a modeling

template. From this we conclude that TAA domains retain their

structure closely, irrespective of their molecular context, and that

their strongly interleaved nature prevents structural divergence,

even after considerable sequence divergence has occurred. These

Table 1. Summary of data collection and refinement
statistics.

Data collection1

Wavelength [Å] 0.9787

Space group P1

Cell constants [Å/degree] 29.87, 51.14, 58.62/65.87, 76.60, 82.08

Resolution [Å] 20.0–1.13 (1.20–1.13)

Unique reflections 105179 (14273)

Redundancy 5.8 (5.4)

Completeness [%] 90.7 (76.0)

Rmerge [%] 8.5 (52.4)

I/s(I) 12.7 (3.7)

Wilson B-factor 13.6

Refinement statistics1

Space group P1

Resolution [Å] 20.0–1.13 (1.20–1.13)

Rcryst 0.15 (0.22)

Rfree 0.17 (0.23)

Non-hydrogen atoms 2870

Waters 438

Mean B-value (Å2) 10.8

r.m.s.d. of bond length (Å2) 0.01

r.m.s.d. of angle (deg) 1.3

Model quality

Residues in most favored region 328 (98.5%)

Residues in most allowed region 4 (1.2%)

Residues in outlier region 1 (0.3%)

Residues in alternate conformations 23 (6.9%)

1Numbers in parenthesis refer to the highest resolution shell.
doi:10.1371/journal.ppat.1000119.t001
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findings support our previous proposal that the structure of TAAs

can be elucidated by a ‘‘dictionary approach’’: domains are

identified by bioinformatics, compared to a database containing

the structures of representative exemplars for each domain,

modeled and assembled into complete fibers using the nearly

invariant structure of connectors such as the necks and coiled-coil

segments [19]. We have laid the bioinformatics groundwork for

this approach with a sensitive online system for the annotation of

TAA domains [15] and are now in the process of selecting and

solving representative exemplars for each domain type.

An important question relates to the role of this part of the

BadA head in the adhesive properties of the entire molecule. BadA

has been reported to bind to collagen and fibronectin [11], while

the homologous Vomps A, B and C of Bartonella quintana, which

only have the YadA-like part of the head and lack the domains

described here, only bind to collagen [20,21]. For this reason, we

Figure 3. Quartenary structure of the BadA head domain. (A) Structure of the entire BadA head fragment. The three independent protein
chains are colored in yellow, red and blue. (B) Superposition of the three individual protein chains. A significant deviation is visible in particular at the
N-terminal part of the structure. (C) Stereo representation of the hydrophobic core of the protein, which is built by 16 residues related by threefold
symmetry.
doi:10.1371/journal.ppat.1000119.g003

Head Structure of the Bartonella Adhesin
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Figure 4. Crystal structure of the BadA head domain. (A) Structure of the monomeric BadA fragment in ribbon representation with the
secondary structure elements marked (b1-b12). Two individual orientations rotated around the threefold axis by 90 degrees relative to each other are
shown, and the two domains (Trp-ring domain and GIN domain) and the coiled-coil part (CC) are indicated. The conserved residues Trp387 of the Trp-
ring and Gly462-Ile463-Asn464 of the GIN domain which determine their nomenclature are shown in stick representation. (B) Structure of the N-
terminal Trp-ring domain in stereo representation. The three independent protein chains are color-coded in yellow, red and blue. The three chains
form intertwined mixed parallel/anti-parallel b-sheets, one of which is labeled with gold stars. Its b-strand sequence is b2-b1-b3I-b5II-b4II. (C) Structure
of the GIN domain in stereo representation, with the individual monomers color-coded in yellow, red and blue. The three interdigitated chains form
three b-sheets, one of which is labeled with gold stars. Its b-strand sequence is b6I-b7-b8-b9-b10-b11-b12II. The strand progression of the individual
sheets is anti-parallel (b7-b11) while interacting strands from adjacent chains are combined via parallel strand pairing (b6I-b7 and b11-b12II).
doi:10.1371/journal.ppat.1000119.g004
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suspected that fibronectin binding by BadA would reside in the

Trp-ring-GIN tandem. However, attempts to show this remained

ambiguous. The fragment binds in isolation to endothelial and

epithelial cells and shows a certain affinity for fibronectin in

sandwich dotblots, but cannot be co-immunoprecipitated with

fibronectin and is insufficient to preserve fibronectin binding in a

stalk deletion mutant (Riess, Wagner, Kempf, Ursinus, Linke and

Martin, unpublished; Kaiser et al., submitted). We note in this

context that the binding affinity of individual heads could be quite

low, given their high density on the cell surface. A conspicuous

structural feature of the Trp-ring domain are the many open

hydrogen bond donor and acceptor groups at the edges of the

three b-sheets forming the prism. In the only complex between a

bacterial adhesin and fibronectin known to atomic resolution

(PDB accession 1o9a; [22]), the interaction is mediated by b-sheet

extension along such open edges (‘‘b-zippers’’). It is attractive to

consider that a similar binding mechanism applies to the Trp-ring

domain.

Materials and Methods

Protein production and purification
Protein expression and purification of the fragment shown in

Figure 2 were performed as described [11]. Note that the fragment

was originally considered to be part of the stalk because it showed no

homology to the Yersinia YadA head [11,23]. The oligomeric size of

the purified protein was verified by gel-sizing chromatography on a

calibrated analytical S200 column (GE Healthcare) which was

coupled to a MiniDAWN Tristar detector (Wyatt), allowing in

addition molecular mass determination by static light scattering.

Protease resistance and mass spectrometry
For protease resistance assays, the BadA fragment (0.5 mg/ml) was

incubated at room temperature in 20 mM MOPS/KOH pH 7.2,

150 mM NaCl with 10 mg/ml of either trypsin or chymotrypsin for

10 min. Reactions were stopped by addition of 1 mM PMSF, and

samples were subsequently analyzed by SDS-PAGE and mass

spectrometry. In preparation for MS analysis, the proteolytically

treated protein was re-purified by ion-exchange and gel-size exclusion

chromatography. LC HR MS measurements were performed with

an Agilent 1100 series HPLC with a Waters Symmetry C4 3.5 mm

column (2.16100 mm), coupled to a micrOTOFLC mass spectrom-

eter (ESI- TOF, Bruker Daltonics, Bremen, Germany). Protein was

eluted from the HPLC column using buffer A (H2O/0.05% TFA)

and buffer B (CH3CN/0.05% TFA) with a gradient from 20–80%

buffer B at a flow of 250 ml/min.

Spectroscopy
Circular dichroism (CD) spectra of proteins (12 mM) were

recorded in PBS at 200–240 nm with a J-810 Spectropolarimeter

(Jasco), using 1 mm cuvettes. The signal output was converted into

molar ellipticity. Thermal stability was monitored by CD

spectroscopy using a Peltier-controlled sample holder unit.

Temperature profiles at 210 nm were recorded in 1uC increments

with 0.2u pitch from 25uC to 100uC. In all cases a temperature

probe connected to the cuvette was used to provide an accurate

temperature record. The fraction of protein in the unfolded

conformation, fU, was calculated as fU = (yF2y)/((yF2yU), where

yF and yU represent the values corresponding to folded and

unfolded states, respectively, and y being the observed value.

Tryptophan fluorescence was measured at room temperature in

PBS buffer at protein concentrations of 30 mM in a FP-6500

spectrofluorometer (Jasco) with lex = 293 nm and lem = 300–

400 nm.

Figure 5. Crystal structure of the BadA head domain - omit map. The |Fobs-Fcalc| electron density around the three Trp387 residues of the Trp-
ring domain (calculated after simulated annealing with the Trp sidechains omitted), contoured at 3.5 sigma level.
doi:10.1371/journal.ppat.1000119.g005

BadA
Hia
YadA

BadA
Hia
YadA

ITGVAEG---TDANDAVNFGQL
VKNVVSG/*/VADNTAATVGDL
LTHLAAG---TKDTDAVNVAQL

ITGVAEG---TDANDAVNFGQL
VKNVVSG/*/VADNTAATVGDL
LTHLAAG---TKDTDAVNVAQL

Figure 6. Network of hydrogen bonds in the necks of BadA,
YadA and Hia. Intramolecular H-bonds are marked as blue lines,
intermolecular ones as red lines. Residues involved in intermolecular H-
bonds are yellow, residues involved in intramolecular H-bonds are blue,
highly conserved hydrophobic core residues that also contribute to the
H-bond network are green. Note that all H-bonds involve atoms of the
main chains, which explains the low conservation of sidechains
between neck sequences. * marks the insertion in the Hia sequence
(see text).
doi:10.1371/journal.ppat.1000119.g006
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Electron microscopy
Bacterial colonies of BadA+ and BadA2 strains grown on blood

agar [11] were fixed with 2.5% glutaraldehyde in PBS directly on

the agar plates for 20 min at ambient temperature and kept for

20 hours at 4uC.

