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ROBERTO SÁNCHEZ AND ANDREJ ŠALI*
Laboratories of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10021

Edited by Gregory A. Petsko, Brandeis University, Waltham, MA, and approved September 8, 1998 (received for review June 22, 1998)

ABSTRACT The function of a protein generally is deter-
mined by its three-dimensional (3D) structure. Thus, it would be
useful to know the 3D structure of the thousands of protein
sequences that are emerging from the many genome projects. To
this end, fold assignment, comparative protein structure mod-
eling, and model evaluation were automated completely. As an
illustration, the method was applied to the proteins in the
Saccharomyces cerevisiae (baker’s yeast) genome. It resulted in
all-atom 3D models for substantial segments of 1,071 (17%) of
the yeast proteins, only 40 of which have had their 3D structure
determined experimentally. Of the 1,071 modeled yeast proteins,
236 were related clearly to a protein of known structure for the
first time; 41 of these previously have not been characterized at
all.

Despite great progress in biology, there is a need to describe and
understand the function of many proteins in more detail than has
been achieved so far. Although protein function is best deter-
mined experimentally (1), it sometimes can be predicted by
matching the sequence of a protein with proteins of known
function (1–3). This is possible because similar protein sequences
tend to have similar functions, although exceptions also occur (4).
The success and utility of computational assignment of protein
function recently has increased dramatically because of the many
genome sequencing projects (5). For example, sequence match-
ing of the proteins encoded by the Saccharomyces cerevisiae
(baker’s yeast) genome (6) has resulted in assignment of 58% of
the yeast proteins into 11 functional classes with 93 subclasses
(http:yywww.mips.-biochem.mpg.deymipsyyeastyindex.html).
One way to add to sequence-based predictions of function would
be to determine or predict the three-dimensional (3D) structures
of proteins. The 3D structure of a protein generally provides more
information about its function than its sequence because inter-
actions of a protein with other molecules are determined by
amino acid residues that are close in space but are frequently
distant in sequence. In addition, because evolution tends to
conserve function and function depends more directly on struc-
ture than on sequence, structure is more conserved in evolution
than sequence (7). The net result is that patterns in space are
frequently more recognizable than patterns in sequence. For
example, several mouse mast cell proteases have a conserved
surface region of positively charged residues that binds proteo-
glycans (8). This region is not easily recognizable in the sequence
because the constituting residues occur at variable and sequen-
tially nonlocal positions that form a binding site only when the
protease is fully folded. Approximately 7,500 protein structures
have been determined experimentally by x-ray crystallography
and nuclear magnetic resonance spectroscopy (ref. 9; http:yy
www.pdb.bnl.gov), while there are over 325,000 entries in the

GenPept sequence database alone (ref. 10; ftp:yyncbi.nlm.nih.
govygenbankygenpept.fsa). To bridge this increasingly large gap
between the numbers of known protein sequences and structures,
we calculated useful all-atom 3D models for a significant fraction
of the translated ORFs in the yeast genome (6). Specifically, we
show how to automate modeling of thousands of proteins and
how to predict the overall accuracy of the models with a high
degree of certainty. We also discuss new ways of using a large
number of protein models and point out several unexpected
similarities between previously uncharacterized yeast ORFs and
proteins of known structure.

MATERIALS AND METHODS
Protein Structure Modeling Method. Comparative protein

structure modeling (11, 12) was the method chosen for this study.
The reasons were that, of all protein structure prediction meth-
ods, comparative modeling results in the most accurate, detailed,
and explicit models of protein structure. This maximizes their
usefulness in applications such as interpretation of the existing
functional data, design of ligands, and construction of mutants
and chimeric proteins for testing new functional hypotheses (11).
Comparative protein structure modeling of a target sequence
consists of (i) identification of known structures related to the
target sequence (templates), (ii) alignment of the templates with
the target sequence, (iii) building a model based on the alignment,
and (iv) evaluation of the model. This flowchart has been
implemented in a UNIX PERL script that calls the appropriate
programs for the individual tasks, each of which is described in
more detail below. Program CLUSTOR was used to distribute
efficiently smaller jobs on many workstations, without having to
adapt the individual programs for parallel execution (http:yy
www.activetools.com). All of the alignments and models are
available on Internet at http:yyguitar.rockefeller.edu, as is our
program MODELLER used for sequence–structure alignment,
model building, and model evaluation. The models are also
accessible through the Saccharomyces Genome Database
(http:yygenome-www.stanford.eduySaccharomycesy).

