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Abstract

A large-scale transcriptome analysis has been con-
ducted using pPEACH1.0 microarray on nectarine
(Prunus persica L. Batsch) fruit treated with 1-methyl-
cyclopropene (1-MCP). 1-MCP maintained flesh firm-
ness but did not block ethylene biosynthesis.
Compared with samples at harvest, only nine genes
appeared to be differentially expressed when fruit were
sampled immediately after treatment, while a total of
90 targets were up- or down-regulated in untreated
fruit. The effect of 1-MCP was confirmed by a direct
comparison of transcript profiles in treated and un-
treated fruit after 24 h of incubation with 106 targets
differentially expressed. About 30% of these targets
correspond to genes involved in primary metabolism
and response processes related to ethylene, auxin,
and other hormones. In treated fruit, altered transcript
accumulation was detected for some genes with a role
in ripening-related events such as softening, colour
development, and sugar metabolism. A rapid decrease
in flesh firmness and an increase in ethylene pro-
duction were observed in treated fruit maintained for
48 h in air at 20 °C after the end of the incubation
period. Microarray comparison of this sample with
untreated fruit 24 h after harvest revealed that about
45% of the genes affected by 1-MCP at the end of the
incubation period changed their expression during the
following 48 h in air. Among these genes, an ethylene
receptor (ETR2) and three ethylene-
responsive factors (ERF) were present, together with
other transcription factors and ethylene-dependent
genes involved in quality parameter changes.

Key words: ACC synthase, ethylene biosynthesis, ethylene
receptors, gene expression, microarray, 1-methylcyclopropene,
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Introduction

In climacteric fruit, ethylene is required for ripening
and the control of this developmental process mainly
relies on the possibility of affecting ethylene production
and/or action. This can be achieved through genetic
manipulation, by modulating environmental parameters
(temperature and atmosphere composition) during stor-
age, or using specific ethylene inhibitors. In general, the
result of these approaches is an altered gene transcrip-
tion pattern and, as a consequence, modified ripening
behaviour. 1-methylcyclopropene (1-MCP) is thought
to interact with ethylene receptors thus preventing
ethylene-dependent processes (Sisler and Serek, 1997).
Research carried out using 1-MCP report that the
chemical, by affecting ethylene production, respiration,
softening, colour change, and aroma production, delays
ripening and increases the post-harvest life of numerous
climacteric fruits. However, treatment efficacy is vari-
able and depends on several factors including the
concentration of 1-MCP used, storage condition and
duration, and maturity of the fruit before application
(for a review on 1-MCP effects see Watkins, 2006). In
addition, 1-MCP induces variable responses in different
climacteric fruit species and even in varieties of the
same species (Blankenship and Dole, 2003), thus
suggesting the presence of different mechanisms con-
trolling ripening in climacteric fruit. This is particularly
evident when comparing two important fruit species

* To whom correspondence should be addressed. E-mail: claudio.bonghi @ unipd.it, pietro.tonutti@sssup.it

© 2008 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.


http://jxb.oxfordjournals.org/open_access.html
http://creativecommons.org/licenses/by-nc/2.0/uk/

2782 Ziliotto et al.

such as apple and peach. Following 1-MCP treatment,
ethylene production is strongly reduced, ripening is
inhibited or delayed for many days, and storage
prolonged in apples (Watkins et al., 2000; Fan and
Mattheis, 2002; Jiang and Joyce, 2002; Bai et al.,
2005). On the other hand, the effects of 1-MCP
treatments on peaches and nectarines are limited to the
incubation period and a few hours afterwards, when the
maintenance of flesh firmness is associated with an
altered gene expression pattern as observed for endo-
polygalacturonase (endo-PG) (Dong et al., 2001; Dal
Cin et al., 2005). Recovery of ripening occurs within
a few days after the end of treatment in both peaches
and nectarines which soften rapidly, especially at room
temperature (Mathooko et al., 2001; Fan et al., 2002;
Ziliotto et al., 2003). These features make apple and
peach (both belonging to the Rosaceae family) in-
teresting models for elucidating the molecular mecha-
nisms responsible for the different ripening patterns and
responses to ethylene and its inhibitors. In a comparative
work, Dal Cin et al. (2006) pointed out that, whereas
ethylene biosynthesis is markedly inhibited by 1-MCP
in apples, its production in peaches was not reduced by
the chemical. This suggests that the variable responses
to the inhibitor of ethylene perception might be due to
differences in terms of ratio, expression pattern, turn-
over of the ethylene receptors, and/or mechanisms
leading to altered chemical binding of 1-MCP.

The genomics approach and the development of high
throughput technologies for large-scale analyses of tran-
scriptomes represent powerful tools for unravelling the
molecular mechanisms of complex processes, such as
fruit ripening, and elucidating, on a large-scale basis, the
role and effects of endogenous and/or exogenous factors.
In particular, microarray analyses have been performed
for transcriptome profiling during the transition from the
pre-climacteric to the climacteric stage and the role of
ethylene in ripening pear (Fonseca et al., 2004), tomato
(Alba et al., 2005), and peach (Trainotti et al., 2006)
fruit. In this last species, a dramatic up-regulation has
been detected for genes encoding transcription factors
and others involved in ethylene biosynthesis, perception,
and signal transduction. Using the same microarray,
Trainotti et al. (2007) identified genes involved in
biosynthesis, transport, and signalling of auxin that
show, in peach mesocarp, an increased expression at
ripening, and demonstrated the existence of an important
cross-talk between auxin and ethylene, with genes in the
auxin domain regulated by ethylene, and genes in the
ethylene domain regulated by auxin.

The results of a transcriptomic approach, undertaken
with the aim of elucidating molecular mechanisms and
identifying candidate genes involved in the responses of
nectarine fruit to the inhibitor of ethylene action 1-MCP
are reported here.

Materials and methods

Plant material and experimental design

Nectarine (Prunus persica L. Batsch, cv. Super Crimson Gold) fruit
were harvested at commercial ripening stage (about 60 N flesh
firmness) and immediately transferred to the Post-harvest Laboratory
of the Faculty of Agriculture, University of Padova, Italy, where they
were maintained at room temperature (20 °C) throughout the
experiments. They were then divided in two groups of 40 fruit each:
the first group was enclosed in gas-tight glass jars and treated with
1 ul 17" of 1-MCP for 24 h. The second group (control) was enclosed
for 24 h in sealed jars of the same volume without 1-MCP. To
avoid excessive CO, accumulation, KOH was added to the jars. At
the end of the 24 h incubation period fruit were removed from the
jars and transferred to air at 20 °C for a further 48 h (72 h from
harvest, 72MCP and 72AIR). Samplings were performed at the
beginning of the experiment (TO0), at 24 (24MCP and 24AIR, end of
the incubation period), 48 and 72 (72MCP and 72AIR, 48 h from
the end of the incubation period) hours after harvest.

At each sampling time, ethylene production of 10 individual fruit
was determined using a gas chromatograph (DANI 3200) as
described by Tonutti et al. (1997) and flesh firmness measured with
a penetrometer (TR, Forli, Italy) equipped with a 8 mm probe. For
each sampling time (T0, 24AIR, 24MCP, 72AIR and 72MCP) two
representative fruit (biological replicates) have been used for
transcript analyses.

RNA extraction, microarray preparation, and hybridization

Total RNA was extracted using the protocol described by Ruperti
et al. (2001). RNA yield and purity was checked by means of UV
absorption spectra, whereas RNA integrity was ascertained by
means of electrophoresis in agarose gels.

Total RNA (20 pg) from TO, air-, and 1-MCP-treated fruits was
converted into target cDNA by reverse transcription using the
SuperScript™ Indirect cDNA Labeling System (Invitrogen, USA)
following the manufacturer’s instructions.

The features, preparation, and hybridization protocols of the peach
microarray WPEACH 1.0 are described in Trainotti et al. (2006).

Data analysis

The microarrays were scanned as described by Trainotti et al.
(2006). The TM4 (www.tm4.org) package developed at TIGR
(www.tigr.org; Saeed et al., 2003) was used to analyse microarray
data. The images were processed using the Spotfinder 2.2.3.
software by means of the Otsu algorithm. The expression data
extracted by Spotfinder were normalized by MIDAS 2.18 using the
LOWESS (Locally Weighted Regression Scatter Plot Smoothing;
Cleveland, 1979) algorithm with the ‘block mode’, keeping the Cy3
channel as reference. After normalization, data from each slide were
split in two as each probe is spotted twice on PUPEACHI.0.
Thereafter, each spot value was considered to be independent.
Normalized split data were loaded in MeV 3.1 and for each com-
parison (24MCPvsTO, 24AIRvsTO, 24MCPvsAIR; 72MCPvs24AIR,
at least three experiments) a 66% cut-off was imposed to select
genes differentially expressed by one-class unpaired SAM (Signif-
icance Analysis of Microarrays; Tusher et al., 2001) analysis.
Clones with significant changes in expression (threshold ratios,
expressed as log,, higher than 1 and lower than —1 for up- and
down-regulation, respectively) were identified at delta values giving
a 0% of false discovery rate (FDR).

Quantification of mRNA via qRT-PCR

To validate microarray data, transcript accumulation of AUX/IAA, B-
carotene hydroxylase, catalase, ethylene receptor ETR2, ERF-like,
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and trehalose-6-phosphatase genes was evaluated via qRT-PCR.
The cDNA single strand used for RT-PCR was obtained as follows:
50 pg of total RNA were treated with 10 units of RQ1 RNase-Free
DNase (Promega) and 1 unit of RNAguard (RNase INHIBITOR,
GE Healthcare) for 30 min, then purified by phenol-chloroform.
One microgram of total DNA-free RNA was reverse-transcribed
with 200 U of M-MLV Reverse Transcriptase (Promega), 1 unit of
RNAguard (RNase INHIBITOR) and 2.5 uM oligo-dTj, ;g as
primer at 37 °C for 90 min in a final volume of 20 pl, as described
in Sambrook et al. (1989). The single strand cDNA obtained (1 pl)
was subjected to real-time PCR in a final volume of 10 pl
containing 2X Power SYBR® Green PCR Master Mix (Applied
Biosystems, Foster City, USA) and specific primers (3 pmol) (see
Supplementary Table S1 at JXB online). Three technical replicates
for each sample were run on an ABI 7500 Real Time PCR System
Sequence Detection machine (PE Applied Biosystems) programmed
to heat for 10 min at 95 °C, followed by cycling conditions (melting
step for 30 s at 95 °C, annealing for 30 s at 64 °C, and extension for
35 s at 72 °C) repeated for 40 cycles. An additional dissociation
cycle (15 s at 95 °C, 1 min at 60 °C, and 15 s at 95 °C) was carried
out. The amplified cDNA fragments were cloned into pBluescript 11
KS+ vector (Fermentas International, Burlington, Canada) and
sequenced. The expression values were calculated following the
mathematical model proposed by Livak and Schmittgen (2001)
using 18S as housekeeping.

