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Protein kinase C (PKC) is involved in a wide array of

cellular processes such as cell proliferation, differentiation

and apoptosis. Phosphorylation of both turn motif (TM)

and hydrophobic motif (HM) are important for PKC func-

tion. Here, we show that the mammalian target of rapa-

mycin complex 2 (mTORC2) has an important function in

phosphorylation of both TM and HM in all conventional

PKCs, novel PKCe as well as Akt. Ablation of mTORC2

components (Rictor, Sin1 or mTOR) abolished phospho-

rylation on the TM of both PKCa and Akt and HM of Akt

and decreased HM phosphorylation of PKCa. Interestingly,

the mTORC2-dependent TM phosphorylation is essential

for PKCa maturation, stability and signalling. Our study

demonstrates that mTORC2 is involved in post-transla-

tional processing of PKC by facilitating TM and HM phos-

phorylation and reveals a novel function of mTORC2 in

cellular regulation.
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Introduction

Protein kinase C (PKC) is one of the most extensively studied

kinase family and has been implicated in cell proliferation,

differentiation, apoptosis, tumour promotion and neuronal

activity (Griner and Kazanietz, 2007). On the basis of their

structure and regulation, PKCs can be categorized into con-

ventional, novel and atypical PKC (cPKC, nPKC and aPKC)

(Mellor and Parker, 1998; Toker, 1998). Both cPKCs (a, b, g)

and nPKCs (d, e, y, Z) are activated by diacylglycerol (DAG).

The cPKCs, but not the nPKCs, are also activated by calcium.

In contrast, aPKCs (z, i) are not activated by DAG, but they

have important functions in cell polarity and asymmetric cell

division (Etienne-Manneville and Hall, 2003).

In addition to regulation by intracellular second messen-

gers, PKCs are controlled by phosphorylation in the activa-

tion loop (A-loop) within the kinase domain, the turn motif

(TM) and hydrophobic motif (HM) in the C-terminal region

(Parekh et al, 2000; Newton, 2003). These modifications are

highly conserved in PKCs with the exception of the aPKCs,

which have acidic residues in the corresponding HM sites.

Phosphorylation of the activation loop is catalysed by the

3-phosphoinositide-dependent protein kinase 1 (PDK1) and is

important for PKC activity (Chou et al, 1998; Dutil et al, 1998;

Le Good et al, 1998). However, the kinase responsible for the

TM and HM phosphorylation is less clear. There is evidence

that autophosphorylation may be responsible for the TM

and HM phosphorylation, whereas the question whether

autophosphorylation is truly responsible for these two

sites in vivo still remains (Parekh et al, 2000; Newton,

2003).

Protein kinase C belongs to the AGC family, including Akt

(also known as PKB). Akt has an important function in cell

growth, proliferation and inhibition of apoptosis (Lawlor and

Alessi, 2001). A similar pattern of phosphorylation also

occurs in Akt (Alessi and Cohen, 1998). However, phospho-

rylation appears to have an important function in Akt activa-

tion. Phosphorylation of the A-loop and HM is stimulated by

growth factors through phosphatidylinositol 3-kinase (PI3K)

and directly contributes to Akt activation (Alessi et al, 1996).

In contrast, phosphorylation of the TM is not affected by

growth factors, although this phosphorylation is important

for Akt function (Bellacosa et al, 1998; Hauge et al, 2007). In

addition, phosphorylation of the HM is also associated with

Akt activation. Recent studies have shown that the mamma-

lian target of rapamycin complex 2 (mTORC2) is responsible

for Akt HM phosphorylation, whereas the TM kinase has not

been identified (Sarbassov et al, 2005).

Mammalian target of rapamycin (mTOR) is a central cell

growth controller (Hay and Sonenberg, 2004; Wullschleger

et al, 2006). mTOR exists in two different complexes,

mTORC1 and mTORC2 (Loewith et al, 2002; Sabatini,

2006). The two TOR complexes have distinct physiological

functions and are regulated differently. mTORC1 activity is

sensitive to inhibition by rapamycin, whereas mTORC2 activ-

ity is resistant at least to short-term treatment. One of the

best-characterized physiological substrates of mTORC1 is

S6K, which is also a member of the AGC kinase family.

mTORC1 phosphorylates the HM in S6K, thereby promoting

phosphorylation of the A-loop by PDK1 (Collins et al, 2003).

mTORC2 consists of mTOR, Rictor, mLST8 and Sin1

(Sabatini, 2006). Deletion of mTORC2-specific subunits,

such as Rictor or Sin1, abolishes the HM phosphorylation

of Akt but not S6K, indicating the high substrate specificity

of the two TOR complexes (Guertin et al, 2006; Jacinto

et al, 2006; Shiota et al, 2006; Yang et al, 2006). It has

also been reported that deletion of Rictor abolishes the

HM phosphorylation in PKCa (Sarbassov et al, 2004;

Guertin et al, 2006). However, the immunoprecipitated

mTORC2 can directly phosphorylate the HM in Akt but
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not PKC in vitro (Sarbassov et al, 2004, 2005). Therefore, the

exact function of mTORC2 in PKC regulation remains to be

resolved.

In this report, we discovered a novel function of mTORC2

in the regulation of PKC and Akt. In Rictor�/� or Sin1�/�
cells, PKCa protein levels and phosphorylation are dramati-

cally decreased. We found that Rictor and Sin1 have impor-

tant functions in the TM and HM phosphorylation of cPKCs

and nPKCe and of Akt. Inhibition of mTOR by RNA inter-

ference knockdown and specific inhibitors blocks the TM and

HM phosphorylation of both PKC and Akt. Interestingly,

Rictor preferentially interacts with the unphosphorylated

PKCa, suggesting a direct role of Rictor in PKC regulation,

although we were unable to detect a direct phosphorylation

of PKC by immunoprecipitated mTORC2 in vitro. We also

observed that PKC kinase activity and substrate phospho-

rylation are impaired in Rictor�/� or Sin1�/� cells. The

mTORC2-dependent TM and HM phosphorylation of PKC are

critical for the kinase stability and function. Our study reveals

an essential physiological function of mTORC2 in the regula-

tion of PKC and Akt by promoting phosphorylation and

maturation of the kinases.

Results

Rictor is required for phosphorylation of TM and HM

in PKCa and Akt

To study the function of TORC2 in AGC family kinase regula-

tion, we examined Rictor�/� embryos, which showed no

Rictor protein and a diminished Sin1 protein level

(Figure 1A). We found that PKCa protein level was dramati-

cally decreased in Rictor�/� embryos compared with that

in Rictorþ /þ embryos, whereas S6K protein level

was unaffected (Figure 1A). Furthermore, PKCa protein

migrated significantly faster in the Rictor�/� than

Rictorþ /þ embryos, suggesting that PKCa was depho-

sphorylated in the Rictor�/� embryos. As expected,

phosphorylation of HM (S657) in PKCa was largely decreased

in the Rictor�/� embryos (Figure 1A). In contrast,

phosphorylation of HM in S6K was intact. Previous studies

have indicated that phosphorylation of the PKCa TM is

important for protein stability (Newton, 2003). Therefore,

we examined PKCa TM (T638) phosphorylation and

found that PKCa TM phosphorylation was completely

abolished in the Rictor�/� embryos (Figure 1A). This
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Figure 1 Rictor is required for TM and HM phosphorylation of PKCa and Akt. (A) Deletion of Rictor gene decreases PKCa protein levels
and phosphorylation. E10.5 embryos were lysed and used for immunoblot analysis. Immunoblotting was performed for PKCa and
S6K phosphorylation states and mTOR complex components in lysates prepared from individual Rictor þ /þ , þ /� and �/� embryos.
(B) Phosphorylation of PKCa TM is eliminated in Rictor�/� embryos. Endogenous PKCa proteins were immunoprecipitated and a similar
protein level was loaded. Phosphorylation of A-loop, TM and HM was determined by immunoblotting. (C) A-loop, TM and HM phosphoryla-
tion of transfected PKCa. HA–PKCa plasmid was transfected into Rictorþ /þ or �/�MEF and HA–PKCa protein was immunoprecipitated and
probed for phosphorylation. (D) Deletion of Rictor gene eliminates Akt TM and HM phosphorylation. E10.5 embryos were analysed for Akt
phosphorylation.
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observation is interesting and important because

regulation of TM phosphorylation has not been clearly

defined, although it is highly conserved in PKC and the

AGC family.

To ascertain the decreased phosphorylation of PKCa in the

Rictor�/� embryos, PKCa proteins were immunoprecipi-

tated from lysates of Rictorþ /þ and �/� embryos, and a

similar level of PKCa was loaded. We found that phosphor-

ylation of the TM was completely abolished and HM phos-

phorylation was significantly reduced in the Rictor�/�
embryos (Figure 1B). Interestingly, the phosphorylation of

PKCa A-loop (T497), the PDK1 phosphorylation site, was also

diminished in Rictor�/� embryos (Figure 1B). This observa-

tion was confirmed by transfection of PKCa into Rictorþ /þ
or �/� murine embryonic fibroblast (MEF) cells. We found

that TM phosphorylation of the ectopically expressed PKCa
was completely abolished, whereas the phosphorylation of

HM and A-loop were decreased in the Rictor�/� cells

(Figure 1C). Our data indicate that Rictor is critically required

for phosphorylation of TM and is also involved in A-loop and

HM in PKCa.

To examine whether a similar regulation was operating in

Akt, we monitored Akt phosphorylation. As expected,

phosphorylation of the Akt HM (S473) was abolished in

Rictor�/� embryos, whereas phosphorylation of the activa-

tion loop (A-loop, T308) was not affected (Figure 1D). It is

worth noting that Rictor deletion dramatically decreased

PKCa A-loop, but not Akt A-loop phosphorylation, although

both kinases are phosphorylated by PDK1. Therefore, the

effect of Rictor on PKCa A-loop phosphorylation might be

indirect. Interestingly, phosphorylation of the TM (T450) in

Akt was also abolished in Rictor�/� embryos. Similar results

were observed in Rictor�/� MEF cells (Supplementary

Figure S1). Our study provides the first strong genetic

evidence that phosphorylation of TM in both PKCa and Akt

is dependent on Rictor.

Sin1 but not PDK1 is required for TM phosphorylation

in both PKCa and Akt

We and other groups have recently identified Sin1 as an

essential subunit of mTORC2 (Frias et al, 2006; Jacinto

et al, 2006; Yang et al, 2006; Vander Haar et al, 2007).

To determine the function of Sin1 in PKC and Akt regulation,

we analysed Sin1�/� MEFs. Deletion of Sin1 gene

was confirmed by the lack of Sin1 protein expression

(Figure 2A). Sin1 was also required for phosphorylation of

both the TM and HM in both PKCa and Akt (Figure 2A).

In contrast, the A-loop phosphorylation in Akt was

independent of Sin1. In addition, PKCa protein level was

also significantly decreased in Sin1�/� cells. However,

lack of Sin1 had no effect on S6K or PKCd phosphorylation.

These results establish that both Rictor and Sin1 have

important functions in the phosphorylation of the TM and

HM in PKCa and Akt.

To confirm that the defect of the TM and HM phosphoryla-

tion in both PKCa and Akt was a consequence of Sin1

deletion, we reintroduced an HA-Sin1 plasmid into the

Sin1�/� cells. HA-Sin1 expression partially restored TM

and HM phosphorylation of both PKCa and Akt. The partial

restorations of TM and HM phosphorylation of PKCa and Akt

are likely due to the low expression levels of HA-Sin1 protein

in Sin1�/� MEF (Figure 2B).

PDK1 is an important upstream kinase for the A-loop

phosphorylation in both PKC and Akt (Mora et al, 2004).

To examine the role of A-loop phosphorylation for TM and

HM phosphorylation, we analysed PDK1�/� murine em-

bryonic stem (ES) cells. As expected, phosphorylation of

the A-loop in both PKCa and Akt was abolished; however,

the TM phosphorylation was slightly affected in PDK1�/� ES

cells (Figure 2C). Interestingly, the HM phosphorylation in

PKCa, but not in Akt, was abolished in PDK1�/� cells,

suggesting that the regulations of HM phosphorylation in

PKCa and Akt are distinct. A possible interpretation is that A-

loop phosphorylation by PDK1 activates PKCa, which might

autophosphorylate its HM. Stimulation with insulin-like

growth factor (IGF) or inhibition of PI3K by wortmannin

caused a corresponding increase or decrease of Akt phos-

phorylation in the A-loop and HM, but not the TM

(Figure 2C). However, IGF or wortmannin had a mild effect

on PKCa phosphorylation.

To test whether PKCa TM and HM are regulated by

intramolecular autophosphorylation as reported previously

(Behn-Krappa and Newton, 1999), we analysed the phos-

phorylation status of various PKCa mutants. The PKCa con-

struct that contains only C-terminal fragment (amino acid

603–672) was phosphorylated on TM but not HM when

expressed in 293T cells (Figure 3A). Interestingly, phospho-

rylation of TM, HM and A-loop were all decreased in PKCa
kinase-deficient mutant (K368R) (Figure 3B), whereas phos-

phorylation of Akt TM was comparable in both wild-type and

kinase-inactive Akt (data not shown) (Alessi et al, 1996).

These data suggest that TM in both PKCa and Akt is not

directly phosphorylated by intramolecular autophosphoryla-

tion. However, it is possible that kinase activity of PKCa is

important for the overexpressed full-length PKCa to sustain

proper localization or conformation to become a substrate for

phosphorylation. Interestingly, PKCa HM phosphorylation

was reduced but considerably sustained in A-loop mutant

(T497A), whereas it was abolished in PDK1�/� ES cells

(Figures 2C and 3B). These data suggest that a PDK1- and

mTORC2-dependent heterologous kinase could be involved in

phosphorylation of HM in PKCa in addition to the proposed

intramolecular autophosphorylation (Behn-Krappa and

Newton, 1999). Together, the above data indicate that

the PKCa and Akt TM are likely to be regulated by a

Rictor/Sin1-dependent heterologous kinase, but not by

autophosphorylation.

We investigated the relationship between TM and

HM phosphorylation in PKCa by examining TM and

HM mutants. We found that phosphorylations of the TM

and HM were independent from each other, as mutation in

one motif did not affect phosphorylation of the other

(Figure 3C).

Rictor and Sin1 regulate some but not all PKC family

members

The diverse PKC isoforms are differentially regulated. We

wanted to determine which PKCs are regulated by Rictor and

Sin1. Both protein levels and mobility of PKCa and PKCe,
but not PKCd and PKCl, were dramatically altered in

Rictor�/� or Sin1�/� cells (Figure 4A). Consistent with

the above-mentioned observation, TM phosphorylation of

PKCd was slightly changed in both Sin1�/� cells

(Figure 2A) and Rictor�/� cells (data not shown). These
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data indicate that Rictor and Sin1 are required for

phosphorylation and protein levels of PKCa and PKCe, but

not PKCd or PKCl.

To examine additional PKC family members,

Rictorþ /þ or �/� MEF cells were transfected with

plasmids encoding various isoforms of PKC. We found that

protein levels of all cPKCs were much lower in the Rictor�/�
cells than those in the Rictorþ /þ cells (Figure 4B).

Furthermore, the residual cPKCs in the Rictor�/� cells

showed a faster mobility, indicative of hypophosphorylation

of these proteins. Among the three nPKC isoforms (d, e and

Z) tested, only PKCe protein levels and mobility were af-

fected. Rictor deletion had little effect on the protein levels

and mobility of the aPKCl (Figure 4A) and aPKCz
(Figure 4B). Our data reveals that Rictor and Sin1 are

required for phosphorylation and protein levels of all cPKCs

and nPKCe.

mTORC2 is involved in TM and HM phosphorylation

of PKCa and Akt

The fact that both Rictor and Sin1, two known mTORC2

components, are required for the phosphorylation of TM

and HM in both PKCa and Akt indicates a possible involve-

ment of mTORC2 in these phosphorylations. We utilized

mTOR inhibitors to explore a possible function of mTORC2

in the regulation of PKCa and Akt phosphorylation. Cells

were treated with rapamycin (to inhibit mTORC1), LY294002

(to inhibit both PI3K and mTOR) and wortmannin (to inhibit

PI3K) for 1 h (Brunn et al, 1996). As expected, rapamycin

selectively decreased the HM phosphorylation of S6K

(Supplementary Figure S2A). Both LY294002 and wortman-

nin inhibited phosphorylation of the A-loop and HM in Akt

but not PKCa. However, TM phosphorylation in both PKCa
and Akt was resistant to LY294002. LY294002 treatment for

24 h inhibited Akt TM phosphorylation but had little effect on

pPKCα TM

PKCα

pPKCα HM

Tubulin 

PDK1 −/−

Starve
d

IG
F

IG
F+W

Starve
d

IG
F

IG
F+W

PDK1 +/+

pPKCα A-loop

PDK1

pAKT A-loop 

pAKT HM

AKT

pAKT TM

pPKCα TM

PKCα

pPKCα HM

Tubulin 

pAKT A-loop 

pAKT HM

AKT

S6K

pS6K HM

Sin1

Rictor

Raptor

pAKT TM

pS6K TM 

pS6K A-loop 

Sin1 +/+ Sin1 −/−

Medium

Starve
d

Serum
Medium

Starve
d

Serum

mTOR

pPKCδ A-loop

PKCδ

pPKCδ TM

pAKT HM

AKT

Sin1

pAKT TM

Starved Insulin

pPKCα TM

PKCα

pPKCα HM

HA–Sin1

HA–Sin1+−−
Sin1

 +
/+

Sin1
 −/

−

+−−
Sin1

 +
/+

Sin1
 −/

−
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PKCa phosphorylation (Supplementary Figure S2B). These

results indicate that mTOR might not be involved in PKC

phosphorylation. Alternatively, mTOR is involved, but the

effect of mTOR inhibition on PKCa phosphorylation is

masked by the high stability of PKC phosphorylation.

