Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Apr;106(1):157–161. doi: 10.1128/jb.106.1.157-161.1971

Mutants of Staphylococcus aureus with Increased Sensitivity to Ultraviolet Radiation

R V Goering 1, P A Pattee 1
PMCID: PMC248656  PMID: 4251664

Abstract

Nitrosoguanidine (NG) mutagenesis of Staphylococcus aureus resulted in the isolation of eight mutants exhibiting 3 to 28 times greater sensitivity to ultraviolet (UV) radiation. These mutants were further characterized by their ability to repair UV-irradiated bacteriophage, to act as recipients in the transduction of antibiotic resistance, and their sensitivity to NG. Based on the available data, six of these mutants are reduced in their ability to perform host-cell reactivation. One of the remaining two mutants may be deficient in post-replication repair.

Full text

PDF
157

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Böhme H. Absence of repair of photodynamically induced damage in two mutants of Proteus mirabilis with increased sensitivity to monofunctional alkylating agents. Mutat Res. 1968 Jul-Aug;6(1):166–168. doi: 10.1016/0027-5107(68)90112-7. [DOI] [PubMed] [Google Scholar]
  2. GAUSE G. F., KOCHETKOVA G. V. Vulnerability of nucleic acids in mutant staphylococci with impaired respiration. J Gen Microbiol. 1962 Oct;29:317–323. doi: 10.1099/00221287-29-2-317. [DOI] [PubMed] [Google Scholar]
  3. Hertman I., Luria S. E. Transduction studies on the role of a rec+ gene in the ultraviolet induction of prophage lambda. J Mol Biol. 1967 Jan 28;23(2):117–133. doi: 10.1016/s0022-2836(67)80021-4. [DOI] [PubMed] [Google Scholar]
  4. Howard-Flanders P., Boyce R. P. DNA repair and genetic recombination: studies on mutants of Escherichia coli defective in these processes. Radiat Res. 1966;(Suppl):156+–156+. [PubMed] [Google Scholar]
  5. Howard-Flanders P. DNA repair. Annu Rev Biochem. 1968;37:175–200. doi: 10.1146/annurev.bi.37.070168.001135. [DOI] [PubMed] [Google Scholar]
  6. Janovská E., Pillich J., Vizdalová M., Krivanková M. Inactivation and repair of polyvalent Staphylococcus phages after U.V.- or gamma-irradiation or acridine orange treatment. II. Influence of the growth of phage A-5 in various hosts on the change of its sensitivity. Int J Radiat Biol Relat Stud Phys Chem Med. 1969;16(5):401–406. doi: 10.1080/09553006914551441. [DOI] [PubMed] [Google Scholar]
  7. KLOSS W. E., PATTEE P. A. TRANSDUCTION ANALYSIS OF THE HISTIDINE REGION IN STAPHYLOCOCCUS AUREUS. J Gen Microbiol. 1965 May;39:195–207. doi: 10.1099/00221287-39-2-195. [DOI] [PubMed] [Google Scholar]
  8. Malke H. The action of nitrosoguanidine and other DNA-inactivating agents on Streptococcus pyogenes K56 strains with normal and reduced dark repair ability. Mol Gen Genet. 1968;102(3):241–246. doi: 10.1007/BF00385980. [DOI] [PubMed] [Google Scholar]
  9. Olson A. O., Baird K. M. Single-strand breaks in Escherichia coli DNA caused by treatment with nitrosoguanidine. Biochim Biophys Acta. 1969 Apr 22;179(2):513–514. doi: 10.1016/0005-2787(69)90063-x. [DOI] [PubMed] [Google Scholar]
  10. PATTEE P. A., BALDWIN J. N. Transduction of resistance to chlortetracycline and novobiocin in Staphylococcus aureus. J Bacteriol. 1961 Dec;82:875–881. doi: 10.1128/jb.82.6.875-881.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. PATTEE P. A., BALDWIN J. N. Transduction of resistance to some macrolide antibiotics in Staphylococcus aureus. J Bacteriol. 1962 Nov;84:1049–1055. doi: 10.1128/jb.84.5.1049-1055.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pillich J., Janovská E., Krivánková M., Pulverer G. Bedeutung der Inaktivierungswirkung von UV-Strahlen und Acridinorange beim Studium der polyvalenten Staphylokokken-Phagen. Zentralbl Bakteriol Orig. 1970 May;213(4):488–494. [PubMed] [Google Scholar]
  13. Pillich J., Janovská E., Pulverer G. Differenzierung der Staphylokokken-Bakteriophagen "80", "81", "PA", und "phi131" mit Hilfe von UV-Strahlen, Hydroxylamin und Acridinorange. Zentralbl Bakteriol Orig. 1968;207(2):187–193. [PubMed] [Google Scholar]
  14. Pillich J., Janovská E., Vízdalová M. Inactivation and repair of polyvalent Staphylococcus phages after U.V.- or gamma-irradiation or acridine orange treatment. Int J Radiat Biol Relat Stud Phys Chem Med. 1969;15(6):549–555. doi: 10.1080/09553006914550841. [DOI] [PubMed] [Google Scholar]
  15. Rupp W. D., Howard-Flanders P. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol. 1968 Jan 28;31(2):291–304. doi: 10.1016/0022-2836(68)90445-2. [DOI] [PubMed] [Google Scholar]
  16. Setlow J. K., Brown D. C., Boling M. E., Mattingly A., Gordon M. P. Repair of deoxyribonucleic acid in Haemophilus influenzae. I. X-ray sensitivity of ultraviolet-sensitive mutants and their behavior as hosts to ultraviolet-irradiated bacteriophage and transforming deoxyribonucleic acid. J Bacteriol. 1968 Feb;95(2):546–558. doi: 10.1128/jb.95.2.546-558.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Strauss B. S. DNA repair mechanisms and their relation to mutation and recombination. Curr Top Microbiol Immunol. 1968;44:1–85. [PubMed] [Google Scholar]
  18. Witkin E. M. Ultraviolet-induced mutation and DNA repair. Annu Rev Microbiol. 1969;23:487–514. doi: 10.1146/annurev.mi.23.100169.002415. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES