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Abstract

We introduce a novel technique to determine the expression state of a gene from quantitative information measuring its
expression. Adopting a productive abstraction from current thinking in molecular biology, we consider two expression
states for a gene - Up or Down. We determine this state by using a statistical model that assumes the data behaves as a
combination of two biological distributions. Given a cohort of hybridizations, our algorithm predicts, for the single reading,
the probability of each gene’s being in an Up or a Down state in each hybridization. Using a series of publicly available gene
expression data sets, we demonstrate that our algorithm outperforms the prevalent algorithm. We also show that our
algorithm can be used in conjunction with expression adjustment techniques to produce a more biologically sound gene-
state call. The technique we present here enables a routine update, where the continuously evolving expression level
adjustments feed into gene-state calculations. The technique can be applied in almost any multi-sample gene expression
experiment, and holds equal promise for protein abundance experiments.
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Introduction

In examining genes, either individually or in system-wide

characterizations, it is useful to generalize its ‘‘state’’. For example,

a gene’s Present/Absent call is a common dimension of the reported

results of gene-expression microarray experiments. Such calls tag

each probe set in the microarray with a determination of whether

the probe set is expressed (Present) or unexpressed (Absent) in the

sampled tissue [1]., Present/Absent calls are often used in filtering

out false positives from the large collection of probes on an

expression array. The most commonly used approach to making

such calls is the MAS5 algorithm [1], part of the AffymetrixTM

collection of software tools [2]. While some recent experimental

findings support the use of the MAS5 algorithm [3], MAS5 has

some significant shortcomings. First, MAS5 does not provide the

user with a statistical gauge of the basic claim behind the Present/

Absent call. Second, MAS5 does not compare calls across multiple

samples. Finally, because MAS5 does not operate on adjusted

readings, it cannot benefit from the increasingly sophisticated

techniques for adjusting gene expression readings (e.g. RMA [4]

and others [5]; see [6] for a comparison of techniques)

Conceptually it is understood that the classification of genes into

alternative states is a simplification of much greater complexity

patterns of gene behaviour and action. However, empiric

evaluation of the observed data finds that gene expression patterns

commonly can fit one of two alternative expression level

distributions. Moreover, such simplification has proven valuable

in other research domains. For example the simplification that

abstracts digital logic from the underlying continuous flow of

electrons in integrated circuits has enabled the design of devices of

staggeringly complex functionality [7].

We describe here a method that makes use of quantitative

expression level readings. It is important to stress that the method

is not a pre-processing step, like background adjustment for noise,

but rather a post-processing step that makes use of the noise-

adjusted readings. In the specific examples presented here, we

make use of RMA-adjusted expression levels [4] from Affymetrix

microarrays, but the input could be raw or adjusted values from

any platform. Using the expression levels, we build a statistical

model of expression for each probe set, based on an assumed

bimodal distribution, that accounts for the two states of an

expressed gene: Up and Down.

The inputs to the statistical model are the probe-set expression

levels from multi-sample experiments. For a specific probe set, we

gather expression levels from the cohort of samples for. For

example, in a set of experiment involving 100 patient samples and

100 control samples, we obtain 200 data points for the single probe

set (see Fig. 1). We then use the data points from the single probe set

to infer two gamma distributions, one distribution representing the

Down state and one representing the Up state. Our choice of gamma

distributions comes from the distribution flexibility in containing the

two distribution shapes we required. Such mixture models have

been successfully applied to other problems in biology (e,g, [8–10]).

A gamma distribution has the general form:

c~f x a,bjð Þ~ 1

baC að Þ x
a{1e{x

b
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where a is often called the shape parameter and b the scaling

parameter. The general form of a gamma distribution is beyond

the scope of this paper (see [11] as a reference). For smaller values

of a, the gamma distribution takes an exponential-like form, with a

continuous decay that starts at zero; for larger values of a, the

distribution takes a form similar to the normal distribution, with a

mean of ab and variance of a2b2.

By combining single probe data across multiple samples, we

consider the entire population of probe expression values (gene

values) as derived from a single distribution. That single

distribution is in fact the mixture of two gamma distributions –

one distribution for the Up state and one distribution for the Down

state. We represent the resulting model with six parameters: au, the

shape parameter for the Up distribution; bu, the scale parameter

for the Up distribution; ad, the shape parameter for the Down

distribution; bd, the scale parameter for the Down distribution, and

gu, gd, the mixture coefficients that give the relation between the

two distributions in the final mixture. We determine values for the

different parameters using an Expectation-Maximization (EM)

algorithm (see Methods), the output of which are the six defining

parameters. Upon completion of processing using the gamma

mixture (GM) algorithm, we are able to calculate, given a specific

expression value, the probability this expression value represents a

gene in the Up (or Down) state.

Results

To compare the consistency of MAS5 calls with the consistency

of GM calls, we used the publicly available results of a spike-in

experiment [5]. In this experiment, the researchers assayed

samples that were identical except for controlled differences in

the RNA of 42 transcripts. Except for the 42 transcripts whose

levels were systematically manipulated, each probe would be

expected to have the same Present/Absent call across the experiment

and to have the same Up/Down call across the experiment. We

measure the success of the two algorithms by their consistency over

the cohort of sample. A perfect score for an algorithm would mean

that the algorithm succeeded in finding identical Present/Absent or

Up/Down call for each of the genes across the experiment.

Of the 22,283 probes examined in the experiment, the MAS5

algorithm was consistent in assigning the same Present/Absent call,

across all samples, for each of 17,004 probes; the remaining 5278

probes were assigned inconsistent calls by MAS5. In contrast, the

GM algorithm consistently assigned the same Up/Down call for

each of 19,923 probes and gave inconsistent calls for the remaining

2359 probes. Thus the GM algorithm showed an improvement of

55% in consistency.

To examine the performance of the algorithms on data with

natural biological variation, we turned to other publicly available

studies. One such study, Miller et. al. [12], provides U133-A/B

data on 251 primary invasive breast tumor samples. We are

especially interested in the ability of the MAS5 and GM

algorithms to make calls that are consistent with (RMA-adjusted)

expression levels. That is, we expect an Absent or Down call to

correlate with low levels of expression and a Present or Up call to

correlate with high readings. Figure 2 shows an example, probe set

‘206378_at’ (which represents the gene SCGB2A2), where these

expectations are confounded. Panel (a) shows a simple histogram

of expression levels from the probe set, across all samples; Panel (b)

shows the derived probability distribution, based on the Gamma

Mixture hypothesis; and Panel (c) plots the probability of being in

an Up state, as a function of the expression level. As the figure

shows, the Up/Down classifications produced by GM algorithm

correlate well with expression values, across the range of

expression values. The MAS5 algorithm, on the other hand,

toggles between Present/Absent calls quite sporadically in the

expression range. To compare the MAS5 calls and the GM

calculated probability over a large set of samples, we made use of

data from [13], following the procedure described in Methods to

obtain Present/Absent and Up/Down readings. Figure 3 shows the

different readings. Panel (a), (b) and (c), as before, show the

expression distributions of the probe set. In panel (d) a zoom-in

view of the transition area of panel(c), shows the details of decision

of the shift between the Down and Up status. In Panel (e), we can

see the differences between decision based on the GM algorithm

and the MAS5 algorithm, where low levels of expression values are

toggled between present and absent calls made by MAS5 and, on

the other hand, have low probability to be in the Up state (or high

probability to be in the Down state).