Results

Compared with the control, which softened rapidly, 1-
MCP-treated fruit maintained higher flesh firmness at the
end of the 24 h incubation period (Fig. 1). A difference
between samples was still present after transferring treated
fruit to air for 24 h and 48 h (48 h and 72 h from harvest,
respectively) when treated fruit softened. A similar in-
creasing pattern of ethylene biosynthesis was observed in
both samples throughout the experiment. At the end of the
incubation period and 24 h afterwards, treated fruit
synthesized ethylene at the same level as the control,
while at 72 h a higher production was detected in treated
fruit (Fig. 1).
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Transcript profiling at the end of 1-MCP treatment

A first set of microarray hybridizations was carried out
using a simple loop/flipped dye design (Fig. 2), to compare
TO, 24MCP, and 24AIR samples. In the 24AIRvsTO
comparison, a total of 215 targets were significant at SAM
analysis, whereas 212 targets were identified in both
24MCPvsTO and 24MCPvs24AIR comparisons. Accord-
ing to the threshold log ratio (>1 for induced; <-1 for
repressed), 90 (43 induced and 47 repressed) and nine
unigenes (three induced and six repressed) were expressed
differentially in 24AIRvsTO and 24MCPvsTO, respec-
tively. Compared with the 24AIR sample, a total of 106
targets showed different (54 greater and 52 lower)
transcript accumulation in treated fruit (24MCP) (Fig. 2).
This clearly indicates that the presence of 1-MCP in the
atmosphere surrounding nectarine fruit is effective in
altering the expression of specific genes, resulting in
a block of the ripening process as demonstrated by the
maintenance of high flesh firmness values (Fig. 1).
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Fig. 2. Experimental design of microarray analyses. In the simple
loop, six slides (12 technical replicates) were used for the comparison
24MCPvsTO and three (six technical replicates) for 24AIRvsTO,
24MCPvs24AIR, and 72MCPvs24AIR. Dye flip was performed for
each comparison (three for 24MCPvsTO and one for 24AIRvsTO,
24MCPvs24AIR, and 72MCPvs24AIR). For each comparison the
number of genes showing differential expression, identified by SAM
analysis, is reported. Flesh firmness value (N) is also indicated.
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Fig. 1. Flesh firmness (left panel) and ethylene biosynthesis (right panel) in 1-MCP-treated (solid line) and control (dotted line) nectarine fruit.
Arrows indicate the end of the incubation period. Data are means of 10 fruit. Vertical bars represent =SD.
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A list of targets that were significant by SAM analysis
and those showing differential expression and/or transcript
accumulation is reported in Table S2 at JXB online.
Among targets that were more abundant in 24MCP than
in 24AIR, two are involved in auxin metabolism (ctg_57
and ctg_1741), and two correspond to genes related to cell
wall metabolism (expansin PpEXP2, ctg_941; and man-
nan endo-1,4 B-mannosidase, ctg_1954). Higher transcript
levels of ctg_1024 and ctg_5424, corresponding to
a catalase and a lipoxygenase, respectively, and ctg_1751,
representing a glucose acyltransferase were also observed
at the end of 1-MCP treatment. Of the 54 genes that more
were expressed in 1-MCP-treated fruit, 36 (66.6%)
appeared down-regulated in the 24AIRvsTO comparison
microarray (see Supplementary Table S2 at JXB online),
suggesting that these genes are involved in the ripening
process of nectarines.

Among the 52 targets showing significantly lower (log
ratio <—1) transcript accumulation in the 24MCPvs24AIR
comparison (see Supplementary Table S2 at JXB online),
specific cell wall-related genes are present as endo-PG
(ctg_420), pectin acetylesterase (PAE) precursor (ctg_1816),
one putative pectin methylesterases (PME) (ctg_4533),
expansin PpEXP3 (ctg_676), and EGase (PpEGI, ctg_
2197). Genes related to quality parameters such as colour,
flavour development, and sugar metabolism have also
been identified: B-carotene hydroxylase (ctg_711), omega-
6 fatty acid desaturase (ctg_835), putative invertase
inhibitor (ctg_4499), pyruvate decarboxylase (ctg_112),
sucrose synthase (ctg_61), glucose acyltransferase
(ctg_1752), and trehalose-6-phosphate phosphatase, TPPA
(ctg_4621). With respect to hormone metabolism, not
only two auxin-related genes (AUX/IAA protein, ctg_768,
auxin response factor, ARF, ctg_1991) and a 9-cis-
epoxycarotenoid dioxygenase2 (ctg_2980) involved in
ABA biosynthesis, but a number of genes with a role in
ethylene production, perception, and signal transduction
accumulated lower transcripts in 1-MCP-treated fruit: 1-
aminocyclopropane-1-carboxylate (ACC) oxidase (ACOI,
ctg_64), ethylene receptor ETR2 (ctg_4109), ethylene-
response factors (ERF1, ctg_3350; ERF2, ctg_2116; ERF-
like, ctg_2757). Two other transcription factors, a MADS-
box homologue (ctg_1511), and HD-ZIP protein
(ctg_2443) were identified, as well as three targets
corresponding to pathogenesis-related proteins (ctg_1026,
ctg_1069, and ctg_4524) and one ripening-related pro-
tein (ctg_938). Of the 52 genes showing lower transcript
accumulation at the end of the 1-MCP incubation period,
27 (51.9%) appeared up-regulated in the 24AIRvsTO
comparison (see Supplementary Tables S2 at JXB online).
This implies a role for these genes in nectarine ripening.

