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ABSTRACT

Today’s proteome is the result of innumerous gene
duplication, mutagenesis, drift and selection pro-
cesses. Whereas random mutagenesis introduces
predominantly only gradual changes in protein func-
tion, a case can be made that an abrupt switch in
function caused by single amino acid substitutions
will not only considerably further evolution but might
constitute a prerequisite for the appearance of novel
functionalities for which no promiscuous protein
intermediates can be envisaged. Recently, tetracy-
cline repressor (TetR) variants were identified in
which binding of tetracycline triggers the repressor
to associate with and not to dissociate from the
operator DNA as in wild-type TetR. We investigated
the origin of this activity reversal by limited prote-
olysis, CD spectroscopy and X-ray crystallography.
We show that the TetR mutant Leu17Gly switches its
function via a disorder–order mechanism that differs
completely from the allosteric mechanism of wild-
type TetR. Our study emphasizes how single point
mutations can engender unexpected leaps in protein
function thus enabling the appearance of new func-
tionalities in proteins without the need for promiscu-
ous intermediates.

INTRODUCTION

Evolution is considered to proceed through countless
rounds of random mutagenesis and natural selection. To
date, a wealth of data exist showing how point mutations
gradually alter protein function in support of the notion
that proteins with novel functions are the result of an

evolutionary drift process that follows an initial gene
duplication event (1,2). However, as a consequence of
gene duplication, protein intermediates must occur that
display redundant functions. Because such redundancies
in protein function put into question any evolutionary
advantages that such early gene duplication products
might provide, these intermediates are considered to be
under strong purifying selection with the conversion into
a silenced pseudo gene as the likely outcome (3,4). In this
context, an evolutionary step, in which random mutations
would not lead to a gradual change but to an abrupt switch
in function, might prove highly advantageous as a poten-
tial, but so far neglected silencing escape mechanism.

That functional leaps occurred during evolution seems
obvious when considering evolutionary related proteins
with functions that exclude each other and for which,
therefore, no intermediates can be envisaged that would
contain both functionalities. The bacterial repressors LacI
(5) and PurR (6) provide an example for such a pair. They
are considered paralogs and share 35% sequence iden-
tity (7). Their ability to bind to DNA is modulated via
their interaction with low molecular weight effector mole-
cules. However, whereas in case of PurR, binding of the
effector hypoxanthine to PurR enables PurR to bind to
DNA (6), in LacI, binding of allolactose abolishes its
DNA-binding ability (5,8). Obviously, no single protein
could display both activities. The frequency and conse-
quently the probability for the occurrence of such func-
tional leaps, greatly increases as the number of mutations
that have to be introduced simultaneously decreases. Of
particular interest are therefore proteins in which a single
point mutation causes a dramatic change in function.

Alongside the bacterial regulator LacI, the tetracycline
repressor (TetR) has been established as a paradigm of an
effector-regulated DNA-binding protein (9–13). In TetR,
the monomers in the homodimeric protein consist of
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two globular domains, namely a DNA-binding domain
(residues 1–45) comprising a helix–turn–helix motif and
an effector-binding domain (residues 46–208) that also
contains the dimerization interface (13). As is the case
for LacI, TetR binds tightly to its palindromic tetO opera-
tor DNA in the absence of a low-molecular weight effector
molecule, thereby blocking the transcription of any down-
stream genes. Binding of tetracycline (TC) or anhydrote-
tracycline (ATC) to TetR causes the repressor to dissociate
from the DNA and gene transcription can occur. In both
TetR and LacI conformational changes, allosterically
induced upon effector binding, have been shown to cause
the loss of DNA-binding affinity (5,12).

Recently, it has been reported that the allosteric
response of TetR to an effector molecule can be reversed
by mutating one or more amino acids (14–16). Since these
TetR variants now require TC to bind to tetO, they are
called reverse tetracycline repressors (revTetR), and in
these variants TC takes over the role of a corepressor
and not of an inducer of gene transcription. When fused
to an eukaryotic transcriptional activator domain, these
variants can be used as molecular tools to specifically
induce gene expression in vivo in eukaryotes (17,18).

The behavior of revTetR in the presence of TC is iden-
tical to that of PurR with respect to its corepressor hypox-
anthine. Therefore, the pair TetR and revTetR constitute
a functionally similar pair as LacI and PurR. However, in
contrast to the latter two, which deviate by as much as
65% in sequence, in the revTetR variant revTetR-
Leu17Gly, a single point mutation suffices to reverse its
functional behavior. It should be noted that also for the
Lac repressor, variants have been reported with a reversed
phenotype (19,20). However, none of the mechanisms
responsible for the reversal of phenotype in these variants
have been elucidated to date.

Here, we report the mechanism by which the biological
function is reversed in revTetR-Leu17Gly. We show that
this is achieved by switching to an orthogonal mechanism
and not by a mere reversal or extension of the mechanism
that causes the induction of wild-type TetR upon TC
binding. Our study emphasizes how drastically a single
mutation can alter the mechanism by which a protein
exerts its function.

MATERIALS AND METHODS

Protein expression and purification

Escherichia coli strain RB791 was transformed with
pWH610 containing the respective revtetR alleles (14).
Cells were grown in LB medium in the presence of
100 mg/ml ampicillin at 378C to an OD600 of 0.8, before
the temperature was lowered to 228C and protein expres-
sion induced with 1 mM isopropyl b-D-thiogalactopyrano-
side (IPTG). After 3 h, the cells were harvested upon
centrifugation, resuspended in 20 mM phosphate buffer
(pH 6.2), 50 mM NaCl, 5 mM EDTA, 1 mM PMSF
and disrupted by sonication. The revTetR variants were
purified from the supernatant using three subsequent ion
exchange chromatography steps and one gel filtration step
as described for wild-typeTetR (21). To increase protein

yields, the pH of the first cation exchange step (SP-
Sepharose, Amersham Biosciences, Uppsala, Sweden)
was decreased to pH 6.2 and increased to pH 8.9 for the
following two anion exchange chromatography steps
(ResourceQ and MonoQ, Amersham Biosiences). The
protein was concentrated to 16 mg/ml in 50 mM Tris–
HCl (pH 8.0), 0.2M NaCl after gel filtration and stored
at �208C. Typically, 1 l of bacterial culture yielded about
0.5mg of pure protein.

Limited proteolysis

RevTetR1, revTetR2, revTetR4 and wild-type TetR
were incubated at concentrations of 25 mM at 208C with
0.015U/ml of the nonspecific serine protease subtilisin
(EC number 3.4.21.62, from Fluka, Neu-Ulm, Germany)
in 50mM Tris–HCl, 0.2M NaCl (pH 8.0), and in the
presence or absence of 2mM ATC, MgCl2 or both.
EDTA was added at a concentration of 15 mM to some
samples, in order to chelate excessive Mg2+. After about
5min, samples were drawn and the digestion stopped by
adding equal volumes of SDS sample buffer. Samples were
immediately boiled and subsequently examined by SDS
gel electrophoresis using 15% (w/v) SDS gels.

Edman sequencing

The proteins and fragments thereof were electrophoreti-
cally separated by SDS–PAGE, transferred to an
Immobilon-polyvinylidene difluoride membrane (Wes-
tran-S-PVDF, Whatman/Schleicher & Schuell BioScience,
Keene, NH, USA) and stained with 0.2% (w/v) Ponceau
red S (Sigma-Aldrich, Munich, Germany). They were then
excised and sequenced N-terminally by Edman degrada-
tion using a pulsed-liquid sequencer (Applied Biosystems,
Inc., Foster City, CA, USA model 477A/120A).

Circular dichroism spectroscopy

Circular dichroism (CD) measurements were performed at
158C using a Jasco J-810 spectropolarimeter (Jasco,
Tokyo, Japan) and a cuvette with 0.1 cm path length.
All experiments were performed in 50 mM sodium phos-
phate buffer (pH 8.0) at a protein concentration of 5 mM.
ATC was added to a final concentration of 1.5mM. No
magnesium ions were present in any of the buffers. Spectra
were registered between 180 and 260 nm and corrected for
the contributions from the phosphate buffer and ATC.
Spectra were accumulated eight times with a band width
of 2.0 nm and a sensitivity of 100mdeg. The scan speed
was 20 nm/min, the time response 1 s and data pitch
0.1 nm. CD spectra were analyzed using the deconvolution
program CDSSTR from the DichroWeb server (22).

Protein crystallization

Prior to crystallization, revTetR1 was mixed with ATC
(from Acros, Geel, Belgium) to obtain a protein solution
consisting of 12mg/ml protein, 50mM Tris�HCl (pH 8.0),
0.2M NaCl and 2 mM ATC (Molar ratio ATC to
revTetR1 equal 4 to 1). Crystals were grown by the hang-
ing drop vapor diffusion method over a reservoir consist-
ing of 1ml of 0.1M Tris–HCl (pH 8.7), 0.3MMgCl2, 20%
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PEG 4000 and 3% dioxane. Drops were formed by mixing
1 ml of the revTetR1–[Mg-ATC]+ complex with equal
amounts of the reservoir solution. X-ray quality crystals
grew within 16 days at 48C to an average size of about
100� 100� 80 mm3. Crystals were flash-frozen in liquid
nitrogen after a stepwise transfer into a cryoprotectant
solution consisting of 80% (v/v) mother liquor and 20%
(v/v) ethylene glycol. Despite repeated efforts, no crystals
suitable for X-ray analysis could be obtained for corepres-
sor free revTetR1 or for the ternary complex of revTetR1
in complex with ATC and operator DNA.

Crystal structure determination

X-ray data were collected in house to a resolution of 1.74 Å
at 100K and a wavelength of 1.542 Å using a Micro-
MaxTM-007 HF microfocus X-ray generator (Rigaku-
MSC, The Woodlands, TX, USA) and a Mar345 image
plate detector (MAR Research, Hamburg, Germany).
The data recorded during a low and high resolution pass
were indexed and integrated with XDS and scaled with
XSCALE (23). The crystals have a solvent of 47.8% and
contain one molecule per asymmetric unit. The structure
was solved by molecular replacement with PHASER (24)
using the induced wild-type TetR structure (PDB ID:
2TCT) (9) as a searchmodel. Initial model bias was reduced
using the Prime and Switch phasing protocol in program
RESOLVE (25). Rigid-body refinement of the top solution
was followed by cycles of manual rebuilding with program
COOT (26) and restrained atom position, and individual B-
factor refinement with program REFMAC5 (27). Mg2+

ions and water molecules were added towards the end of
the refinement. During the final stages of refinement, a
translation, libration and screw-rotation (TLS refinement)
(28) protocol was used and themodel divided into four TLS
groups (residues 6–45; 46–91; 92–161; 162–205) as sug-
gested by the TLS motion determination server (http://
skuld.bmsc.washington.edu/�tlsmd/) (29,30). TLSANL
(31) was used to analyze the resulting TLS tensors. A sum-
mary of the crystallographic data collection and refinement
statistics is presented in Table 1. For comparison, an iden-
tical TLS refinement protocol was used to derive TLS para-
meters for the deposited structures of tetO-bound wild-type
TetR (PDB ID: 1QPI) (12), TC-bound wild-type TetR
(1DU7) (12) and ligand-free wild-type TetR (1A6I) (11).
1DU7 was used instead of 2TCT as a model for TC-
bound wild-type TetR, because no structure factors are
available from the data bank for 2TCT.