Template Search. To find template structures for modeling of
the translated ORF sequences, each of the 6,218 ORFs from yeast
(Saccharomyces Genome Database) was compared with each of
the 2,045 potential templates corresponding to the protein chains
representative of the PDB (March, 1997). The representative
protein chains had at most 95% sequence identity to each other
or had length difference of at least 30 residues or 30%; they were
also the highest quality structures within each group. Although a
small fraction of the yeast ORFs (,7%) is likely to be incorrect
(3), this is not a serious limitation because an ORF that matches
a known protein structure is likely to correspond to a real protein.
The matching was done by the program ALIGN, which implements
the local dynamic programming method with a new gap penalty
function and has a search sensitivity higher than that of BLAST

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked ‘‘advertisement’’ in
accordance with 18 U.S.C. §1734 solely to indicate this fact.

0027-8424y98y9513597-6$0.00y0
PNAS is available online at www.pnas.org.

This paper was submitted directly (Track II) to the Proceedings office.
Abbreviations: 3D, three-dimensional; PDB, Protein Data Bank.
*To whom reprint requests should be addressed. e-mail: sali@

rockvax.rockefeller.edu.

13597



(13). Each ORF–PDB matching was run with the default gap
penalty parameters first. A match was considered significant or
insignificant if the alignment score was .22 or ,19 nats, respec-
tively, where the nat is a unit for measuring significance of a match
(14). All of the pairs with intermediate matches with scores
between 19 and 22 nats were realigned by using 600 combinations
of the gap penalty parameters. The match was finally considered
significant if the best of the 600 alignments had a score of at least
22 nats. The matching part of the PDB chain from a significant
hit was used as the template structure for the corresponding
region of the ORF.

Target–Template Alignment. To obtain the target–template
alignment for comparative modeling, the matching parts of the

template structure and the ORF sequence were realigned by the
use of the ALIGN2D command (R.S. and A.Š. unpublished work)
of the MODELLER program (15–17). This command implements
a global dynamic programming method for comparison of two
sequences but also relies on the observation that evolution tends
to place residue insertions and deletions in the regions that are
solvent exposed, curved, outside secondary structure segments,
and between two Ca positions close in space. Gaps in these
structurally reasonable positions are favored by a variable gap
penalty function that is calculated from the template structure
alone. As a result, the alignment errors are reduced by approx-
imately one-third relative to the standard sequence alignment
techniques. Nevertheless, there is clearly a need for even more

A B

C

FIG. 1. Predicting the overall accuracy of comparative models. The good and bad models for proteins of known structure are used to tune the prediction
of reliability of a model when the actual structure is not known (Fig. 2). See Materials and Methods for details. (A) A rule for assigning a comparative
model into either the good or bad class, based on its Q_SCORE. Inset shows the distributions of Q_SCORE for the good and bad models with 100 to
150 residues. Such distributions are used with the Bayes theorem to calculate the posterior probability that a model is good, given that it has a certain
Q_SCORE value, p(GOODyQ_SCORE). The main plot shows the percentages of false positives (bad models classified as good) and false negatives (good
models classified as bad) as a function of sequence length. The curves were obtained by the jack-knife procedure. (B) A rule for estimating the accuracy
of a reliable model (as predicted by its Q_SCORE), based on the percentage sequence identity to the template. The overlaps of an experimentally
determined protein structure with its model (red continuous line) and with a template on which the model was based (green dashed line) are shown as
a function of the target–template sequence identity. This identity was calculated from the modeling alignment. The structure overlap is defined as the
fraction of the equivalent Ca atoms. For comparison of the model with the actual structure (filled circles), two Ca atoms were considered equivalent if
they were within 3.5 Å of each other and belonged to the same residue. For comparison of the template structure with the actual target structure (open
circles), two Ca atoms were considered equivalent if they were within 3.5 Å after alignment and rigid-body superposition by the ALIGN3D command in
MODELLER (15). The points correspond to the median values, and the error bars in the positive and negative directions correspond to the average positive
and negative differences from the median, respectively. Points labeled a, b, and g correspond to the models in (C). The empty circle at 25% sequence
identity corresponds to the unusually accurate model in Fig. 3B. (C) The range of accuracy for reliable comparative models is illustrated by a difficult,
medium, and easy case. The Ca backbones of the models (red) for YKR066C and YDR226W and all mainchain atoms for YER148W are superposed
with those of the actual structures (blue). The PDB codes of the target and template structures also are shown (targetytemplate). The three target–template
sequence identities are indicated in B (black filled circles). The number of yeast ORF models at each accuracy level can be determined from the red curve
in B, or the sample comparisons in C, combined with Fig. 2A.
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accurate sequence–structure alignments and for using multiple
template structures, so that more accurate models are obtained
(16).