For scanning electron microscopy, colonies were postfixed with

1% osmium tetroxide in 100 mM Phosphate buffer pH 7.2 for 1 h

on ice, dehydrated in ethanol and critical-point-dried from CO2.

The samples were sputter-coated with 8 nm gold-palladium and

examined at 20 kV accelerating voltage in a Hitachi S-800 field

emission scanning electron microscope.

For transmission electron microscopy, glutaraldehyde-fixed cells

were covered with 2% agarose and blocks containing single

colonies were cut out. After postfixation with 1% osmium

tetroxide in 100 mM Phosphate buffer pH 7.2 for 1 h on ice,

these blocks were rinsed with aqua bidest, treated with 1%

aqueous uranyl acetate for 1 hr at 4uC, dehydrated through a

graded series of ethanol and embedded in Epon. Ultrathin sections

were stained with uranyl acetate and lead citrate and viewed in a

Philips CM10 electron microscope.

For on-section immunolabeling, cells were fixed with 2.5%

glutaraldehyde in PBS, dehydrated in a graded series of ethanol at

progressive lower temperature from 0uC down to 240uC,

infiltrated with Lowicryl HM20 and UV-polymerized at 240uC.

Unspecific binding sites on ultrathin sections were blocked with

0.5% bovine serum albumin and 0.2% gelatine in PBS. Ultrathin

sections were then incubated with a BadA specific rabbit IgG

antibody (10 mg/ml; raised against the C-terminal part of the

BadA head [11]) followed by protein A-10 nm gold conjugates (gift

from Dr. Y. Stierhof, Tübingen). Sections were stained with 1%

Figure 7. Structure comparison of the complete BadA head with YadA from Y. enterolitica and Hia from H. influenzae. (A) Structures of
BadA, Hia and YadA heads with the three domains colored according to the domain annotation from the alignment [15]. The superimpositions of the
individual domains from all three proteins are shown in the left panel. Note the different order of domains between Hia and BadA. In the BadA Trp-
ring domain, 43 of 45 residues could be superimposed to the equivalent Hia domain with an r.m.s.d. of 2.02 Å, and in the GIN domain, 26 of 30
residues could be superimposed with an r.m.s.d. of 1.58 Å. In the BadA neck region, 19 residues could be superimposed to the YadA neck with an
r.m.s.d. of 0.28 Å and to the Hia neck with an r.m.s.d. of 1.32 Å. All r.m.s.d. values refer to the Ca atoms. (B) Sequence alignment of the BadA head with
other TAAs. The sequences of Hia and YadA are taken from the published structures; alignments based on these structures were used for homology
modeling of the BadA head. The conserved residues that were used to name the domains are marked in bold. Abbreviations used: BhBadA –
Bartonella henselae BadA gi|119890727|, HiHia – Haemophilus influenzae Hia gi|21536216|, YeYadA – Yersinia enterocolitica YadA gi|28372996|,
BqVompD – Bartonella quintana VompD gi|49473810|, BbAdh – Bartonella bacilliformis adhesin gi|121601790|, SmHypp – Sinorhizobium meliloti
hypothetical protein gi|15964211|, BmCsup – Brucella melitensis cell surface protein gi|17988156|, PcYdlk – Psychrobacter cryohalolentis YadA-like
protein gi|93006053|, XfSurp – Xylella fastidiosa surface protein gi|15838130|.
doi:10.1371/journal.ppat.1000119.g007
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aqueous uranyl acetate and lead citrate and analysed in a Philips

CM10 electron microscope at 60 kV using a 30 mm objective

aperture.

Crystallization and data collection
Crystals of the BadA head fragment were obtained at 291 K by

the vapor diffusion hanging drop method against one ml of a

reservoir solution. Crystal drops were prepared by mixing 1 ml of

protein at 11 mg/ml concentration with 1 ml of reservoir solution.

Crystals were obtained with 0.05 M ammonium sulfate, 0.05 Bis-

Tris pH 6.5, 30% v/v pentaerythrol ethoxylate with a size of

15061006100 mm. Single crystals were flash-frozen in their

mother liquid and data collection was performed at 100 K. The

crystal system is triclinic P1 with cell constants of a = 29.87 Å,

b = 51.140 Å, c = 58.62 Å – a= 65.87, b= 76.60, c= 82.08. The

crystals contained one trimer in the asymmetric unit, diffracted to

a resolution limit of 1.13 Å and showed a solvent content of 41%.