Structure analysis

Structure superpositions were calculated with LSQKAB
(32) and the rotation axes visualized with CALC-AX
(JoachimMeyer, University of Freiburg, personal commu-
nication). For the latter, the structures were superimposed
first based on a set of 93 residues that immediately surround
the effector-binding site and in a second step based on 28
residues from the DNA-binding domain. The rotation and
translation matrices describing the second superposition
were then analyzed to calculate the position and orienta-
tion of the rotation axis. All structure depictions were gen-
erated using program PYMOL (33). The coordinates and

structure factors have been deposited with the RCSB
Protein Data Bank, the accession code is 2VKV.

RESULTS

Quantification of the induction efficiencies and effector-
binding affinities in revTetR1, revTetR2 and revTetR4

Of the known TetR variants with reverse phenotype
(14–16,34), the following E. coli TetR-BD (16) mutants
were studied here: revTetR1 containing the mutation
Leu17Gly, the triple mutant revTetR2 (Glu15Ala/
Leu17Gly/Leu25Val) and the double mutant revTetR4
(Arg94Pro/Val99Glu). All these variants exhibit a dose-
dependent corepression response with ATC (Figure 1).
In wild-type TetR, induction can be observed starting
from 0.01 mM ATC, and close to full induction is reached
with 0.1 mM. The reverse variants, revTetR1 and revTetR2,
appear much more sensitive since full corepression is

Table 1. Crystallographic data collection and refinement statistics

Data collection revTetR1 in complex
with [Mg-ATC]+

Space group cell dimensions P21212
a, b, c (Å) a=70.65, b=54.46, c=56.85
�, �, g (8) �=�= g=90
Resolution (Å) 19.66–1.74 (1.80–1.74)a

Rint
b (%) 4.1 (46.4)

Rmeas
c (%) 5.2 (62.6)

Rmrgd-F
c (%) 5.8 (38.5)

I/�I 26.2 (3.8)
Wilson B-value (Å2) 35.3
Completeness (%) 98.6 (96.9)
Total number of

reflections (unique reflec.)
239 734 (22 843)

Refinement statistics

Rwork/Rfree/Rtotal (%)d 17.55/22.50/18.01
Number of nonhydrogen atoms 1821
Number of residues 200
Number of solvent molecules 166
Ligands present in the model 1� anhydrotetracyclin,

2�Mg2+

Overall mean B-value (Å2) 41.3
Mean B-value DNA-binding

domain/effector-binding domain (Å2)
73.6, 33.7

Mean B-value ATC/Mg2+/
solvent molecules (Å2)

24.8, 36.7, 48.1

R.m.s.d. from ideal geometry
Bond lengths (Å) 0.010
Bond angles (8) 1.12
Ramachandran statistics (%)e 97.2/2.8

aValues in this column reported in parentheses are for the highest
resolution shell.
bRint=�|Ij�<I> |/�Ij, where Ij is the intensity measurement for
reflection j, and < I> is the mean intensity of symmetry-related
reflections.
cRmeas is the multiplicity weighted merging R-factor, and Rmrgd-F is an
indicator for the quality of the reduced data (43).
dRwork/Rfree=100 (�h |Fo(h)�Fc(h) |/�h Fo(h)), where Fo and Fc are
the observed and calculated structure factor amplitudes, respectively.
Rfree is calculated from 9.7% of the data, that were randomly removed
before the refinement was started.
eThe Ramachandran statistics were obtained with program
PROCHECK (44). Reported is the percentage of residues in the most
favored and additionally favored areas of the Ramachandran plot.
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reached with as little as 0.01 mM ATC. RevTetR4 appears
less sensitive; here, 0.2 mMATC are required for full repres-
sion. Thus, there are slight differences in the revTetR var-
iants with respect to their sensitivity towards ATC in vivo.
Effector binding was also investigated by determining
ATC-binding constants in vitro using fluorescence titration
with ATC in complex with Mg2+ ([Mg-ATC]+, Table 2).
These experiments show that of all revTetRs, revTetR1
displays the highest affinity for [Mg-ATC]+ but, that at
the same time, all the revTetR variants exhibit strongly
decreased affinities for ATC in comparison to wild-type
TetR. The reason for this is not immediately obvious
(see below), since none of the mutated residues reside in
the effector-binding site (12).

The revTetR corepressor complexes bind DNA with
high affinity

Surface plasmon resonance (SPR) experiments were per-
formed to quantify the tetO DNA-binding affinities of the
different revTetR variants alone and in the presence of
ATC or [Mg-ATC]+. DNA binding of revTetR in the
absence of effector could not be quantified because

injection of 50 mM revTetR did not lead to saturation
and gave only very low signals. Thus, we assume weak
binding constants below 105/M for the free revTetR var-
iants to tetO. The binding of wild-type TetR to tetO is
reduced to a similar extent by ATC and [Mg-ATC]+,
showing residual binding with an association constant
(KA) of 0.02� 107/M and 0.04� 107/M, respectively
(Table 2). From this, we conclude that the non-DNA-
binding conformations of the revTetR variants exhibit
lower residual tetO binding than effector-bound wild-
type TetR. TetO binding in the presence of [Mg-ATC]+

was quantified for revTetR1, revTetR2 and revTetR4
(Table 2). The reverse variants bind to tetO in the presence
of [Mg-ATC]+ with affinities that are comparable to the
binding of wild-type TetR to tetO in the absence of the
effector. This is most obvious for revTetR1, where almost
identical values (320 versus 560 � 107/M) are obtained
(Table 2).