As the TM phosphorylation residues in PKCa and AKT are

followed by a proline, we tested a possible role of proline-

directed protein kinases. Twenty-four-hour treatment with

inhibitors for ERK, JNK, p38, CDK, GSK3 and CK2 had no

significant effect on Akt phosphorylation, whereas LY294002

inhibited Akt TM and HM phosphorylation (Supplementary

Figure S2C). These results argue against the involvement of

these proline-directed kinases in Akt TM phosphorylation.

Prolonged rapamycin treatment has been reported to dis-

rupt mTORC2 assembly and function in several cell lines

(Sarbassov et al, 2006). We found that prolonged rapamycin

treatment indeed disrupted mTORC2 in HepG2 cells as de-

termined by co-immunoprecipitation of mTOR with

Rictor (Figure 5A). Rapamycin treatment for 72 h caused a

more complete disruption of TORC2 than the 24-h treatment.
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In contrast, the interaction between Rictor and Sin1 was not

affected by rapamycin. Rapamycin treatment for 72 h signifi-

cantly decreased both TM and HM phosphorylation in Akt

and PKCa (Figure 5A). In contrast, rapamycin treatment had

limited effect on TM and HM phosphorylation in PKCa and

on TM in Akt phosphorylation in A549 cells whose mTORC2

function was reported to be insensitive to rapamycin

(Supplementary Figure S2D) (Sarbassov et al, 2006). These

observations support a possible role of mTORC2 in PKCa and

Akt regulation.

The inability of transient mTOR inhibition to abolish PKCa
phosphorylation is likely due to the fact that the PKCa

phosphorylation is extremely stable. To further test this

possibility, we next examined the phosphorylation of newly

synthesized PKCa. HEK293T cells were transfected with GST-

tagged PKCa and Akt in a medium containing PI-103, which is

a potent inhibitor of PI3K and mTOR (Fan et al, 2006; Knight

et al, 2006). Interestingly, the TM and HM phosphorylation of

the transfected GST–PKCa and Akt were dramatically re-

duced by PI-103 (Figure 5B). These results indicate that

mTOR is required for TM and HM phosphorylation of the

newly synthesized PKCa. To further investigate the function

of mTOR in PKCa phosphorylation, we ablated mTORC2

components by RNA interference in HeLa cells. Knockdown

pAKT HM

GST–AKT

pAKT TM

pPKCα TM

GST–PKCα

pPKCα HM

PI-103 (h)

pPKCα TM

GST–PKCα GST–PKCα

pPKCα HM

mTOR RNAi
− − Myc–mTOR

− +

pAKT TM

mTOR

pAKT HM

GST–AKT

pAKT HM

AKT

pAKT TM

pPKCα TM

PKCα

pPKCα HM

72240 Rapamycin (h)

Lysate

+ +

+

+

+ Rapamycin

Sin1

Rictor

mTOR

IP: Rictor

pPKCα TM

pPKCα HM

mTOR RNAi

− WT Myc–mTOR

− +

mTOR

+

−

+

+ + Rapamycin

+

KD

+

0 24

Sin1

Rictor

mTOR

IP: mTOR

Transfected

pPKCα TM

PKCα

pPKCα HMEndogenous

mTOR

Rictor

Tubulin

pPKCα TM

PKCα

m
TOR

Con
tro

l

Rict
or

RNAi

Figure 5 mTORC2 integrity and mTOR kinase activity are required for PKCa and Akt TM phosphorylation. (A) Prolonged treatment of
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of either mTOR or Rictor significantly decreased PKCa TM

phosphorylation and protein level (Figure 5C).

It has been reported that combination of mTOR knock-

down with prolonged rapamycin treatment efficiently inhibits

mTORC2 function (Sarbassov et al, 2006). HeLa cells with

shRNA-mediated mTOR knockdown were pretreated with

rapamycin for 24 h and then transfected with PKCa or Akt

plasmid. We found that phosphorylation of GST–PKCa TM

was completely abolished and that phosphorylation of the

HM was dramatically reduced (Figure 5D), results similar to

those observed in the Rictor�/� or Sin1�/� cells (Figures 1

and 2A). Moreover, phosphorylation of the transfected Akt

was inhibited by the combinatory treatment with mTOR

knockdown and rapamycin (Figure 5D). The combination

of mTOR knockdown and rapamycin treatment also signifi-

cantly decreased the TM and HM phosphorylation of endo-

genous PKCa (Figure 5E). In contrast, phosphorylation of

neither the endogenous ERK nor PKCd was affected

(Supplementary Figure S2E), indicating that the above-men-

tioned treatment was specific towards Akt and PKCa. Co-

transfection of the siRNA-resistant wild-type mTOR, but not

kinase-deficient mTOR, restored the GST–PKCa TM phos-

phorylation (Figure 5D and E), indicating that mTOR kinase

activity is important for PKCa TM and HM phosphorylation.

On the basis of these results, we conclude that mTORC2 has

an essential role for the TM and HM phosphorylation of both

PKCa and Akt.

PKCa was not directly phosphorylated by mTORC2

in vitro but associated with Rictor

To test whether mTORC2 could phosphorylate TM in PKCa
and Akt, we performed in vitro kinase assays with immuno-

precipitated mTOR or Rictor. The immunoprecipitated mTOR

or Rictor complex could phosphorylate the HM of His–Akt

protein, which was prepared from baculovirus (Figure 6A).

We consistently observed that IP complex with mTOR anti-

body could phosphorylate Akt HM more efficiently than

that with Rictor antibody, even though the amount of

precipitated Rictor was similar. This observation could be

explained that not all Rictor in the cell is associated with

mTOR. Alternatively, we cannot exclude the possibility that

the Rictor antibody may partially interfere with the mTORC2

kinase activity.

As the commercial His–Akt was phosphorylated on TM

(Figure 6A), we prepared GST–Akt from E. coli as a substrate.

Immunoprecipitated mTOR could phosphorylate the HM but

not TM of GST–Akt (Figure 6B). In contrast, the immunopre-

cipitated mTOR or Rictor did not phosphorylate the

GST–PKCa prepared from E. coli.

To exclude the possibility that PKCa and Akt proteins

purified from bacteria may not be suitable substrates for

mTORC2, we prepared dephosphorylated full-length PKCa
and Akt from HeLa cells. GST–PKCa and GST–Akt were

transfected into the HeLa cells with the combinatory treat-

ment of mTOR knockdown and rapamycin. The purified

GST–PKCa and GST–Akt indeed had little phosphorylation

on either TM or HM (Figure 6C) and were used as substrates

in the in vitro kinase reaction. Immunoprecipitated mTOR

could only phosphorylate HM but not TM in GST–Akt

(Figure 6C). Furthermore, neither TM nor HM in GST–PKCa
was phosphorylated by the immunoprecipitated mTOR.

These results suggest that mTORC2 may not be the kinase

directly responsible for the TM phosphorylation in PKCa and

Akt. However, our study cannot exclude the possibility that

the immunoprecipitated mTORC2 misses a critical compo-

nent required to phosphorylate the TM of PKCa and Akt in

vitro or the substrates may miss some modifications or

correct folding that are essential for the in vitro phosphoryla-

tion by mTORC2.

We tested the interaction between Rictor or Sin1 and PKCa
by co-immunoprecipitation. We observed that transfected

PKCa was co-immunoprecipitated with transfected Rictor

(Figure 6D). It is worth noting that much less PKCa was co-

immunoprecipitated with Sin1. This result suggests that the

interaction between Sin1 and PKCa could be indirectly

mediated by the endogenous Rictor. In contrast, transfected

PKCa was not co-immunoprecipitated with the mTORC1

component Raptor (Supplementary Figure S3). We observed

that the faster migrating hypophosphorylated PKCa was

preferentially precipitated with Rictor (Figure 6D).

Immunoblotting with phosphospecific antibodies for TM

and HM confirmed that the Rictor-co-immunoprecipitated

PKCa was hypophosphorylated (Figure 6D). It has been

suggested that the newly synthesized PKC is unphosphory-

lated and phosphorylation is critical for PKC maturation

(Newton, 2003). Therefore, our data indicate that Rictor

may contribute to PKC phosphorylation and maturation by

directly associating with the unphosphorylated immature

PKC.

PKCa is unstable in Rictor�/� and Sin1�/�cells

Next, we investigated the underlining mechanisms for the

dramatic decrease of PKCa protein levels in the Rictor�/�
and Sin1�/� cells. The fact that the protein expression level

of transfected HA-PKCa was also lower in the Rictor�/� than

that in the Rictorþ /þ cells (Figure 4B) suggests that Rictor

and Sin1 may regulate the expression of PKCa at the post-

transcriptional level. Surprisingly, we found that PKCa in

Sin1�/� cells was stable under cycloheximide treatment

(Figure 7A).

It has been reported that dephosphorylation of the TM may

allow PKC to associate with heat shock protein (Hsp) (Gao

and Newton, 2002), which presumably stabilizes PKC.

Consistent with this notion, inhibition of Hsp90 by radicicol

selectively destabilized both PKCa and PKCe in the Rictor�/�
cells but not in the Rictorþ /þ cells (Figure 7B). Similar

observations were made with 17-allylamino-17-demethoxy-

geldanamycin (17-AAG), another Hsp90 inhibitor

(Supplementary Figure S4). We observed that inhibition of

Hsp90 also destabilized Akt more significantly in Rictor�/�
cells than þ /þ cells (data not shown). These results in-

dicate that the residual unphosphorylated PKCa in Rictor�/�
cells is stabilized by Hsp90.

To clarify whether TM or HM phosphorylation is respon-

sible for PKCa instability induced by Hsp90 inhibitor,

HEK293T cells were transfected with wild-type, TM mutant

(T638A) or HM mutant (S657A) and treated with radicicol.

Interestingly, only TM mutant T638A was significantly desta-

bilized by radicicol (Figure 7C), suggesting that Hsp90 is

particularly important for PKCa stability when TM is not

phosphorylated.

The destabilization of PKCa in Rictor�/� cells by Hsp

inhibitors, however, cannot explain why PKCa protein level is

much lower in the Rictor�/� cells even in the absence of Hsp
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inhibitors. To determine the whereabouts of PKCa in

Rictor�/� cells, MG132 was used to inhibit proteasome-

dependent degradation. Surprisingly, MG132 treatment did

not increase PKCa in Rictor�/� cells (data not shown).

Therefore, we examined whether the unphosphorylated

PKCa might be accumulated in insoluble fraction, which

would not be detected by the extraction methods used in

the above analyses. Interestingly, MG132 did cause a dra-

matic accumulation of PKCa in the insoluble fraction in

Rictor�/� cells, but not in Rictorþ /þ cells, even though

the þ /þ cells had a higher level of total PKCa (Figure 7D).

Furthermore, the insoluble PKCa showed a high molecular

weight ladder in the Rictor�/� cells, indicative of ubiquiti-

nation. These observations indicate that the unphosphory-

lated PKCa is unstable and rapidly degraded by the

proteasome pathway. When proteasome activity is inhibited,

the unphosphorylated PKCa is ubiquitinated and accumu-

lated in insoluble fraction.

Lack of TM phosphorylation in PKCa causes

ubiquitination, degradation and aggresome formation

We determined ubiquitination of wild-type PKCa, PKCa
T638A (TM mutation), PKCa T631A/T638A (mutation of

the TM and the compensation site T631) (Edwards et al,

1999), PKCa S657A (HM mutation) and PKCa T638A/S657A

(TM and HM double mutation) by transfection into HEK293

cells. We found that PKCa TM mutant (T638A), but not the

HM mutant (S657A), was more ubiquitinated compared with

wild-type protein in the presence of MG132 (Figure 7E).

T631A/T638A and T638A/S657A mutants showed further

increase in ubiquitination. These data strongly support the

idea that the TM phosphorylation is important in preventing

PKCa ubiquitination and degradation.

We also determined whether the phosphorylation-defec-

tive PKCa mutants are more prone to partition in the inso-

luble fraction. Fractionation followed by immunoblotting

showed that a significant fraction of the transfected
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Figure 6 PKCa is not directly phosphorylated by mTORC2 in vitro but associated with Rictor. (A–C) Immunoprecipitated mTORC2 fails to
phosphorylate PKCa in vitro. Endogenous proteins from HeLa cells were immunoprecipitated with control, mTOR or Rictor antibody. The
immunoprecipitates were used to phosphorylate GST–PKCa (CT) purified from E. coli and His–Akt (FL: full-length) from baculovirus (A),
GST–Akt (CT) from E. coli (B) or GST–Akt and GST–PKCa from HeLa cells (C), which had mTOR knockdown and rapamycin treatment. FL and
CT denotes full-length and C-terminal fragment (a.a. 125–480 for Akt and a.a. 322–672 for PKCa), respectively. **Denotes the non-specific
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wild-type PKCa was present in the insoluble fraction upon

MG132 treatment (Figure 7F). This observation was different

from the endogenous PKCa, which had little in the insoluble

fraction even in the presence of MG132 (Figure 7D). This

difference can be explained by the fact that the transfected

PKCa was not fully phosphorylated (Figure 6D). Consistently,

only the fast-migrating, hence unphosphorylated, PKCa was

preferentially partitioned in the insoluble fraction (Figure 7F).

As expected, PKCa TM mutants were more prone to be found

in the insoluble fraction. These data are consistent with a

model wherein phosphorylation of TM stabilizes PKCa,

whereas the unphosphorylated protein is rapidly ubiquiti-

nated, thus targeted for degradation.

Proteasome-mediated degradation is the major pathway

for clearance of intracellular misfolded proteins. Inhibition of

proteasome often induces aggresome formation, which

shows a perinuclear localization. We found that MG132

caused a marked perinuclear localization of PKCa TM mutant

(T631A/T638A), but not the wild-type PKCa (Figure 7G). To

confirm aggresome localization, cells were also stained with
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antibody against conjugated ubiquitin, which is an aggre-

some marker. In the presence of MG132, the PKCa TM

mutant was co-localized with the aggresome marker.

Rictor�/� cells are defective in PKC signalling

and kinase activity

Phorbol esters, such as PMA, and their derivatives, such as

thymeleatoxin (TX), are potent activators for cPKCs and

nPKCs. We tested PKC activation in Rictor�/� cell by exam-

ining phosphorylation of PKC substrates in response to

stimulation of TX. TX treatment caused a rapid and robust

increase in phosphorylation of PKC substrates (Figure 8A).

PKC substrate phosphorylation was blocked by bisindolylma-

leimide I (BIM), a PKC inhibitor. Importantly, phosphoryla-

tion of PKC substrates was significantly diminished in

Rictor�/� cells (Figure 8A), suggesting that PKC signalling

is compromised in the Rictor�/� cells. The partial increase

of PKC substrate phosphorylation was probably due to the

activation of nPKCs by TX in the Rictor�/� cells because

nPKCd and nPKCZ are not regulated by Rictor (Figure 4B). It

is also possible that the PKC substrate antibody may recog-

nize proteins phosphorylated by other kinases. Moreover,

phosphorylation of MARCKS (myristoylated, alanine-rich

PKC substrate) (Stumpo et al, 1989) was lower in the

Rictor�/� cells than that in the Rictor þ /þ cells. We also

observed that the duration of MARCKS phosphorylation was

significantly shorter in Rictor�/� MEFs than that in

Rictorþ /þ MEFs (Figure 8B). Similar results were observed

in the Sin1�/� MEFs (Supplementary Figure S5A). On the

basis of these results, our data indicate that PKC signalling is

compromised in either Rictor�/� or Sin1�/� cells.

Membrane translocation of PKC by PMA is important

for PKC activation and phosphorylation of PKC

substrates (Newton, 2003). We examined whether the
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hypophosphorylated PKCa could respond to PMA treatment.

As expected, PMA caused a complete translocation of PKCa
from cytosol to membrane- and detergent-insoluble fractions

in Rictorþ /þ cells (Figure 8C). In contrast, the Rictor�/�
cells had a basal level of membrane-associated PKCa. Upon

PMA stimulation, the cytosolic PKCa was mainly translocated

to detergent-insoluble fraction with little being translocated

to the membrane fraction (Figure 8C). These data show that

Rictor is important for proper PKCa activation in response to

intracellular second messenger. In the Rictor�/� or Sin1�/�
cells, PKCa migrated as a doublet and was downshifted by

PMA treatment. We found that sustained PMA treatment

caused a dramatic downregulation of PKCa in Sin1þ /þ
but not �/� cells (Supplementary Figure S5), indicating

that the PKCa did not properly respond to PMA.