As reported above, only nine targets (three induced and
six repressed) resulted as being differentially expressed in
24MCP compared with the TO sample. Of the three targets
up-regulated, one putatively corresponds to a sucrose

synthase gene, and one of the six repressed genes refers
to an auxin-induced protein (data not shown).

Transcript profiling in the post-treatment phase

After transferring fruit to air at the end of the 24 h
incubation period, rapid softening occurred at 72 h (Fig.
1). This was accompanied by a marked increase in
ethylene biosynthesis. To elucidate this behaviour at
a molecular level, the microarray hybridization design
was implemented to perform an additional comparison:
72MCP (31.1 N flesh firmness) versus 24AIR (28.7 N
flesh firmness). Of the 54 targets showing greater
transcript accumulation in the 24MCPvs24AIR compari-
son, 12 appeared to be expressed at a similar level in
72MCP and 24AIR samples, indicating a decreasing
transcription activity during the post-treatment phase,
whereas 36 targets (66.6%) still displayed a higher
transcript accumulation 48 h after the end of 1-MCP
treatment (see Supplementary Table S2 at JXB online).
Among these targets, catalase (ctg_1024) was selected to
validate, via qRT-PCR, the microarray data: as reported in
Fig. 3A, expression analysis confirmed that 1-MCP
induced an increased expression of this gene at the end of
the incubation period and this behaviour was also
observed 48 h later. Considering the 52 targets showing
a reduced transcript accumulation at the end of the 24 h
treatment period (24MCPvs24AIR), only 13 still main-
tained a reduced transcript level in the 72MCPvs24AIR
comparison, and for 35 (67.3%) log ratio values higher
than <—1 were detected (see Supplementary Table S2 at
JXB online). This would indicate that a number of targets
negatively affected by 1-MCP at the end of the 24 h
incubation period recovered their expression 48 h later.
The lower amount of transcript accumulation in 1-MCP-
treated samples at the end of the incubation period and the
recovery pattern at 72 h was confirmed by qRT-PCR
analysis of ctg_711 (B-carotene hydroxylase), ctg_768
(AUX/TAA protein), ctg_4109 (ETR2), and ctg_4621
(TPPA) (Fig. 3B, C, D, E). A marked reduced transcript
level at 24 h and slight recovery at 72 h was also observed
via qRT-PCR in treated fruit for ctg_2757 (ERF-like)
(Fig. 3F), one of the 13 targets still maintaining log ratio
value <—1 in the 72MCPvs24AIR comparison.

With the aim of better describing molecular aspects that
characterize the response of nectarine fruit to 1-MCP,
targets present in the pPEACH1.0 array (and being shown
as significant with SAM analysis) were grouped according
to their putative function and microarray data resulting
from different comparisons (24MCPvs24AIR, 24 AIRvsTO,
and 72MCPvs24AIR) were plotted together. Considering
genes involved in ethylene physiology (Fig. 4), as stated
above, lower (<-1) transcript accumulation was detected
for ACOI (ctg_64), ETR2 (ctg_4109), ERFI (ctg_3350),
ERF2 (ctg_2116), and ERF-like (ctg_2757) genes in
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Fig. 3. Expression profiles throughout the experiment of selected genes showing higher (A, catalase) or lower (B, B-carotene hydroxylase; C, AUX/
IAA; D, ETR2; E, TPPA; F, ERF-like) transcript accumulation in the 24MCPvs24AIR comparison microarray. Solid lines indicate 1-MCP-treated
fruit and dotted lines control fruit. Bars represent =SE of three independent replicates. Arrows indicate the end of 1-MCP treatment.

24MCP samples compared with 24AIR, whereas no
significant difference was observed for ACC synthase
(ACS1, ctg_489), ETRI (ctg_1436), ERS (ctg_356), EIN2
(ctg_4591), and EILI (ctg_4073). All the targets showing
lower transcript accumulation at 24 h in treated fruit
displayed a recovering expression at 72 h (higher log ratio
value in 72MCPvs24AIR than in 24MCPvs24AIR). This
behaviour was demonstrated by qRT-PCR analyses for
ctg_4109 (ETR2) and ctg_2757 (ERF-like) (Fig. 3D, F).
Interestingly, an increase in transcript accumulation at
72 h was also detected for ACS/ and, although not
statistically significant, for EIN2 (Fig. 4). Worthy of note
is the fact that at the early ripening in air (24AIRvsTO)
a significant increase of transcript was only observed for
ACOI and ETR2.