Effector-free revTetRs are susceptible to proteolytic
degradation

In order to gain insight into the structural integrity of the
revTetR variants, we investigated these variants with lim-
ited proteolysis in the presence and absence of ATC and
[Mg-ATC]+ (Figure 2). In the absence of the corepressor
ATC and upon exposure to subtilisin, the different var-
iants yielded similar degradation patterns. These are char-
acterized in case of revTetR1 by the appearance of four
major bands in SDS gels. The susceptibility of the revTetR
variants to proteolytic cleavage is significantly reduced
when ATC and [Mg-ATC]+ is added. In contrast, wild-
type TetR is largely protected against proteolysis both in
the presence and absence of ATC and [Mg-ATC]+

(Figure 2). Limited proteolysis experiments with trypsin
yielded similar results (data not shown).
In case of revTetR1, the observed fragments were

N-terminally sequenced. The positions at which cleavage
occurred could be unambiguously identified as K29, G35,
W43 and N47 (residues C-terminal to the scissile peptide
bond). SDS–PAGE-derived estimates of the apparent
masses of these fragments are in agreement with the
assumption that these fragments result from a single clea-
vage and that no further truncation occurred towards
their C-terminus. Because the aforementioned residues

Figure 1. Corepression of different revTetR variants with ATC in com-
parison to the induction of wild-type TetR (WT TetR) analyzed using a
b-galactosidase-activity reporter assay as described (16). Corepression
was measured at least twice and was analyzed in vivo in media containing
increasing ATC concentrations, namely 0, 0.0004, 0.001, 0.004, 0.01, 0.04,
0.1, 0.2 mM and 0.4 mMATC. The b-galactosidase activity in the absence
of TetR was set to 100% and corresponds to 8300� 300 units.

Table 2. RevTetR effector and tetO operon-binding affinities

ATC-binding constantsa tetO-Binding constantsb

+[Mg-ATC]+ KA [�107M�1]c +[Mg-ATC]+ KA [�107M�1]c +ATC KA [�107M�1]c �ATC KA [�107M�1]c

Wild-type TetR �100d 0.04e 0.02 560e

revTetR1 4.5 320 190 NDf

revTetR2 2.4 140 7.8 ND
revTetR4 0.9 64 2.4 ND

aATC-binding constants (association constants, KA) have been determined in vitro using fluorescence titration by a direct titration of the TetR
variants with [Mg-ATC]+ (45,46).
btetO-Binding constants have been determined by SPR measurements, as described (15).
cStandard deviations typically range from 10% to 40%.
dThe affinity to wild-type TetR is too large to be determined by this method.
eValues taken from ref. (15).
fND=not detectable. The binding constant was below 105M�1, which is too low for quantification.
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all map to the DNA-binding domains of TetR, our result
shows that in the absence of any effector the DNA-bind-
ing heads in the revTetR variants are prone to proteolytic
cleavage indicating that they are structurally flexible and
conformationally less rigid than in effector-free wild-type
TetR.

Effector binding increases the a-helical content of revTetR1

Far UV-CD spectroscopy was employed to study any
changes in secondary structure induced in revTetR1 upon
ATC binding. The CD spectra of revTetR1 with and with-
out corepressor are typical for an all a-helical protein
(Figure 3). Close inspection reveals, however, that a 5%
increase in helicity [according to the deconvolution analysis

with CDSSTR (22)] can be observed in revTetR1 when
ATC is added. Only upon addition of ATC, the spectrum
of revTetR1 resembles that of wild-type TetR. This
increase in helicity can be explained either by about 8–10
amino acids undergoing a random coil to helix transition
or, likewise, by a significant higher number of residues
undergoing a near-helix to helix structure transition. In
agreement with this, the difference spectrum calculated by
subtracting the spectrum of revTetR1 with ATC from that
of revTetR1 without ATC corresponds to that expected for
a polypeptide chain in a random coil conformation with a
minimum at 195 nm and positive ellipticities in the region
around 212 nm (Figure 3). These results hint that revTetR1
is partially unfolded in the absence of ATC and becomes
fully structured upon ligand binding as apparent from the
increase in the a-helical CD signal.

The crystal structure of ATC-bound revTetR1

The structure of revTetR1 in complex with [Mg-ATC]+

has been determined at a resolution of 1.7 Å (Figure 4 and
Table 1). RevTetR1 forms a dimer and its predominantly
a-helical structure is closely similar to that observed for
wild-type TetR (9,12,13). The structure reveals the pres-
ence of the effector molecule [Mg-ATC]+ in the effector-
binding site. The effector forms highly similar interactions
with the protein than those seen in wild-type TetR in com-
plex with Mg2+-bound TC ([Mg-TC]+) (PDB code:
2TCT) (9,35). Close inspection of these interactions does
not explain why [Mg-ATC]+ exhibits such a strongly
decreased affinity for revTetR1 when compared to wild-
type TetR (Table 2), since the differences in the effector-
binding modes are small. The structure of the revTetR1
monomer contains one additional Mg+2 ion (Figure 4C)
that is coordinated by six water molecules. This cation was
identified as magnesium based on the residual density
observed at this position when modeled as water, its octa-
hedral coordination sphere and the average ligand cation
distance of 2.14 Å (�0.15). Furthermore, 150mM MgCl2
were present in the crystallization setup, increasing the

Figure 2. Limited proteolysis analysis of wild-type TetR and revTetR variants with subtilisin. Whereas in wild-type TetR, the presence or absence of
the effector does not alter the proteolytic susceptibility of TetR, the revTetR variants are only protected against proteolysis in the presence of the
effector ATC or [Mg-ATC]+. The four asterisks mark protein bands that were N-terminally sequenced.

Figure 3. Gain of secondary structure upon corepressor binding to
revTetR1 monitored by CD. CD spectra of purified revTetR1 (5 mM)
were recorded at 158C before (continuous line) and after addition of
ATC (broken line). Addition of ATC to revTetR1 leads to a CD spectrum
that is identical to that of wild-type TetR (shown in gray). Please note that
both spectra were recorded in the absence of any magnesium ions. The
inset displays the difference spectrum obtained by subtracting the spec-
trum of ATC-bound from ATC-free revTetR1. The difference spectrum
displays many characteristics of an unfolded polypeptide chain.
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likelihood that any divalent metal-binding site in the crys-
tals is occupied by magnesium. The two Mg2+ ions in the
revTetR1 dimer are only indirectly bound to the protein
because only the attached water molecules are hydrogen-
bridged to residues E23, R94, D95, K98 and E150 of
revTetR1.

The mutated glycine residue at position 17 could be
ascertained readily because it lacks the density of the
former leucine side-chain in wild-type TetR (Figure 4C).
Superimposition of the region that surrounds Gly17 in
revTetR1 onto the corresponding region around Leu17 in
TC-bound and DNA-bound wild-type TetR (PDB code
1QPI) (12), shows that the Leu17Gly mutation does not
alter the backbone conformation in any of the surrounding
residues (Figure 5A). Since Leu17 is embedded in a net-
work of hydrophobic residues in wild-type TetR, the
removal of its side-chain significantly reduces the number
of interside-chain interactions formed across the interface
between the DNA-binding and the effector-binding
domain in revTetR1 in comparison to wild-type TetR.
Remarkably, the residues that induce the reverse pheno-
type in the different revTetR variants all cluster around
Leu17 and participate in this hydrophobic interface to a
very similar extent than Leu17 (Figure 5A).

Although the interactions in the effector-binding sites are
very similar in ATC-bound revTetR1 and TC-bound wild-
type TetR (9), the orientations of the DNA-binding
domains differ significantly. After superposition of the
effector-binding domains, the DNA-binding domain in
revTetR1 differs from that of wild-type TetR in complex
with TC and effector-free wild-type TetR bound to DNA
by r.m.s.d. of 4.0 and 7.2 Å, respectively (Table 3). To
investigate this further, we determined to what extend the
DNA-binding domain in revTetR1 has to be shifted and
rotated, in order to match the orientation seen in the DNA-
bound wild-type TetR structure. When starting from the
above pair-wise superpositions, we calculated that a

rotation of 14.48 (plus a translation of 0.6 Å) is required
to move the DNA-binding domain of revTetR1 on top of
the DNA-binding domain of tetO-bound wild-type TetR
(Figure 5B). For comparison, a rotation of only 9.28 (plus a
translation of 0.5 Å) is required in order to move the DNA-
binding domain of TetR-[Mg-TC]+ on top of the DNA-
binding domain of DNA-bound TetR (Figure 5B). The
orientation of the DNA-binding domain in revTetR1 is
also not identical to that in wild-type TetR in complex
with [Mg-TC]+ either, since a rotation of 11.08 (plus a
translation of 0.5 Å) is required to superimpose the
DNA-binding domain of revTetR1–[Mg-ATC]+ onto the
DNA-binding domain of TetR-[Mg-TC]+ (data not
shown). In summary, these considerations show that the
DNA-binding domain in revTetR1 is oriented differently
than in tetO-bound wild-type TetR. As a consequence, the
two DNA-binding domains present in revTetR1 must
adjust their orientation, in order to interact with DNA
(Figure 5C).
Because the SPRmeasurements and the b-galactosidase-

activity reporter assay unequivocally showed that
revTetR1 in complex with [Mg-ATC]+ interacts tightly
with DNA (Table 2), we investigated whether we could
detect any hints for an unusual flexibility in the revTetR1
structure. Such an increased flexibility could explain why
the two DNA-binding domains present in the revTetR1
dimer are able to readily adjust their orientation in order
to bind toDNA, a behavior that is not possible in wild-type
TetR. An initial hint for this is obtained from the high static
disorder that we observe in the DNA-binding domain of
revTetR1 and which is reflected by a high average isotropic
thermal displacement factor (B-value). While the effector
domain and the dimer interface are characterized by an
average B-value of 34 Å2, the adjacent DNA-binding
domain displays an average B-value of 74 Å2 (Figure 4B).
In wild-type TetR, the DNA-binding domains display con-
siderably lower B-values (9). A direct comparison of the

Figure 4. Crystal structure of the revTetR1 dimer. (A) Together with the Ca-backbone (orange), the effector molecule [Mg-ATC]+ and two additionally
bound Mg2+ ions (gray) are depicted. The Ca positions of residues mutated in revTetR1, revTetR2 and revTetR4 as well as in additional TetR-variants
with reverse phenotype (mutated residues 56–58) (16) are marked with black spheres. Residues at which proteolytic cleavage occurs in effector-free
revTetR1 are marked in red. (B) Cartoon representation of revTetR1 colored according to the individual crystallographic thermal displacement factors
(B-values) and explaining the naming of the helices in TetR (a1 to a10). In red, yellow, green and blue are displayed residues with high, medium high,
medium low and low B-values, respectively. (C) The �A-weighted 2Fo�Fc electron density map around glycine 17 in revTetR1 contoured at a 1.0 � cut-off.
At the position of the missing Leu17 side-chain a water molecule binds within the interdomain interface of revTetR1.
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Figure 5. Stereo representation of selected structural features in the revTetR1-[Mg-ATC]+ structure in comparison to wild-type TetR.
(A) Superimposition of the region around Gly17 in revTetR1 (orange) and Leu17 in wild-type TetR (blue, PDB ID: 2TCT) (9) and tetO-bound
TetR (purple, PDB ID: 1QPI) (12). Substituting Leu17 against glycine in revTetR1 does not alter the backbone conformation in any of the
surrounding residues. It does, however, cause a significant reduction in the number of interside-chain interactions formed between residues from
helices a1 and a4, and the a5 to a6 loop segment. Strikingly, all the residues that give rise to the reverse phenotype in the different revTetRs cluster
around Leu17. (B) Comparison of the domain orientations in the revTetR1-[Mg-ATC]+ complex (orange/yellow for monomer one/two of the protein
dimer), the wild-type TetR–[Mg-TC]+ complex (blue/cyan) and the tetO-bound wild-type TetR dimer (purple/pink). The structures were super-
imposed by matching 93 residues that immediately surround the effector-binding site. A rotation of 14.48 around axis 1 is required to orient the
DNA-binding domain of revTetR1 onto that of tetO-bound wild-type TetR. Similarly, a rotation of 9.28 around axis 2 orients the DNA-binding
domain of the wild-type TetR–[Mg-TC]+ complex onto that of tetO-bound wild-type TetR. The two rotation axes are clearly oriented differently but
intersect in proximity of residues His63 and Ser67. This is in agreement with previous reports that indicated that in TetR these residues form a
molecular hinge (12). (C) The two DNA-binding domains as observed in the revTetR1 dimer (orange/yellow) superimposed onto the corresponding
domains in DNA-bound wild-type TetR (purple/pink). The superposition shows that, prior to binding, the DNA-binding domains in revTetR1 must
be reoriented.
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TetR structures must however be cautioned. Since wild-
type TetR crystallizes in a different space group, the differ-
ences in B-values might solely reflect differences in the
number of packing contacts in which these domains parti-
cipate in the different crystals.

TLS analysis reveals increased domain motion flexibility
in revTetR1

To further investigate the hypothesis that theDNA-binding
domains inATC-bound revTetR1 display an increased flex-
ibility in comparison to the structures of TC-bound wild-
type TetR, DNA-bound wild-type TetR and ligand-free
wild-type TetR (PDB code: 1A6I) (11), we subjected all
four structures to a detailed anisotropic motion analysis.
Because individual atomic anisotropic displacement
parameters cannot be refined at the resolution at which
the structure of revTetR1was determined, we took recourse
to the TLS parameterization model, instead. In this model,
collective variables are used to describe the displacements
of atom groups as pseudo-rigid bodies in terms of transla-
tion, liberation and screw-rotation motions (28).

For this analysis, the peptide chain was divided into
four different segments comprising residues 6–45, 46–91,
92–161 and 162–205. The refined TLS parameters indicate
that of all the structures that were compared, the DNA-
binding domains of revTetR1-[Mg-ATC]+ (residues 6–45)
exhibit the highest flexibility with libration representing
the dominant motion (Supplementary Table S1A–C).
The graphical representation of the nonintersecting
screw tensors and the depiction of the 50% thermal ellip-
soids for the revTetR1–[Mg-ATC]+ complex, in compar-
ison to wild-type TetR (Supplementary Figure S1) indicate
that the DNA-binding heads in revTetR1 in complex with
[Mg-ATC]+ are highly flexible, and that the motions the
DNA-binding heads are able to undergo, might be
extended enough to allow them to adopt a DNA-binding
competent orientation.

DISCUSSION

Our studies enable us to propose a mechanism by which
the single TetR point mutant Leu17Gly (revTetR1)
switches the function of TetR (Figure 6). This mechanism
is in full agreement with the observed binding data
(Table 2), namely it explains why ligand-free revTetR1

cannot bind DNA and why complex formation with the
effector ATC is required for revTetR1 to interact with
DNA. The behavior of revTetR1 is diametrically opposite
to that of wild-type TetR, since wild-type TetR binds to
the operator DNA only in the absence of the effector and
loses its DNA-binding affinity upon effector binding. We
suggest that the mechanism described below also holds
true for other revTetR variants.
The CD measurements and the limited proteolysis

experiments show that in the absence of effector molec-
ules, the DNA-binding heads in the revTetR variants are
partially unfolded and as a consequence are prone
to proteolysis. Upon addition of ATC, all revTetR variants
studied here become as resistant to proteolysis as effector-
free wild-type TetR. This gain in proteolysis resistance
upon complex formation with ATC is paralleled by a dis-
order to order transition and an about 5% gain in helical
secondary structure, as shown for revTetR1. Only upon
addition of ATC, the CD spectrum and hence the helical
content of revTetR1 resembles that of wild-type TetR.
Taken together, these observations hint that effector-free
unbound revTetR1 cannot bind to its operator DNA
because its DNA-binding heads are partially unfolded.
Addition of the effector molecule is required to induce
proper folding of the DNA-binding domains (Figure 6A
and B). In contrast, in wild-type TetR the DNA-binding
heads are already properly folded and enable wild-type
TetR to bind to DNA in the absence of any effector molec-
ule (Figure 6E and F).
Interestingly we observe that the binding affinities of the