Figure 1. Data handling in the mixture algorithm. First, gene expression data from a set of gene expression experiments is collected. The
matrix in the figure shows rows probe set, where every row is a single probe set, and every column is a different hybridization experiment. This could
be, for example, Affymetrix microarray experiments, where each column is a different patient. We then look at the data probe-by-probe. For example,
we follow probe ‘‘a’’ in the figure and look at the expression levels for this probe, across all samples in the set of gene expression experiments. Each
probe will have data from the entire collection of experiments. For the specific probe ‘‘a’’, we fit the set of expression measurements into two gamma
distributions, one representing the ‘‘down’’ state and one representing the ‘‘up’’ state. Each data point is then computationally associated with a
probability of being either under the first Gamma distribution (which would mean the gene associated with the probe, for the specific sample, is at a
‘‘down’’ state) or with the second Gamma distribution (which would mean the gene associated with the probe, for the specific sample, is at an ‘‘up’’
state). We iterate the procedure across the entire probe-set, to tag every gene across the microarray with its probability of being ‘‘up’’ or ‘‘down’’.
doi:10.1371/journal.pone.0002901.g001
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Figure 3. Similar to matching panels (a) (b) and (c) in Figure 2, panels (a), (b) and (c) of this figure show the histogram of gene
expression, two resulting gamma curves, and the probability of being in an ‘‘up’’ state for a specific single probe set out of the
collection of probes set in a collection of sample. Panel (d) is a zoom into the highlighted part of panel (c). Panel (e) is a zoom into the
highlighted part of panel (d). Panel (d) shows the gradual probabilistic transition from being associated with a ‘‘down’’ state to being in an ‘‘up’’ state.
The transition correlates well with gene expression and demonstrates the sensitivity of the approach to changes in gene expression. In panel (d) and
in zoom-in panel (e), we also highlight the Present/Absent calls made by MAS5. Especially in the panel (e), it is easy to see how MAS5 Present/Absent
calls toggle with growing levels of expression, despite an expected plateau, the MAS5 algorithm stabilizes on a Present call at much higher levels of
expression and makes an Absent call for gene expression level as high as 500, while giving a Present call to expression level of 50. Use the toggled
calls puts the user in danger of associating very different of expression level with very different states of a gene.
doi:10.1371/journal.pone.0002901.g003

Figure 2. An in-depth look into data from a single probe over a collection of 251 hybridizations of breast cancer samples. (a) Displays
a histogram of gene expression data for a single probe across the collection of 251 samples. The x-axis corresponds with levels of expression and the
y-axis is a count of expression level for the specific bin. As the panel shows, many of the hybridizations show a level of expression close to zero. This is
visible through a large collection (large count) of gene expression measurements close to zero expression levels. On the other hand, many of the
probes show expression levels that spread across the entire span of expression levels from zero to 16,000. This is well-fitted into a gamma mixture
model that assumed a dual behavior for the gene. Panel (b) shows a plot of the approximated distribution functions across the entire gene
expression range for the surveyed probe. The two lines plotted have been calculated by fitting gene expression into the assumption of a binary state
distribution, with each distribution modeled by a Gamma-like behavior. Panel (c) gives the probability of being in an ‘‘up’’ state as a function of gene
expression for the specific probe surveyed. As panels (b) and (c) overlap, we demonstrate how changes in expression levels in (c) associate that level
with the curves of panel (b). The higher an expression level in (c) is, the more probable it is to be affiliated with the red curve (‘‘up’’ curve) of panel (b).
The lower the expression level is in (c), it is more probable to affiliate it with the blue curve (‘‘down’’ curve) of panel (b), and with a ‘‘down’’ state.
Being in a ‘‘down’’ state is the reciprocal of being in an ‘‘up’’ state, which gives a probability of zero for being ‘‘up’’.
doi:10.1371/journal.pone.0002901.g002
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Discussion

We have described a new approach to determining the

expression state of a gene. Like the Affymetrix MAS5 algorithm,

our method is a two-state classifier. In contrast to the MAS5

algorithm, our method takes account of the underlying distribution

of expression values in a set of samples. In particular, our method

assumes a two-state distribution of gene expression that can be

captured by mixed gamma distributions. As we have shown, our

technique yields more stable calls than MAS5. In a set of biological

replicates, MAS5 produced inconsistent calls for twice as many

probe sets as the GM algorithm. Further, in a set of samples

showing normal biological variation, the GM algorithm yielded

calls that had better correlations with RMA-adjusted expression

levels than the MAS5 calls.

Table 1 shows the strengths and weaknesses of the two

approaches. One of the main differences – both a weakness and

a strength – is the fact that the MAS5 algorithm is applied to

individual samples, while the GM algorithm is applied to a set of

samples. On the one hand, this allows MAS5 to be applied to

individual samples from arbitrary experiments; on the other hand,

MAS5 cannot take advantage of the statistical power in the multi-

sample joined population. Second, the GM approach is not limited

to readings from Affymetrix platforms, but may be applied to any

values that represent gene expression or protein abundance.