Besides the ethylene-related Transcription Factors
(TFs), several other targets corresponding to TFs are
present in the PPEACHI.0 array and some of these
appeared to be affected by 1-MCP. The effect of the
ethylene inhibitor appeared to be variable: at the end of

the incubation period, it significantly reduced the accumu-
lation of transcripts of a MADS box homolog (ctg_1511),
ARF (ctg_1991), AUX/IAA (ctg_768), and an HD-ZIP
(ctg_2443), and increased that of another HD-ZIP
(ctg_3293) and two AUX/IAA TFs (ctg_57 and ctg_1741)
(Fig. 5). The effect of 1-MCP was maintained at 72 h for
ctg_57, ctg_1741, and ctg_3293, whereas a recovery of
gene expression was detected for ctg_1511, ctg_2443, and
ctg_768, which displayed a dramatic increase in transcript
accumulation (Fig. 5), as demonstrated for ctg_768 by
gRT-PCR analysis (Fig. 3C). In addition, higher transcript
levels in treated fruit at 72 h were detected for ctg_84
(AUX/IAA) (Fig. 5).

Three other groups of targets involved in quality-related
metabolic processes were identified. The first deals with
sugar metabolism (Fig. 6): four targets (ctg_112, pyruvate
decarboxylase; ctg_1752, glucose acyltransferase; ctg_4499,
putative invertase inhibitor; ctg_4621, TTPA) were up-
regulated during early ripening and significantly less
represented in treated fruit at the end of the 1-MCP
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Fig. 4. Hybridization intensity ratio, reported as log,, of probes spotted
on PPEACH1.0 and significant at SAM analysis corresponding to genes
involved in ethylene biosynthesis, perception, and signal transduction.
The ratio has been calculated by comparing, in three microarray
experiments, the hybridization signal of cDNAs corresponding to
transcripts of fruit sampled at harvest (TO), after 24 h in air (24A) or in
1-MCP (24MCP), and 48 h in air from the end of 1-MCP treatment
(72MCP). Log value is the average of a minimum of four replicates.
Bars indicate standard deviation. Abbreviations: ACO1, 1-aminocyclo-
propane-1-carboxylate oxidase; ACS1, 1-aminocyclopropane-1-carbox-
ylate synthase; EIL, EIN3-like protein; ERF, ethylene response factors;
ERS, ethylene receptor ERS-like; ETR, ethylene receptor ETR type.

incubation period, showed a recovery of their expression
at 72 h (as demonstrated for ctg_4621 by gqRT-PCR
analysis, Fig. 3E). Another putative glucose acyltransfer-
ase gene (ctg_1751) appeared to be down-regulated
during the early ripening stage and showed a higher
transcript level in treated fruit at both 24 h and 72 h.

The second group comprises targets involved in cell-
wall metabolism (Fig. 7): with the exception of ctg_676
(PpEXP3), all the targets displaying lower transcript
accumulation at 24 h in treated fruit and an up-regulation
during the early stages of ripening (ctg_420, endo-PG;
ctg_ 2197, PpEGI; ctg_4533, PME; ctg_1816, PAE) were
characterized by a significant recovery of expression at
72 h. Interestingly, PpEXP2 (ctg_941), down-regulated at
early ripening stage and showing higher transcript levels
in treated fruit at 24 h, did not undergo any expression
change at 72 h. A similar behaviour has been observed for
ctg_1954 representing a mannan endo-1,4-B-mannosidase
(Fig. 7).

The last selected group includes transcripts correspond-
ing to genes involved in the isoprenoid pathway and the
development of typical yellow pigmentation in this
nectarine variety (Fig. 8). The only gene appearing signifi-
cantly affected by 1-MCP at the end of the 24 h
incubation period was B-carotene hydroxylase (ctg_711),
up-regulated during the early ripening stages. The effect
of the ethylene inhibitor on this gene was confirmed by
gRT-PCR (Fig. 3B): this analysis pointed out, as also
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Fig. 5. Hybridization intensity ratio, reported as log,, of probes spotted
on WPEACHI1.0 and significant at SAM analysis corresponding to
members belonging to transcriptional regulator gene families. The ratio
has been calculated by comparing, in three microarray experiments, the
hybridization signal of cDNAs corresponding to transcripts of fruit
sampled at harvest (T0), after 24 h in air (24A) or in 1-MCP (24MCP),
and 48 h in air from the end of 1-MCP treatment (72MCP). Log value
is the average of a minimum of four replicates. Bars indicate standard
deviation.

indicated by microarray data, a recovery of the expression
of this gene at 72 h.