revTetR variants for ATC are significantly lower than for
wild-type TetR (Table 2). Comparing the effector-bound
revTetR1 structure to those available for effector-bound
wild-type TetR reveals no obvious differences in the geom-
etry and number of atomic interactions between the effector
and the protein in the effector-binding site. The reduced
binding affinity can however be explained if one assumes
that in case of the revTetR variants, folding of the DNA-
binding heads is thermodynamically unfavorable and
therefore a fraction of the free energy gained upon binding
of the effector is used to induce the folding of the DNA-
binding domains.
In an important study by Reichheld and Davidson (36),

it has previously been noticed that, in TetR, the effector-
binding affinity and the stability of the DNA-binding

Table 3. Structural comparison between revTetR and wild-type TetR

RevTetR1 in complex with
[Mg-ATC]+ versus wild-type TetR in
complex with [Mg-TC]+ (PDB ID: 2TCT) (9,35)

RevTetR1 in complex with [Mg-ATC]+

versus tetO-bound wild-type TetR
(PDB ID: 1QPI) (12)

Comparison based on the superposition of the effector-binding domainsa,b

R.m.s.d. of the effector-binding domains (Å)b 1.04 1.84
R.m.s.d. of the DNA-binding domains (Å) 4.01 7.24

Comparison based on the superposition of the DNA-binding domains
R.m.s.d. of the effector-binding domains (Å) 4.32 7.20
R.m.s.d. of the DNA-binding domains (Å) 1.32 2.80

aIn these calculations, the dimer revTetR1 in complex with [Mg-ATC]+ was compared to the corresponding wild-type TetR dimer.
bFor both the superpositions and the calculation of the r.m.s.ds backbone atoms only were compared.
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domains are intercorrelated. In mutants where the DNA-
binding heads are partially truncated or destabilized
through the introduction of point mutations, the effector-
binding affinity is significantly reduced. Conversely,
Reichheld and Davidson also observed that effector bind-
ing to these variants lead to a general stabilization of the
DNA-binding domain with a similar protection against
proteolysis and increase in secondary structure as we now
observe for the revTetR variants (36). They suggested that
helix a4 plays a key role in propagating the stabilization to
the DNA-binding heads. Small readjustments in helix a4
upon effector binding would allow for proper folding of the
DNA-binding head against helix a4. The author suggested
that a similar effector-induced folding of the DNA-binding
heads might also be central in TetR variants with reverse
phenotype. However, none of the mutants they studied did
actually display the reverse phenotype and the changes they
observed in the CD spectra also significantly deviate from
those seen in revTetR1 (36), (Figure 3).

Unexpectedly, the crystal structure of revTetR1 in com-
plex with ATC reveals that upon addition of ATC, the
DNA-binding domains do not adopt a DNA binding com-
petent orientation. The DNA-binding domains seem to be
oriented even further apart than observed in wild-type
TetR in complex with TC (Figure 5 and Table 3) (9,12).
Because ATC-bound revTetR1 interacts with DNA with
high affinity (Table 2), it is obvious that the DNA-binding
domains must be able to readily adjust their orientation in
the presence of DNA. We propose that this becomes pos-
sible because the removal of the side-chain of Leu17 in
revTetR1 significantly reduces the number of interactions
between the DNA- and the effector-binding domain
(Figure 5), rendering the orientation of the DNA-binding
domains much more flexible. The importance of the reduc-
tion of interdomain interactions and concomitant increase
in domain flexibility is further substantiated by the obser-
vation that when replacing Leu17 by all possible amino
acids, only a leucine to glycine substitution and, to some

Figure 6. An orthogonal and not inverse mechanism is responsible for the effector-mediated corepression in revTetR in comparison to the induction
of wild-type TetR. Whereas effector binding induces a disorder–order transition in revTetR1, which then enables effector-bound revTetR1 to interact
with DNA (A–C), effector binding to wild-type TetR induces a defined conformational change in TetR that locks the protein in a conformation that
is not able to interact with DNA any more (D–F). The crystal structures of revTetR1 in complex with ATC (B) and that of wild-type TetR in
complex with TC (PDB ID: 2TCT) (9) (D) resemble each other. However, whereas in revTetR1 the mutations that are responsible for the reverse
phenotype (black rectangles in A and B) weaken the interface between the DNA- and the effector-binding domain and thereby allow the orientation
of the DNA-binding domains to freely adjust to the DNA upon binding (indicated by a double-headed arrow), in wild-type TetR the DNA-binding
domains are locked in a non-DNA-binding orientation (D) because of a pendulum-like motion of helix a4 that is triggered by the binding of the
effector (E–D). The structures of effector-free wild-type TetR (E) and DNA-bound effector-free wild-type TetR (F) have been sketched according to
PDB-ID codes 1A6I (11) and 1QPI (12), respectively. No crystal structure is yet available for (C). The structure of (A) is inferred from CD
measurements and limited proteolysis experiments. The identified cleavage sites are marked with black triangles. All DNA-binding competent
structures are marked with ‘+’, those not able to bind to the operator DNA with ‘�’.
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extent, a leucine to serine substitution lead to the reverse
phenotype (14).