Third, since MAS5 is applied to raw values, it cannot take

advantage of new adjustment techniques such as RMA; in

contrast, the GM algorithm can be applied to raw or adjusted

values. . Fourth, while MAS5 does give a p-value for the Present/

Absent decision, this p-value cannot be interpreted as a distance

from population and does not convey biological information.

In summary, we believe our approach to be a general and

powerful way to fit gene expression data to a two-state model. We

consider the GM call to be a true, scale free, normalization that is

entirely platform-independent, applicable to any gene expression.

While applied to gene expression microarrays that measure RNA

abundance, this method is applicable to any quantitative measure

of individual gene state.

Methods

EM algorithm
For each probed gene, the algorithm determine six parameters

that define, together, the coefficients for each of the distribution

(Up, Down) and the mixture coefficients between the two

distributions. We call the set of different parameters h

h~ au,bu,ad ,bd ,gu,gdf g

Where au, bu determine the coefficient of the Gamma distribution

that describes the Up gene state; ad, bd determine the coefficients of

the Down state and gu, gd determine the mixture coefficient (and

gu, +gd = 1).

The algorithm is iterates over the different function, so that every

iteration improves the estimate of the coefficients. In [14] you can

see the general proof of the EM algorithm, according to which, it is

sufficient to find maximas for the function Q, defined as:

Q h,h0
� �

~
X

t

X
i

vt,i loggi{log c xi; ai,biðð Þð Þ

Where h is defined previously as the collection of parameters. h0

stands for the set of parameters at a previous iteration and the index

i goes over the two different function in the mixture and the index t

goes over available data points.

vt,i~
gi{c xi; a0

i ,b0
i

� �
P

j g0
j c xi;ð Þ

�h i
a0

i ,b0
i

�
Finding maximas of Q replaces (the harder task of) finding maximas

for the original function. To find maximas for Q, we differentiate it

with respect to the model parameters and compare to zero. First

according to bi:

LQ

Lbi

~
X

wt,i aibi{ctð Þ~0

bi~

P
tvt,ict

ai

P
tvt,i

And then according to ai:

LQ

Lai

~0[{log bið Þ:
X

t

vt,iz
X

t

vt,i
:log ctð Þ{Y aið Þ

X
t

vt,i~0

Where Y(x) is the psi function
C 0 xð Þ
C xð Þ.

Using a Lagrange multiplier to incorporate the constrain

X
i

gi~1,

X
i

gi~1

we have to maximize the target function

L hð Þ~Q{l
X

i

gi{1ð ÞÞ½ �
 

Table 1.

Technique Potential use
Ability to incorporate new
adjustment techniques

Statistical significance
to results

Platform
dependent

MAS5 Affymetrix-based. Can be used on a single samples. No p-value Yes

GM (gamma mixture) Any gene expression reading. Can be used only in
multi-sample experiments

Yes. Yes No

doi:10.1371/journal.pone.0002901.t001
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with respect to the gi, we derive

LL hð Þ
Lgi

~
LQ

Lgi

{
L

Lgi

l
X

i

gi{1ð Þ
!" # 

and obtain

gi~

P
tvt,iP

i,tvt,i

We solve this numerically (using MatlabH) in every iterative step,

until we reach some predefined convergence criterion

Gene expression spike-in data
We used Affymetrix’s deposited gene expression data for a

SpikeIn experiment, as it is available from [5].

Adjustments of the data were made using the RMAExpress tool

[15] over original CEL files. Affymetrix’s Present/Absent call

(MAS5 calls) were made using Affymetrix’s GCOS tools [1].

Other sources of gene expression data:

Data for the set of Bittner et. al were made available from data

made publicly available by the Expression Project for Oncology,

an International Genomics Consortium public/private initiative

[13]. Data from Miller el. al [12] has been obtained from the Gene

Expression Omnibus [16].
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