Discussion and conclusions

The discovery of 1-MCP as a powerful antagonist of
ethylene action is providing great opportunities for
scientists to gain insight into the fundamental mechanisms
involved in many plant processes including fruit ripening.
It is confirmed here that, differently from other climacteric
species, the responses of peaches and nectarines to 1-MCP
treatment are confined to the incubation period and a few
hours thereafter. The large-scale transcriptome analysis
performed using PWPEACHI1.0 indicates that the quick
ripening observed after transferring treated peaches to air
is not due to a limited physiological effect of 1-MCP
during incubation. In fact, at the end of the 24 h treatment
period, the maintenance of high firmness (52.0 N) is
accompanied by marked changes in transcript profiling if
compared to control fruit (24AIR). Only nine genes
showed significant changes in 24MCPvsTO microarray
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Fig. 6. Hybridization intensity ratio, reported as log,, of probes spotted
on PPEACH1.0 and significant at SAM analysis corresponding to genes
involved in sugar metabolism. The ratio has been calculated by
comparing, in three microarray experiments, the hybridization signal of
cDNAs corresponding to transcripts of fruit sampled at harvest (TO),
after 24 h in air (24A) or in 1-MCP (24MCP), and 48 h in air from the
end of I-MCP treatment (72MCP). Log value is the average of
a minimum of four replicates. Bars indicate standard deviation.
Abbreviations: TPPA, trehalose-6-phosphate phosphatase.

analysis compared with 90 targets displaying differential
expression during 24 h ripening in air (24AIRvsTO). Such
results indicate that the presence of 1-MCP, by altering
ethylene perception, induces a block of ripening as
demonstrated by the maintenance of flesh firmness value.
This physiological effect is confirmed by the 106 genes
that were differentially expressed when comparing
24MCP and 24AIR samples, and the fact that a number
of affected targets correspond to genes with a role in
hormone (ethylene, but also auxin and ABA) metabolism
and in regulating transcription. Considering that 66.6%
and 51.9% of transcripts displaying greater and lower
transcript accumulation, respectively, at the end of the 1-
MCP incubation period show an opposite trend in
ripening fruit kept in air (24AIRvsTO comparison), it
might be hypothesized that these targets correspond to
ripening-related and ethylene-dependent genes.

Cell wall-related genes

The maintenance of high firmness values at the end of the
incubation period appears to be the result of a down-
regulation of cell wall-related genes, involved, in particu-
lar, in pectin metabolism, such as endo-PG. Microarray
data on endo-PG confirm specific expression analysis
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Fig. 7. Hybridization intensity ratio, reported as log,, of probes spotted
on WPEACH1.0 and significant at SAM analysis corresponding to genes
involved in cell wall metabolism. The ratio has been calculated by
comparing, in three microarray experiments, the hybridization signal of
cDNAs corresponding to transcripts of fruit sampled at harvest (TO),
after 24 h in air (24A) or in 1-MCP (24MCP), and 48 h in air from the
end of I-MCP treatment (72MCP). Log value is the average of
a minimum of four replicates. Bars indicate standard deviation.
Abbreviations: EG, endo-f-1,4-glucanase; endoPG, endopolygalactur-
onase; EXP, expansin; PAE, pectin acetylesterase; PME, pectin
methylesterase.
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Fig. 8. Hybridization intensity ratio, reported as log,, of probes spotted
on WPEACH]1.0 and significant at SAM analysis corresponding to genes
involved in isoprenoid pathway. The ratio has been calculated by
comparing, in three microarray experiments, the hybridization signal of
cDNAs corresponding to transcripts of fruit sampled at harvest (T0),
after 24 h in air (24A) or in 1-MCP (24MCP), and 48 h in air from the
end of 1-MCP treatment (72MCP). Log value is the average of
a minimum of four replicates. Bars indicate standard deviation.
Abbreviations: B-O4: B-carotene hydroxylase; HDR, 14-hydroxy-3-
methylbut-2-en-1-yl diphosphate reductase; HDS, 4-hydroxy-3-methyl-
but-2-en-1-yl diphosphate synthase; LCYB, lycopene B cyclase; MCS,
2C-methyl-p-erythritol 2,4-cyclodiphosphate synthase; PDS, phytoene
dehydrogenase; PSY, phytoene synthase; ZDS, {-carotene desaturase.
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(Ziliotto et al., 2003; Dal Cin et al., 2005), showing
a reduction of endo-PG transcript accumulation at the end
of 1-MCP treatment and further emphasize the crucial role
played by endo-PG in peach fruit softening, as clearly
demonstrated in non-melting (Callahan et al., 2004;
Morgutti et al., 2006) and stony hard (Hayama et al.,
20064, b; Begheldo et al., 2008) genotypes.

Considering the strict relationship existing between
endo-PG and ethylene (Sitrit and Bennett, 1998), the
marked reduction of endo-PG transcript accumulation in
treated fruit (log ratio value —4.29, the second lowest
value among affected targets) indicates that ethylene
action is markedly inhibited by 1-MCP in ripening
nectarines. One of the targets showing higher transcript
level in 1-MCP-treated fruit is PpEXP2 and this would
confirm that this gene, down-regulated by ethylene, is
related to peach fruit growth and, differently from
PpEXP3 (ctg_676), which displayed a reduced level of
transcript accumulation in 1-MCP treated fruit, is not
responsible for softening as reported by Hayama et al.
(2001, 2003).