We next investigated the importance of TM and HM

phosphorylation in PKCa kinase activity. In vitro kinase

assay showed that PKCa with mutation of both the TM

and HM phosphorylation sites had little kinase activity

(Figure 8D). To directly determine the function of

phosphorylation in PKC activity, HA–PKCa was expressed

in Sin1þ /þ and �/� cells. We found that HA–PKCa pre-

cipitated from Sin1�/� cells had a much lower kinase

activity than that from the Sin1þ /þ cells (Figure 8E). The

HA–PKCa precipitated from Sin1�/� cells also showed a

faster migration than that from the Sinþ /þ cells. The

above-mentioned data demonstrate that the Rictor/Sin1-

dependent phosphorylation of TM and HM is essential for

PKCa kinase activity and signalling.

Discussion

Phosphorylation of three conserved sites (A-loop, TM and

HM) is essential for the function of PKC and other AGC family

kinases, including Akt and S6K (Hauge et al, 2007). However,

key differences exist between PKC and Akt. Phosphorylation

of both A-loop and HM in Akt is regulated by stimulation and

serves as the major input for Akt activation in response to

extracellular signals. For example, mitogenic growth factors

stimulate phosphorylation of both A-loop and HM in Akt. In

contrast, phosphorylations of all three sites in PKC are

constitutive, whereas binding of second messengers, such

as DAG and calcium, to regulatory domain provides the major

signal input for PKC activation (Parekh et al, 2000; Newton,

2003). Then, what are the physiological functions of PKC

phosphorylation, especially the TM site?

Our study supports the essential function of TM and HM

phosphorylation in PKCa kinase activity, consistent with

previous reports (Zhang et al, 1994; Edwards et al, 1999).

In vitro kinase assays show that the unphosphorylated HA–

PKCa expressed in Sin1�/� cells had little activity. Although

both TM and HM are highly conserved in PKC family, it is not

fully understood how phosphorylation of these two motifs

is controlled. Previous studies reported that TM and HM

phosphorylation of cPKCs and nPKCe were controlled by

autophosphorylation. Growth factor-dependence HM phos-

phorylation was reported in nPKCe, whereas other reports

showed that HM phosphorylation of cPKCa, nPKCd and

nPKCe are rapamycin sensitive and aPKCz is the possible

HM kinase for PKCd (Behn-Krappa and Newton, 1999; Parekh

et al, 1999; Ziegler et al, 1999; Cenni et al, 2002).

In this study, we demonstrate the functional importance of

mTORC2 in the TM and HM phosphorylation of Akt and some

PKCs (Supplementary Figure S6). Rictor, Sin1 and mTOR,

hence mTORC2, are essential for TM phosphorylation of

PKCa and likely for PKCb I, b II, g, e. Inactivation of

mTORC2 also decreases but does not abolish HM phospho-

rylation in PKCa; therefore, mTORC2 is more important for

PKCa TM than HM phosphorylation. In addition, we pre-

sented data that mTORC2 is also essential for Akt TM

phosphorylation. Our study demonstrates that intramolecular

autophosphorylation is not required for PKCa TM phosphor-

ylation.

It has been proposed that phosphate at the TM site in AGC

kinases, including Akt and PKC, interacts with surrounding

basic residues to be protected from dephosphorylation

(Hauge et al, 2007). On the basis of our data, the phosphor-

ylation on TM and HM in PKCa and Akt with the exception of

Akt HM is rather stable. However, several lines of evidence

presented in this study are consistent with a model wherein

mTORC2 integrity and kinase activity are important for TM

and HM phosphorylation of both PKCa (Supplementary

Figure S6) and Akt. First, genetic ablation of Rictor or Sin1

strongly inhibits these phosphorylations. Second, disruption

of mTORC2 assembly by rapamycin treatment or inhibition of

mTORC2 kinase activity by inhibitors reduces the TM and HM

phosphorylation in PKCa and Akt, especially the newly

synthesized proteins. Third, knockdown of mTOR in combi-

nation with rapamycin treatment strongly inhibits the phos-

phorylation of both PKCa and Akt, especially on their TM

site. We propose that mTORC2-mediated PKCa TM phosphor-

ylation occurs during its maturation process and contributes

to PKCa maturation and stability (Supplementary Figure S6).

Genetic studies in yeast have implicated a role of TOR in

phosphorylation of the AGC family kinases (Kamada et al,

2005). Our data demonstrate that mTOR kinase activity is

required for the phosphorylation of PKCa TM and HM and

corresponding sites in Akt. However, it is worth noting that

our study has yet to establish a direct phosphorylation of

PKCa TM and HM and Akt TM by mTORC2. We speculate

that mTORC2 may activate a kinase(s) that is responsible for

PKC and Akt phosphorylation (Supplementary Figure S6).

However, these data cannot exclude the possibility of autop-

hosphorylation being responsible for PKCa HM. It is also

possible that mTORC2 may directly phosphorylate the TM

and HM in PKCa and Akt in vivo, but our in vitro kinase

reaction could not duplicate the in vivo conditions.

Regardless of the biochemical mechanism, our results have

established an important novel function of mTORC2 in the

phosphorylation and signalling of cPKCs, nPKCe and Akt.

The reduced PKCa expression in Rictor�/� cells is due to

protein instability. On the basis of our data, we propose the

following model. In wild-type cells, the newly synthesized

PKCa is rapidly phosphorylated and then folded into a correct

conformation, which is stable and ready for activation by

second messengers. Phosphorylation of TM in PKCa is parti-

cularly important for this maturation process. In Rictor�/�
or Sin1�/� cells, the newly synthesized PKCa is not phos-

phorylated. The unphosphorylated PKCa is rapidly ubiquiti-

nated and then degraded by the proteasome (Leontieva and

Black, 2004). This model is supported by our data that

inhibition of proteasome by MG132 results in accumulation

of ubiquitinated PKCa in the insoluble fraction in the
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Rictor�/�, but not in the þ /þ , cells (Figure 7D and E). The

unphosphorylated and ubiquitinated PKCa accumulates in

aggresome when proteasome-mediated degradation is

blocked (Figure 7G).

A small fraction of unphosphorylated PKCa in Rictor�/�
cells may escape the degradation and exist in a form that is

stable but defective for signalling, such as response to PMA

stimulation. The unphosphorylated PKCa is stabilized by

Hsp. It is well established that activation of PKCa results in

dephosphorylation (Parekh et al, 2000; Newton, 2003).

Furthermore, prolonged PMA treatment causes PKCa down-

regulation due to ubiquitination and degradation. DAG, the

physiological activator, has a much shorter half-life than

PMA. Therefore, the activation of PKCa under physiological

conditions is rather transient. It has been reported that the

temporarily dephosphorylated PKCa after physiological acti-

vation, however, is rephosphorylated and quickly replenish

cellular mature PKCa pool ready for subsequent stimulations

(Newton, 2003). We hypothesize that mTORC2 not only

contributes to the maturation of newly synthesized PKCa
but may also have an important function in facilitating the

rephosphorylation of the signal-induced and dephosphory-

lated PKCa.

Among the PKCs tested, the protein levels of cPKCs and

nPKCe depend on mTORC2. In contrast, protein levels of

PKCd, l, Z and z are not affected by Rictor deletion, indicat-

ing that phosphorylation and maturation of these PKCs are

regulated by different mechanisms. We also established that

TORC2 is essential for the TM phosphorylation in Akt. One

may speculate that other AGC family kinases are also regu-

lated by either mTORC1 or mTORC2. Furthermore, we pro-

pose that phosphorylation of the conserved TM motif most

probably has a similar function (facilitating protein matura-

tion and stability) in other members of the AGC family

kinases. This study demonstrated a novel function of

mTORC2 in protein kinase maturation and revealed that

mTORC2 has a much broader physiological function signifi-

cantly beyond the current knowledge as the kinase phosphor-

ylating Akt HM.

Materials and methods

Plasmids, antibodies and chemicals
Mammalian expression constructs of HA-tagged various PKC
isoforms (a, bI, bII, g, d, e, Z, z) were kind gifts from Shun’ichi
Kuroda (Osaka University) and Jae-Won Soh (Inha University).
pPGS–HA–PKCa and pEBG–PKCa were created by subcloning rat
PKCa cDNA into pPGS–CITE–neo-HA and pEBG vector. pRK7-GST–
PKCa-CT was created by amplifying the C-terminal fragment
(a.a. 603–672) and subcloning it into pRK7–GST vector.
PKCa point mutant constructs were created using site-directed
mutagenesis. shRNA lentivirus constructs and siRNA oligos were

purchased from Addgene and Dharmacon, respectively. MARCKS
antibody was kindly provided by Perry J Blackshear (National
Institute of Environmental Health Sciences). Tubulin and FLAG
(M2) antibodies were purchased from Sigma. PKCd, e, l and Hsp90
antibodies were from BD Biosciences. HA and Myc antibodies were
obtained from Covance. The conjugated ubiquitin antibody was
from BIOMOL. Alexa Fluors 594 goat anti-mouse IgG and Alexa
Fluors 488 goat anti-rabbit IgG were from Invitrogen. Other
antibodies used in this study were purchased from Cell Signaling
Technology. Rapamycin was obtained from Sigma. Other chemicals
were from Calbiochem.

Immunoblotting, immunoprecipitation and kinase assay
PDK1þ /þ and �/� ES cell lysates were kindly provided by Dario
Alessi and Huang Xu (University of Dundee). For immunoblotting
analysis, cells were lysed in NP-40 buffer (10 mM Tris–HCl pH 7.5,
100 mM NaCl, 1% NP-40, 50 mM NaF, 2 mM EDTA, 1 mM PMSF,
10 mg/ml leupeptin, 10mg/ml aprotinin). Rictor knockout mice
embryos were also lysed in NP-40 buffer. For subcellular fractiona-
tion, Rictor þ /þ and �/� MEFs were stimulated by PMA
(400 nM) for 30 min, lysed by sonication in HEPES buffer (50 mM
HEPES pH 7.4, 1 mM EDTA, 1 mM EGTA, 50 mM NaF, 1 mM DTT,
0.2 mM PMSF) and centrifuged at 100 000 g for 30 min at 41C. The
supernatant was used as cytosolic fraction, and the pellet was
resuspended in HEPES buffer containing 1% Triton X-100 and
centrifuged (100 000 g, 30 min, 41C), and the supernatant (mem-
brane) and pellet (detergent-insoluble) fractions were stored for
further analyses. For preparation of soluble and insoluble fractions,
the cells were lysed in NP-40 buffer and centrifuged (16 000 g,
10 min, 41C), and the supernatant was used as soluble fraction. The
pellet was sonicated with 1� SDS sample buffer and used as
insoluble fraction. For immunoprecipitation, cells were lysed in NP-
40 or 0.3% CHAPS buffer as described previously (Yang et al, 2006).
Antibody (1 mg) was added to each reaction and incubated for
90 min at 41C followed by 10 ml of protein G-sepharose slurry (50%)
for another hour. Immunoprecipitates were washed four times in
the lysis buffer. For kinase assays, after washing with the lysis
buffer, the immunoprecipitates were washed once more with kinase
buffer and then incubated in 15ml kinase assay reaction mix for
30 min at 371C. Kinase assay reactions were designed as reported
previously (Sarbassov et al, 2005). The GST–Akt (a.a. 125–480) and
GST–PKCa (a.a. 322–672) purified from E. coli, full-length GST–
PKCa and GST–Akt from mammalian cells, or full-length His6–Akt
from baculovirus (Upstate Biotechnology), were used as substrates.
To terminate the reaction, 5 ml of 4� SDS sample buffer was added
to each reaction. For PKCa kinase assay, PKC kinase assay kit
(Upstate Biotechnology) was used according to the manufacturer’s
instruction.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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