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Abstract
A highly efficient one-pot procedure for the synthesis of indolines and their homologues based on a
domino Cu-catalyzed amidation/nucleophilic substitution reaction has been developed. Substituted
2-iodophenethyl mesylates and related compounds afforded the corresponding products in excellent
yields. No erosion of optical purity was observed when transforming enantiomerically pure mesylates
under the reaction conditions.

The indoline moiety1 can be found in numerous biologically active alkaloid natural
products2 and pharmaceuticals.3 Recently, highly efficient indoline-based organic dyes for
dye-sensitized solar cells have also been developed.4

Since our earlier reports on the Pd-catalyzed intramolecular amination reactions for the
formation of indolines,5 a variety of intramolecular transition metal-catalyzed amination and
amidation processes have emerged for the synthesis of N-protected indolines (Scheme 1, eq.
1).6,7,8 More versatile routes toward the synthesis of the indoline core incorporate an
intermolecular Pd-catalyzed amidation or amination reaction as part of a sequential or domino
process (Scheme 1, eq. 2 and 3).9 Although, this strategy represents a significant improvement
in the modular synthesis of indolines, several drawbacks limit the reported methods.
Specifically, certain methods only allow access to 3-substituted,9a 2-substituted9c or non-
substituted9d,e indolines, and the Pd-catalyzed C–C/C–N coupling of bromoalkylamines with
an aryl iodide requires ortho-substituted aryl iodides and a para-nitrophenyl-protected amine.
9f We felt that a one-pot procedure for the synthesis of indolines that overcomes these
limitations would be highly desirable.

Herein, we report the development of a general domino Cu-catalyzed amidation/nucleophilic
substitution process for the synthesis of substituted indolines and their homologues (Scheme
1, eq. 4).10

We began our investigation with 1-iodo-2-(2-iodoethyl)benzene (1a) and tert-butylcarbamate
(2a) as the model substrates to examine the reaction conditions, which we previously reported
for the Cu-catalyzed amidation of aryl halides (Table 1) [5 mol % CuI, 20 mol % N,N′-
dimethylethylenediamine (DMEDA), Cs2CO3 in THF].7a,11 Only low conversion of 1a was
observed at room temperature after 16 h. At 80 °C, however, full conversion and up to 37% of
the N-Boc-protected indoline 3a were obtained, along with 23% of 2-N-Boc-styrene (4a).
Systematic variation of the solvent, base, and diamine-ligand did not increase the yield of the
desired product, although varying amounts of the products 4a and 5a were observed (Table 1,
entries 1–7).
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Variation of the nucleofuge proved to be crucial. Switching from the phenethyl iodide 1a to
the phenethyl chloride 1b or the phenethyl mesylate 1c resulted in exclusive formation of the
desired product 3a in high yields (87% and 89%, respectively).

Under the optimized reaction conditions 2-iodophenethyl mesylate (1c) reacted equally
efficiently with other commonly used carbamates 2b–c and amides 2d and yielded the
corresponding N-protected indolines 3b–d in comparably high yields without formation of any
side products (Table 2).

Encouraged by these results, we investigated the substrate scope of this reaction sequence.
Various 2-iodophenethyl mesylates were subjected to the domino amidation sequence (Table
3).

A wide variety of functional groups, such as ethers, acetals, halogens, esters, and siloxy or
alkyl groups were tolerated on the aryl ring (entries 1–3) and in positions R2 and R3 (entries
4–8). In all cases, the reaction proceeded smoothly and the corresponding substituted indolines
were obtained in excellent yield. This method was further applied to the synthesis of indoline
homologues, which are difficult to access using the previously reported domino processes.8
The corresponding mesylates gave access to N-Boc-tetrahydroquinoline (3n), -benzoxazine
(3o) and -3-methyl-2,3,4,5-tetrahydro-1H-1-benzazepine (3p) in yields up to 76% (entries 9–
11).

Three distinct mechanistic pathways for this domino process can be envisioned for the
formation of the indoline structure (Scheme 2): 1) base-promoted formation of 2-iodo-styrene
followed by intermolecular Cu-catalyzed C–N coupling and intramolecular hydroamidation of
styrene I (pathway A);12 2) intermolecular Cu-catalyzed or uncatalyzed substitution of the
alkyl mesylate and subsequent Cu-catalyzed intramolecular C–N coupling with the aryl iodide
II (pathway B); 3) initial intermolecular Cu-catalyzed amidation of the aryl iodide, followed
by an intramolecular SN2 reaction of the carbamate or amide III onto the alkyl mesylate
(pathway C).

To elucidate the reaction mechanism, we synthesized compounds 1q, 1r, 4 and 5 (Scheme 3).

Under the reaction conditions racemic trans mesylate 1q yielded the racemic cis-fused
hexahydrocarbazole 3q - as confirmed by an NOE experiment - as a single diastereosiomer in
94%, and the enantiomerically pure mesylate 1r afforded indoline 3r in excellent yield and
with 99% ee.13

Based upon these results, pathway A is unlikely to be the operative mechanism, since
hydroamidation of the achiral intermediate I would lead to a mixture of cis- and trans14-
products in the case of 3q and to racemization of the stereocenter in position 2 in the case of
3r. Furthermore, pathway B can be ruled out, since no substitution at the alkyl mesylate took
place in model systems 4 and 5 under our reaction conditions. Finally, the fact that complete
stereochemical inversion was observed in cases 1q and 1r strongly suggests a nucleophilic
displacement of the mesylate group via an SN2 mechansim (pathway C in Scheme 2). Attempts
to isolate reaction intermediate III were unsuccessful. Only the final product and remaining
starting material could be detected by GC or NMR in various ratios over the course of the
reaction.

In summary, we have developed a highly efficient domino Cu-catalyzed amidation/
nucleophilic substitution reaction for the synthesis of indolines and their homologues from
ortho-iodophenalkyl mesylates. The mild reaction conditions and the broad substrate scope
render this method attractive and complementary to existing methods for the synthesis of
indolines. Finally, this approach also allows the synthesis of enantiomerically pure indolines,

Minatti and Buchwald Page 2

Org Lett. Author manuscript; available in PMC 2009 July 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



since the second step proceeds with complete stereochemical inversion and therefore no erosion
of optical purity.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Scheme 1.
Known and Envisioned Strategies for the Synthesis of Indolines
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Scheme 2. Possible Mechanistic Pathways
A, A′: intermolecular Cu-cat. amidation and hydroamidation.
B, B′: intermolecular Cu-cat. or uncat. amidation and intramolecular Cu-cat. amidation.
C, C′: intermolecular Cu-cat. amidation and SN2 reaction.
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Scheme 3.
Experiments Conducted to Elucidate the Reaction Mechanism
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Table 2
Synthesis of N-protected Indolines via Domino Cu-Catalyzed Amidation/Cyclization Reaction

entry R4 product yielda

1 Boc (2a)

3a

89%

2 C(O)OMe (2b)

3b

90%

3 Cbz (2c)

3c

90%

4 Ac (2d)

3d

87%

a
Yields of the isolated products are an average of two runs and the products are estimated to be over 95% pure by 1H NMR spectroscopic and GC analysis.
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Table 3
Substrate Scope of the Cu-Catalyzed Domino Amidation Reaction

entry product yielda

1

3e

75%

2

3f

82%

3

3g

95%

4

3h

95%

5

3i

92%

6

3k

96%

7

3l

88%

8

3m

91%

9

3n

74%
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entry product yielda

10

3o

76%

11

3p

57%

a
Yields of the isolated products are an average of two runs and the products are estimated to be over 95% pure by 1H NMR spectroscopic and GC analysis.
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