A high and low resolution data set was collected at beamline ID29,

ESRF (European synchrotron radiation facility). Data were

indexed, integrated and scaled with the XDS program package

[24]. High and low resolution data were merged using the

XSCALE subroutine of the XDS package.

Bioinformatics
The homology of the N-terminal part of the BadA head with

YadA was found using PSI-BLAST [25] (E-value of 5e-07 in the

first iteration). Searches for distant homologs of known structure to

BadA were performed with three standard programs that use

sequence-profile comparisons (PSI-BLAST), sequence-HMM

comparisons (SAM-T02 [26]), and profile-profile comparisons

(COMPASS [27]). In addition, we used a structure prediction

metaserver (3D-Jury [28]). None of these tools yielded significant

matches. More recently we developed a tool based on HMM-

HMM comparisons, which was shown to be at least twice as

sensitive in detecting distant homologs as the methods listed above;

this tool, HHsearch [29], was implemented in a web server,

HHpred [30]. The homology between Hia and BadA was detected

using the HHPred server, running HHsearch 1.1.4. in its default

settings, albeit with low statistical significance (E-values of 0.93 and

3.9 and probability of 66% and 30% for the Trp-ring and GIN

domains, respectively). Note that with the current HHsearch

version 1.5.0, HHpred returns good statistical significances

(probabilities of 80–90%) for the matches between BadA and

Hia, but only if the compositional bias correction is turned off in

the ‘more options’ field.

Sequences of corresponding domains were manually aligned with

respect to secondary structure arrangement and conserved residues.

Homology models based on the structures of YadA and Hia were

built with the nest program from the Jackal package (http:

//wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:

Jackal). Each chain was modeled separately, then all chains were

combined together and sterical clashes were removed with the

profix program, again from the Jackal package.

The YadA-like domain of the BadA head was modeled on a

template structure containing three partially overlapping core

sections from the YadA structure and a following neck sequence.

Preparing this template was necessary, as this domain in BadA is

significantly longer than in YadA; it has 11 head repeats instead of

8. Moreover, we had to introduce a break in the last repeat before

the neck, since BadA has a conserved insertion in that place (data

not shown) for which we do not have a structural template.

The coiled-coil segment preceding the Trp-ring domain has a

periodicity of 11 and was constructed with BeammotifCC [18]. Its

Figure 8. Model of the full BadA head. The head of BadA,
comprising the crystal structure of the Trp-ring and GIN domain and
models of the YadA-like head and the connecting coiled coil. The
structure is heavily intertwined and each chain spirals over 360 degrees
around the fiber axis, mostly due to the two neck sequences present.
doi:10.1371/journal.ppat.1000119.g008
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transition from the neck into the Trp-ring domain was modeled

based on the structures of YadA and Hia.

The model of the full head of BadA was constructed using the

solved structure described here and the two models mentioned

above. The necessary structural superimpositions were done with

VMD [31].

Structure determination and refinement
The structure of the BadA head fragment was solved by

molecular replacement using models based on the PDB coordi-

nates of the partial head of Haemophilus Hia (1s7m). Two

subdomains of this model were independently placed using the

program MOLREP [32] and initially refined in REFMAC [33].

To improve this model, the program packages ARP/wARP [34],

Coot [35], and REFMAC were used to rebuild sidechains and to

add missing residues. A random set of 5% of the data were

neglected during the refinement process and marked as test set for

cross-validation. Atoms were refined anisotropically and TLS

parameters for the three independent protein chains were defined

using REFMAC [36]. ARP/wARP was used to build the solvent

structure. Together, this procedure returned a final model

consisting of 2870 non-hydrogen atoms and 438 water molecules

(corresponding to residues 385–498 in chains A and C and to

residues 385–495 in chain B). Together with the hydrogen atoms

generated for all amino acid residues, a crystallographic R/Rfree-

factor of 0.156/0.184 was achieved. Model superposition was

performed by the programs top3d or LSQ included in the CCP4

program package [37]. Secondary structure elements were defined

according to DSSP criteria (http://molbio.info.nih.gov/structbio/

basic.html). Figures were prepared using the programs DINO

(http://www.dino3d.org/) and Rasmol (http://www.openrasmol.

org/).

Coordinates
The x-ray structure was deposited in the Protein Data Bank

(PDB, access code 3D9X). The model of the full BadA head can be

downloaded from http://protevo.eb.tuebingen.mpg.de/coordi-

nates/.

Supporting Information

Figure S1 Mass Spectrometry Analysis, Supplement to Figure 2

Found at: doi:10.1371/journal.ppat.1000119.s001 (2.60 MB PDF)
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