Regulation of ethylene biosynthesis

When evaluating the list of targets showing lower
transcript accumulation at the end of the 1-MCP in-
cubation period, it is interesting to notice that, of the two
elements involved in the last ethylene biosynthetic steps,
only ACOI 1is present, whereas ACS/ does not appear to
be negatively affected by 1-MCP. In addition, microarray
data of the 24AIRvsTO comparison confirm that, in P.
persica fruit, ACOI is induced earlier than ACS/ at the
onset of ripening as previously reported (Tonutti et al.,
1997; Begheldo et al., 2008). Considering ethylene
receptors, ETR2 but not ETRI and ERSI show lower
transcript levels after 24 h treatment with 1-MCP. These
data are in agreement with results published by Dal Cin
et al. (2006) indicating that ACS/, ETRI, and ERSI
expressions are not or only slightly affected by 1-MCP in
peaches, and suggest that ETR2, induced at the very early
steps of climacteric (Fig. 4) and displaying a ripening-
related expression pattern (Trainotti et al., 2006), plays
a crucial role in the modulation of ethylene responses in
peach fruit. This hypothesis is reinforced by the fact that,
in ripening peaches, a great inductive effect on ETR2 is
yielded by exogenous ethylene treatment (Trainotti et al.,
2007).

As specifically pointed out by Mathooko et al. (2001)
and Dal Cin et al. (2006), ACSI expression and activity
are not affected by 1-MCP in ripening peaches. Consider-
ing that ACOI gene expression and activity appear
reduced but not blocked, as reported by our microarray
data and by Mathooko et al. (2001), the result is that
ethylene production is not inhibited by 1-MCP in P.
persica fruit at the end of 1-MCP treatment. The higher

level of ethylene production observed in the post-
treatment phase (72 h), paralleled by a significant increase
in ACS/ transcript accumulation, confirms previously
published data (Dong et al., 2001; Rasori et al., 2002;
Ziliotto et al., 2003; Dal Cin et al., 2006). ACOI gene
expression is also only slightly affected in apples but,
unlike peaches, ACS/ transcript accumulation is sup-
pressed by 1-MCP (Dal Cin et al., 2006; Tatsuki et al.,
2007). Taken together, these data would indicate that
ACS! might represent one crucial factor in the modulation
of responses to 1-MCP application. Trainotti et al. (2007)
report that many genes involved in biosynthesis, transport,
and signalling of auxin have an increased expression in
peach mesocarp during ripening and some ripening-
related genes, including ACS/, are more strongly influ-
enced by exogenous auxin (NAA) than by ethylene. The
same authors suggest that, in addition to the independent
role played by auxins, an active cross-talk between auxin
and ethylene modulates peach ripening. Besides the well-
known inductive effects of auxin on ACS/ and the
ethylene climacteric (Abel and Theologis, 1996; Bleecker
and Kende, 2000), the hypothesis of a crucial interplay
between auxin and ethylene action is supported by our
microarray experiments showing significant transcription
changes at early ripening and an effect of 1-MCP on the
expression of some auxin metabolism-related genes
(ctg_57, ctg_768, ctg_1741, and ctg_1991). Whether the
limited effect of 1-MCP in delaying peach fruit ripening is
the result of this interplay between auxin and ethylene
remains to be elucidated.

Genes involved in ethylene perception and signal
transduction

The assumption that 1-MCP irreversibly binds to the
ethylene receptors explains the effects of the chemical
during the incubation period and this occurs either in
systems where ethylene production is blocked (e.g. apple)
or not, as in nectarines, where, at the end of the treatment,
the delay in ripening is accompanied by altered transcript
profiles. It has been postulated that, after 1-MCP treat-
ment, the return of ethylene sensitivity is due to the
appearance of new receptors (Sisler and Serek, 1997;
Blankenship and Dole, 2003). This appears to be the case
for nectarines where the transcription of ETRI and ERS1
appears to be unaffected, in our experimental conditions,
by 1-MCP (Fig. 4) and ETR2 expression recovers when
treated fruit are transferred to air (Fig. 3D). In fact, the
rapid ripening observed at 72 h (48 h from the end of 1-
MCP treatment) is associated with the increased transcript
accumulation of well-known ethylene-dependent genes,
such as endo-PG, and others (ctg_2197, PpEGI; and
ctg_4533, PME) showing an up-regulation during peach
fruit ripening and/or following ethylene treatment (Trainotti
et al., 1997, 2003). This occurs in parallel with the



accumulation of EIN2 transcripts (ctg_4591) and recover-
ing expression of specific ERFs at 72 h (ctg_2116,
ctg_2757, and ctg_3350; Figs 3F, 4). Transcript accumu-
lation of EIN2, absolutely required for ethylene signalling
(Chen and Bleeker, 1995; Alonso et al., 1999), has been
associated with ripening peaches (Trainotti et al., 2006;
Begheldo et al., 2008). Considering ERFs, proteins that
specifically bind to the so-called GCC box in promoters of
ethylene-responsive genes, the up-regulation observed in
ripening fruit (24AIRvsTO), and the reduced amount of
transcripts detected at 24 h in treated fruit confirm results
obtained in apple and plum, where ERFI expression
sharply increases with the climacteric peak and 1-MCP
treatment inhibits transcript accumulation (El-Sharkawy
et al., 2007; Wang et al., 2007). An up-regulation of
ERF?2 has been associated with peach fruit ripening and to
the presence of ethylene (Trainotti et al., 2007). The
relationship between ERF2 and ethylene is confirmed by
our data showing the presence of reduced amounts of
specific transcripts in 1-MCP treated fruit. Even though
expression of ERFs appears to be regulated not exclu-
sively by ethylene in ripening fruit (Wang et al., 2007),
the increasing expression trend of the three selected ERF's
observed at 72 h (Figs 3F, 4) might be interpreted as the
result of the recovered perception of ethylene and the
reactivation of the signal transduction mechanisms leading
to the induction of ethylene-dependent processes.