Albeit to a significant lesser extent, certain flexibility in
the domain orientations is also observed in wild-type TetR,
since in the absence of any ligand, the DNA-binding
domains are also oriented slightly different than in the
DNA-bound complex (11). It is possible that in case of
revTetR1, the presence of high concentrations of Mg2+

in the crystallization buffer lead to the selection in the crys-
tal of a single conformation from the multiple orienta-
tions sampled in solution. The two hydrated Mg2+ ions
that are bound at the center of the domain interfaces
(Figure 4) possibly stabilize this conformation. The
increased flexibility of the DNA-binding domains in
revTetR1 is supported by the TLS-analysis. Of all TetR
crystal structures, the DNA-binding domains seem to be
the most flexible in the revTetR1 structure in complex with
ATC (Supplementary Figure S1 and Supplementary
Table S1A–C).

A possible drawback of the increased domain flexibility
is that in revTetR1 DNA binding is accompanied by a
higher entropy loss. This is mirrored by the observation
that, although none of the mutated residues in the
revTetR variants immediately contact the operator DNA,
the DNA-binding affinities are slightly reduced when com-
pared to effector-free wild-type TetR (Table 2). The ability
to freely readjust the orientation of the DNA-binding
domains appears to be a hallmark of the reverse behavior
of all revTetRs. In the revTetRs studied here as well as in
additional variants, where for example residues such as 55,
56 and 57 were substituted (16), the mutated residues map
without exception into or in immediate proximity of the
interdomain interface formed by a-helices a1, a4 and a6
between the DNA- and the effector-binding domain
(Figure 5A). This hints that these variants share a
common mechanism which can be summarized as an effec-
tor-induced disorder–order transition of the DNA-binding
heads in combination with a weakened interdomain inter-
face that allows theDNA-binding heads to readily adjust to
the operator site (Figure 6B and C). It is very likely that this
mechanism also extends to revTetR variant Gly96Glu
Leu205Ser for which initially a different mechanism has
been suggested (15). This variant displays an identical
binding behavior with respect to corepressor and tetO
binding, and residue Gly96 is in immediate proximity to
residue Leu17 (Ca–Ca distance=9.1 Å) and located in
the same interdomain interface. When examined carefully,
the CD spectrum reported by Kamionka et al. (15) for
the effector-free protein also displays a reduced a-helical
content.

This mechanism is significantly different from the
mechanism by which wild-type TetR regulates gene tran-
scription. Wild-type TetR binds tightly to the palindromic
DNA operator sequence tetO in the absence of effector
molecules (Figure 6 and Table 2) (10). Binding of the effec-
tor [Mg-TC]+ induces a defined conformational change in
TetR, which locks the DNA-binding domains in an orien-
tation that is not compatible with DNA-binding any more.
At the center of this conformational change is a pendulum-
like motion of helix a4, which links the effector-binding
domain to the DNA-binding domain in TetR (12).

During this rotation, His64 acts as a C-terminal pivot
and is anchored tightly to [Mg-TC]+. The tight fixation
of helix a4 increases the distance between the midpoints
of the DNA recognition helices a3 and a3’ by 3 Å, thereby
abolishing DNA binding in the induced complex
(Figure 6D–F) (13).
Although the mechanism that we observe for revTetR

differs considerably from that of wild-type TetR, it is
not unparalleled. In fact, it constitutes the second most
common mechanism by which repressors exert their func-
tion. Bacterial repressor proteins can be classified in gen-
eral into two categories regarding the mechanism of
interaction with their ligands. In the first category, the
effector binds to a preformed oligomer and alters its affin-
ity for DNA by triggering a conformational change in the
protein. In the second, the small molecule effector acts by
modulating the assembly properties and structural orga-
nization of the protein. Whereas TetR, LacI and the tryp-
tophan repressor from E. coli belong to the first class
(8,12,37), the tyrosine, arginine and biotin repressors
belong to the second (38–41). Interestingly, the mechanism
that is used to regulate gene expression does not depend
on whether the effector molecule takes over the role of a
corepressor or an inducer, since in the tryptophan repres-
sor the ligand tryptophan acts as a corepressor. Overall,
the mechanism that we propose for revTetR closely resem-
bles the disorder to order transition that has been reported
for the transcriptional regulator TraR (42) and the gain of
function upon ligand binding reported of the E. coli biotin
repressor. The biotin repressor is allosterically activated
through the binding of the corepressor bio-50-AMP and
similarly to revTetR becomes then resistant to limited
proteolysis (39,41).
This is the first study exploring the structure and

mechanism of a reverse repressor variant. We showed
that the reversal of function observed in revTetR1 is not
based on a mere reversal of the mechanism that regulates
wild-type TetR but that the single mutation Leu17Gly
enables revTetR1 to switch mechanisms namely from a
mechanism in wild-type TetR, that is based on an defined
conformational change to an effector-induced disorder–
order transition mechanism in revTetR. By doing so, it
switches between the two most commonly observed
mechanisms used by repressor proteins to regulate gene
transcription in bacteria. The single point mutant
revTetR1 might therefore represent a missing link that
not only highlights the close relationship between these
mechanisms but also demonstrates how these distinct
mechanisms could easily have evolved from a common
ancestor. Our study further emphasizes how single point
mutations can engender unexpected leaps in protein func-
tion, a property so far predominantly attributed to the
simultaneous appearance of correlated mutations. It is
quite likely that such functional leaps have played impor-
tant roles during the evolution of today’s proteome.
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Supplementary Data are available at NAR Online.
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