Model Building. The refined sequence–structure alignment
was used by MODELLER to construct a 3D model of the ORF
region (15–17). Model building began by extracting distance and
dihedral angle restraints on the target sequence from its align-
ment with the template structure. These template-derived re-
straints were combined with most of the CHARMM energy terms
(18) to obtain a full objective function. Finally, this function was
optimized by conjugate gradients and molecular dynamics with
simulated annealing to construct a model that satisfied all the
spatial restraints as well as possible.

Assignment of a Model into the ‘‘Good’’ or ‘‘Bad’’ Class. The
overall accuracy of a model was measured by an overlap between
the model and the actual structure. The overlap was defined as
the fraction of residues whose Ca atoms are within 3.5 Å of each
other in the globally superposed pair of structures. Models that
overlap with the correct structures in .30% of their residues were
defined here as ‘‘good’’ models. A method for predicting whether
a given model is good was developed as follows. By using the PDB,
1,085 protein chains of known structure that had ,30% sequence
identity to each other were picked. Comparative models for these

proteins were calculated by the standard procedure described
above. In addition, many bad models were obtained by the same
procedure, except that only target–template alignments with a
relatively low alignment significance score from 15 to 20 nats were
used. In the end, there were 3,993 and 6,270 good and bad models,
respectively. There were more models than proteins because most
proteins were modeled several times on a different template
structure each time. The distribution of the target–template
sequence identity for the good models was similar to that for the
matching of the yeast ORFs with PDB chains (Fig. 2A). The
quality score (Q_SCORE) of a model was defined as the PROSAII
Z-Score (19) divided by the natural logarithm of sequence length,
which made Q_SCORE almost independent of sequence length.
The PROSAII Z-score approximates the difference in free energy
of an evaluated model and the mean free energy of the same
sequence threaded through unrelated folds, expressed in units of
SD. The free energies were calculated with statistical potentials
of mean force for single residues and pairs of residues (19). The
distributions of Q_SCORE for good and bad models were
obtained for different sequence length ranges. The posterior
probability that a model was good, given that it had a certain
Q_SCORE value, was obtained by using the Bayesian theorem
(20) and assuming equal prior probabilities for good and bad
models: p(GOODyQ_SCORE) 5 p(Q_SCOREyGOOD)y
[p(Q_SCOREyGOOD) 1 p(Q_SCOREyBAD)]. A model with
p(GOODyQ_SCORE) above 0.5 is predicted to be in the good
class and thus have at least approximately correct fold. For
proteins longer than 100 residues, it is possible to identify good
models with ,5% of false positives and ,8% of false negatives
(Fig. 1A).

Prediction of the Overall Accuracy of a Model. For the models
predicted to be in the good class, the fraction of the Ca atoms
modeled within 3.5 Å of the correct positions depends on the
percentage sequence identity between the modeled sequence and
the template. This dependence was determined by using the 3,993
good models for proteins of known structure described in the
previous paragraph (Fig. 1B). Above 40% sequence identity, the
median overlap between a model and the corresponding exper-
imental structure is .90% (Fig. 1A). There are few errors in the
alignment, and the model is as close to the correct structure as the
template. Many models in this range have errors that are com-
parable to the differences between experimental structures of the
same protein determined by different techniques or in different
environments (12). For 30–40% sequence identity, the overlap
between a model and the corresponding experimental structure
is 75–90%. Because the alignment errors begin to appear, the
models overlap with the correct structures less than the templates
do. At very low sequence identity of ,30%, the overlap drops to
50–75%. These model evaluation results can be understood in
terms of the well known relationship between structural and
sequence similarities of two proteins (7), the ‘‘geometrical’’
nature of modeling that forces the model to be as close to the
template as possible (15), and the inability of any current mod-
eling procedure to recover from an incorrect alignment (16).

RESULTS
Template Search. The ORF–PDB matching procedure iden-

tified one or more possibly related structures for 2,256 or 36.3%
of the ORFs (Fig. 2A). The average length of the local alignments
was 174 residues, and the average pairwise sequence identity was
27%.

Evaluation of the Models. Model evaluation indicates that
1,071 (17.2%) of the yeast ORFs have at least one segment of
residues with a reliable model (Fig. 2). A small number of ORFs
have a reliable model for more than one domain, resulting in the
total of 1,168 nonoverlapping reliable models for all ORFs. In
contrast, only 40 of the yeast proteins have had their structures
determined experimentally (9). The average length of a reliable
model is 176 residues, and 85% of the reliable models are longer
than 50 residues. The average pairwise sequence identity on

FIG. 2. Protein structure models for yeast ORFs. (A) Distribution
of the sequence identity between the models and the corresponding
templates as a function of model sequence length. The 3,992 reliable
models for substantial segments of 1,071 different ORFs that are
predicted to be based on a correct template and approximately correct
alignment are represented by the green bars, and the 4,588 unreliable
models that are predicted to be based on a mostly incorrect alignment
or an incorrect template are represented by the red bars. The last
histogram at label ‘‘Ally6’’ is the sum of the other six histograms
divided by six. (B) The corresponding distribution of the alignment
significance score calculated by the program ALIGN (13).
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which the reliable models are based is 34%. Most of the models
based on more than the average sequence identity are predicted
to overlap with the correct structures in more than 80% of their
residues (Fig. 1 B and C). In comparison, another study produced
comparative models for 10–15% of the proteins in the E. coli
genome (4,290 ORFs) (21). When our procedure was applied to
the same genome, it resulted in reliable models for 18.1% of the
proteins.

Fold Assignment Rate. Fold recognition (22), sequence profile
methods (23), and Hidden Markov Models (24) generally are
considered to be more sensitive for detecting remote relation-
ships than the local sequence alignment applied here. Thus, in the
future, these methods will supplement the matching by pairwise
sequence comparison in our pipeline for automated comparative
modeling. However, it is not clear how many more accurate
models can be calculated for the matches from the more sophis-
ticated methods. The reason is that accurate 3D modeling
requires both a correct fold assignment and an approximately
correct target–template alignment. Unfortunately, it appears that
when a correct target–template match is made in the absence of
statistically significant sequence similarity already detectable by
simple methods, it is rarely possible to produce an accurate
alignment (25). Nevertheless, we now estimate what would have
happened to the fold assignment rate alone if fold recognition and
Hidden Markov Models were applied to the yeast genome. A
recent automated fold recognition survey assigned folds to 103
(22.0%) of the 468 ORFs in the small M. genitalium genome (26).
In comparison, when our procedure was applied to the same
genome, it resulted in reliable models for 90 of the 468 ORFs
(19.2%), 81 of which were shared with the fold recognition
survey. For another benchmark, the PFAM database obtained by
Hidden Markov Models (27) related 315 yeast proteins to a
protein of known structure, which is a relatively small fraction of
the 1,071 matches obtained here. We identified 263 of the 315
PFAM matches, and 248 of these corresponded to reliable models.
Thus, fold recognition and Hidden Markov Models would pro-
vide a small but significant increase in the number of target–
template matches for model evaluation by our combined align-
mentymodeling approach. However, even the existing procedure
based on local sequence alignment appears to be able to identify
some matches that were not identified by fold recognition (there
are nine such cases for the M. genitalium genome). The reason is
that, in the combined alignmentymodeling procedure, the final
decision about whether a given match is correct is made by
evaluating the 3D model implied by the alignment rather than by
scoring the alignment directly. Because model evaluation works
well (Fig. 1A), the cutoff for accepting a match at the sequence
matching stage can be lowered significantly, thus minimizing the
loss of correct matches without adding many false positives. This
results in a relatively large number of reliable models based on
low sequence similarity (Fig. 2); for example, 261 yeast ORFs
have at least one reliable model based on a match with a

B

A

FIG. 3. Sample models calculated before the crystallographic struc-
tures have been deposited to PDB. (A) A model for the yeast prohor-
mone-processing carboxypeptidase (YGL203C, violet) is compared with
its actual crystallographic structure (1ac5, green) (38). The model was
constructed based on the crystal structure of the yeast serine carboxypep-
tidase (1cpy) with which it shares only 25% sequence identity. Although
the overall structural overlap of the model and the actual structure is only
63%, the active site (Inset) and the neighboring residues have been
modeled with useful accuracy; for example, it is possible to use the model
to plan site-directed mutagenesis experiments for assessing residues

critical for catalysis and binding specificity. The model also illustrates that
the functionally important regions of the molecule tend to be modeled
more accurately than the rest of the protein (Fig. 1B) because they are
frequently more conserved in evolution than the rest of the fold. (B) A
model for the yeast multi-catalytic protease (YJL001W, red) is compared
with its actual crystallographic structure (1rypH) (30). Despite a low
sequence identity of 24% to the template structure (1pmaB), the model
overlaps with the actual x-ray structure in 92% of the residues (point d in
Fig. 1B). It was possible to predict that this particular model was unusually
accurate given its sequence similarity to the template because it had a
favorable Z-score of 28.3 and an energy profile with only one positive
peak (19). The YJL001W subunit is part of the 20S proteasome, a highly
ordered ring-shaped structure consisting of 14 similar subunits, all of
which have been modeled in this study. The models are sufficiently
accurate for use with protein–protein docking programs, which in turn are
likely to predict correctly at least some of the interface residues between
the subunits (17).
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significance score worse than 24 nats (Fig. 2B), which is too low
to establish a relationship on its own. The combined alignmenty
modeling approach to confirming a remote relationship already
has been proven successful in several individual cases (16, 28, 29).
Another example is the model of the component PRE4 of the
yeast 20S proteasome complex (YFR050C). The model was
based on the structure of subunit B of the Thermoplasma aci-
dophilum proteasome (1pmaB); the target and the template have
only 16% sequence identity, with the alignment significance score
of 22 nats. However, the model of YFR050C was predicted to be
good [p(GOODyQ_SCORE) 5 0.99]. The crystallographic
structure of YFR050C, determined after the model was calcu-
lated (1rypN) (30), showed that the fold assignment was correct.

DISCUSSION
Usefulness of Models with Errors. It is essential for assessing

the value of 3D protein models to estimate their overall accuracy
(19, 31). In general, mistakes in comparative modeling include
sidechain packing errors, small distortions and rigid body shifts in
correctly aligned regions, errors in inserted regions (loops),
incorrect alignments, and incorrect templates (16). Fortunately, a
3D model does not have to be absolutely perfect to be helpful in
biology (11). One reason is that knowing only the fold of a protein
is frequently sufficient to predict its approximate biochemical
function. For example, only 9 of 80 fold families known in 1994
contained proteins (domains) that were not in the same func-
tional class, although 32% of all protein structures belonged to
one of the nine superfolds (4). A model is likely to have the
correct fold when the overlap with the actual structure is at least
30%. Such models are obtained when a correct template and an
approximately correct alignment are used. This appears to be the
case for 1,071 ORFs, as predicted by our model evaluation
procedure (Fig. 2). Models for two yeast ORFs calculated before
the actual structures were deposited to PDB are illustrated and
discussed in Fig. 3. Almost half of the 1,071 reliably modeled
ORFs share more than ;35% sequence identity with their
templates (Fig. 2A). In such cases, it is frequently possible to
predict correctly important features of the target protein that do
not occur in the template structure. For example, the location of
a binding site can be predicted from clusters of charged residues
(8), and the size of a ligand can be predicted from the volume of
the binding site cleft (32).

Usefulness of Comparative Models. Comparative models are
calculated from a sequence alignment between the protein to be
modeled and a related protein of known structure. Thus, a
question arises as to what additional insights that are not already
possible from sequence matching alone can possibly be obtained
by 3D modeling. The first advantage of 3D modeling is that it

provides the best way of either confirming or rejecting a remote
match (16), as discussed above. This is important because most of
the related protein pairs share ,30% sequence identity (Fig. 2A).
For example, only 10.7% of the yeast ORFs have been matched
reliably with known structures by FASTA (http:yypedant.mips.
biochem.mpg.deyfrishmanypedant.html), as opposed to 17.2% in
our study. Another case in point is that 236 of the 1,071 yeast
ORFs with reliable models had no previously identified links to
a protein of known structure in the major annotations of the yeast
genome, including SACCH3D, PEDANT, GENEQUIZ, and PFAM (Ta-
ble 1). Of these 236 proteins for which some structural informa-
tion is now available, 41 also did not have a clear link to a protein
sequence with known function. A subset of these 41 newly
characterized proteins is listed in Table 1. Additional confidence
in these matches is provided by the conservation of the known
functionally important residues in the target models.

The second advantage of 3D modeling over sequence matching
is that some binding and active sites cannot possibly be found by
searching for local sequence patterns (33, 34) but frequently
should be detectable by searching for small 3D motifs that are
known to bind or act on specific ligands (35, 43). This is a
consequence of the facts that (i) structure is more conserved than
sequence (7), (ii) 3D motifs tend to consist of residues distant in
sequence, and (iii) there are some 3D motifs whose residues do
not follow the same order in sequence, even though they have the
same arrangement in space. An example of this is the serine
catalytic triad that almost certainly arose by convergent evolution
in serine proteases of the trypsin and subtilisin type and also in
some lipases (35). Enumeration of active and binding sites for
many proteins in the genome, such as various metal and nucle-
otide binding sites, will facilitate experimental determination of
protein function.

The third advantage of 3D modeling over sequence matching
is that a 3D model frequently allows a refinement of the func-
tional prediction based on sequence alone because the ligand
binding is determined most directly by the structure of the binding
site rather than its sequence. An example of this is provided by
a predicted SH3 domain in the yeast ORF YDL117W (Table 1).
Because there are known 3D structures of SH3 domains bound
to proline-rich peptide ligands, it was possible to calculate a 3D
model of such a complex for the putative yeast SH3 domain (Fig.
4). Based on the model, the SH3 residues that interact with the
peptide were predicted. This can then be used to construct
site-directed mutants with altered or destroyed binding capacity,
which in turn could test hypotheses about the sequence–
structure–function relationships for this SH3 domain.

Conclusion. Although an experimental structure or a compar-
ative model are generally insufficient on their own to infer the

Table 1. Examples of previously uncharacterized yeast proteins with reliable models

ORF residues PDB code residues name
Percent sequence

identity
Model

accuracy Conserved features

YDL117W 13–64 1lckA 65A–115A P56-LCK SH3 domain 30 (24.5) 0.97 W31 conserved; other binding
residues conserved or similar.

YCR033W 885–935 1idz 140–190 c-MYB DNA binding domain 21 (22.3) 0.99 N interacting with DNA is
conserved; K’s replaced by R’s.

YNL181W 44–341 1fmcA 2A–215A 7-a-hydroxysteroid dehydrogenase 14 (25.5) 0.98 K163 conserved; Y159F.
YOR221C 124–368 1mla 87–296 malonyl-COA ACP transacylase 17 (23.7) 0.95 Active site residues S92, R117, and

H201 are conserved.
YPL217C 63–182 1etu 5–145 elongation factor Tu (domain I) 22 (22.7) 0.86 GTP binding loops are similar.

Conserved GKTTL motif.