Colour development and sugar metabolism

Considering the biosynthetic pathway of xanthophylls,
pigments responsible for the yellow colour in peaches and
nectarines, microarray data indicate that B-carotene hy-
droxylase is the earliest gene induced at the onset of
ripening and appears to be, among the selected targets, the
only one significantly affected by 1-MCP (Fig. 8).
Ethylene-dependent expression of B-carotene hydroxylase
has been observed in orange fruit, another species
accumulating xanthophylls at ripening (Rodrigo and
Zacarias, 2007), but not in tomato, where lycopene is the
main pigment and this gene, together with phytoene
synthase (PSY), is expressed in an ethylene-independent
manner (Alba et al., 2005). Considering these aspects, it
might be hypothesized that different ethylene-related
regulatory mechanisms of carotenoid biosynthesis operate
in ripening fruit, depending on the genetic background,
determining the accumulation pattern and abundance of
specific compounds (lycopene, B-carotene, xanthophylls),
rather than the presence or not of the ethylene climacteric
at ripening. The increasing trend of transcript accumula-
tion detected at 72 h in treated fruit confirms that
carotenoid genes are expressed in a ripening-related
manner in P. persica fruit (Trainotti et al., 2006) and
suggests the presence of different factors, including
development and ethylene, modulating their transcription.
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The complex regulation of carotenoid biosynthesis in
Prunus spp. species is supported by evidence on P. mume,
where PSY is constitutively expressed, but ethylene
accelerates its induction (Kita et al., 2007), and on P.
armeniaca, where different effects of 1-MCP have been
detected on PSY, phytoene desaturase, and (-carotene
desaturase (Marty et al., 2005). In addition, stony hard
peaches, characterized by a lack of ethylene production at
ripening, undergo colour changes during the last de-
velopmental stages (Haji et al., 2003) and, if treated with
exogenous ethylene, develop a more pronounced yellow
colour (P. Tonutti et al., unpublished data), reinforcing the
hypothesis that both development and ethylene synergisti-
cally contribute to the changes in ground colour of
ripening peaches. Considering sugar metabolism, our data
indicate that ethylene may induce variable effects even on
genes belonging to the same family, as in the case of
glucose acyltransferases. Five targets appear to be signif-
icantly influenced by 1-MCP: in particular, the expression
of a putative invertase inhibitor (ctg_4499), markedly
induced at ripening, is strongly affected by the ethylene
antagonist. Inhibitor proteins often regulate the activity of
enzymes involved in carbohydrate metabolism that are
secreted out of the cytoplasmic compartment into the
apoplast or to the vacuole (Juge et al., 2004). Examples
are represented by invertase and PME inhibitors that are
members of a large family of proteins named PMEI-
related proteins (Bellincampi et al., 2004; Hothorn et al.,
2004). Neutral invertase activity and gene expression
(PpNII) decline during peach fruit ripening in parallel
with an increase of sucrose, a decrease of glucose+fruc-
tose content (Vizzotto et al., 1996; Nonis et al., 2007) and
a dramatic up-regulation of a putative invertase inhibitor
(Fig. 6). In grape berries, a putative invertase/PME
inhibitor protein is highly represented at the prevéraison
stage but not during the later stages of fruit development
when, differently from peaches, glucose+fructose but not
sucrose accumulate (da Silva et al., 2005). Whether the
putative invertase inhibitor and the ethylene-dependent
modulation of its expression play a major role in sugar
metabolism of ripening peaches and nectarines remains to
be elucidated.

In conclusion, the genomics approach described in this
paper has shed light on mechanisms involved in the
limited responses to 1-MCP of nectarine fruit, character-
ized by a recovery of ripening after the end of the
incubation period, and to identify new genes potentially
implicated in the ripening process and modulated by
ethylene. The quick recovery of nectarine ripening
following 1-MCP treatment seems to be related to the
limited inhibition of ethylene synthesis by 1-MCP: in this
context, ACS/ and its regulation appear to play a crucial
role. However, other mechanisms appear to modulate the
expression of ethylene-dependent genes involved in
ripening of nectarines. If for some genes (e.g. endo-PG,



2790 Ziliotto et al.

ETR?2) a marked expression recovery has been observed in
the post-treatment phase, and this could be imputed to the
presence of ethylene, for others (e.g. PPEXP2, PpEXP3,
HD-ZIP ctg_3293) no expression changes have been
detected after transferring fruit to air for 48 h indicating
that the ethylene inhibitor is still effective. Targeted
studies and comparative genomics approaches in Prunus
species characterized by a wide range of ripening
phenotypes with different responses to ethylene and its
inhibitors will be of great help to elucidate these complex
physiological mechanisms.

Supplementary data

Supplementary data are available at JXB online. Supple-
mentary Table 1 lists the oligonucleotides used in the
qRT-PCR experiments. Supplementary Table 2 reports
data of microarray experiments for all the 4805 probes
present on PPEACH]1.0.
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