These ORFs do not have clear similarity to any protein of known function according to the following sources (October 31, 1997): MIPS
(http:yywww.mips.biochem.mpg.deymipsyyeastyindex.html), Yeast Protein Database (http:yyquest7.proteome.comyYPDhome.html), GENEQUIZ (http:yy
www.sander.ebi.ac.ukygenequiz), SACCH3D (http:yygenome-www.stanford.eduySacch3D), PEDANT (http:yypedant.mips.biochem.mpg.deyfrishmany
pedant.html), and PFAM (27). The examples were selected partly by considering conservation of the functionally important residues (Conserved features).
Thus, they have higher sequence similarity to known protein structures than most of the other previously uncharacterized yeast proteins. For each ORF
and its corresponding template, the starting and ending residues of the matching regions are indicated. The number in parenthesis in the percent sequence
identity column is the alignment significance score in nats (13). The overall model accuracy is given by p(GOODyQ_SCORE). The complete list of 236
previously uncharacterized yeast proteins with reliable models is available at http:yyguitar.rockefeller.edu.

Yeast protein Related protein of known 3D structure
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biological function of a protein, they many times are comple-
mentary to sequence analysis and direct experiment. Our results
show that comparative modeling efficiently increases the value of
sequence information from the genome projects, although it is
not yet possible to model all proteins with useful accuracy. The

main bottlenecks are the absence of structurally defined members
in many protein families and the difficulties in detection of weak
similarities, both for fold recognition and sequence–structure
alignment. However, although only 400 out of the total of a few
thousand domain folds are known (36, 37), the structure of most
globular folds likely is to be determined in ,10 years (36). Thus,
comparative modeling conceivably will be applicable to most of
the globular protein domains close to the completion of the
human genome project.

Note Added in Proof. Two recent studies relied on sequence profile
methods to assign folds to parts of 38% (44) and 37% (45) of the
proteins in the M. genitalium genome.
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FIG. 4. Modeling a putative interaction of a predicted YDL117W SH3
domain with a proline-rich peptide. A segment in the yeast ORF
YDL117W sequence (Top) was predicted to be remotely related to the
SH3 domains, many of which have known 3D structure (Table 1). The
automated prediction was possible because of the sensitivity afforded by
evaluating a 3D model implied by the match. The 3D model of the SH3
domain in turn allowed us to address the biochemical function of
YDL117W by calculating a 3D model of a complex between the predicted
SH3 domain and a putative ligand, a proline-rich peptide (Middle).
Inspection of the YDL117W sequence revealed that there is a proline-rich
segment downstream from the putative SH3 domain (PLPPLPPLP,
positions 212–220). Because this peptide contains the signature PXXP
sequence typical of the SH3 binding peptides (39), it was the ligand chosen
for the modeling of the complex; both inter- and intramolecular inter-
actions between SH3 domains and Pro-rich peptides already have been
documented (39). A model of the complex was obtained by the same
comparative method as the model of the SH3 domain (15), relying on the
crystallographic structure of the complex between the FYN SH3 domain
and its peptide ligand (PPAYPPPPVP) (40). The predicted SH3 domain
is shown in the surface representation (41), with the ball-and-stick model
of the peptide (red) lying in the binding site. The SH3 residues making
hydrophobic contacts and hydrogen bonds to the ligand peptide are
colored in green and blue, respectively. The bottom panel shows a
schematic representation of the SH3-peptide interaction (42). The pep-
tide atoms that interact with the SH3 residues are shown as filled spheres,
hydrogen bonds are represented by dashed lines, and hydrophobic inter-
actions are indicated by the spiked semicircles. This model facilitates
designing experiments such as site-directed mutagenesis for maping of
functionally important residues on the SH3 domain and its ligand. This
should be compared to the starting point at which no functional informa-
tion about this ORF or about the proteins related to it was known. More
generally, the wealth of information in the bottom two panels relative to
the top, sequence-only panel is a case in point for the utility of structural
models in planning biological experiments (see also text). For the many
proteins whose structures have not been determined by experiment,
maximal structural information is obtained by both (i) establishing a match
to a known protein structure and (ii) calculating an all-atom 3D model
based on that match by using the methods described in this paper.
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