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ABSTRACT Dynamic importance weighting is proposed
as a Monte Carlo method that has the capability to sample
relevant parts of the configuration space even in the presence
of many steep energy minima. The method relies on an
additional dynamic variable (the importance weight) to help
the system overcome steep barriers. A non-Metropolis theory
is developed for the construction of such weighted samplers.
Algorithms based on this method are designed for simulation
and global optimization tasks arising from multimodal sam-
pling, neural network training, and the traveling salesman
problem. Numerical tests on these problems confirm the
effectiveness of the method.

Metropolis Algorithm

Metropolis et al. (1) introduced the fundamental idea of Monte
Carlo simulation of a system x by the (computer-simulated)
evolution of a Markov process whose stationary distribution at
equilibrium is the same as the Boltzmann distribution f(x) 5
(1yz) exp{2U(x)yt}. Here t is the temperature, U(z) is the
energy of the system, and z is a normalizing constant. The
transition from a current state x to a new state x9 is obtained
as follows. First, draw y from a proposal transition function T(x
3 y) and compute the Metropolis ratio

r 5 f~ y!T~ y 3 x!yf~x!T~x 3 y!.

If r . 1 then y is accepted as the new state, otherwise, accept
y with probability r. If y is not accepted, set the new state x9 to
be the old state x. This generates a series of states xi, i 5 1, 2,
. . . . , which, after the system has equilibrated, can be regarded
as correlated samples from the Boltzmann distribution. The
expectation of any state function can be estimated by the
sample average of the corresponding function values.

This method is currently one of the most versatile tools in
scientific computation. It is indispensable in simulations tasks
in statistical mechanics (2), and it plays an important role in
protein folding (3), multiple sequence alignment (4), and chip
design and machine learning (5).

A serious limitation of the Metropolis method is the inability
of the system to escape from deep local energy minima. For the
system to do this, it must move from a state of low energy to
a state of much higher energy. However, the expected waiting
time for such a move is roughly exponential in the energy
difference. Thus there is a waiting time dilemma: either to wait
forever in a deep local energy minimum or to have an incorrect
equilibrium distribution.

One approach to avoid getting trapped by local minima is
motivated by the fact that it is easier to escape from such traps
if the system is at a higher temperature. In the method of
simulated annealing (5), the system evolves according to the
Metropolis rule, but the temperature is slowly reduced ac-

cording to an ‘‘annealing scheme’’ from a high initial value to
very low values as the simulation proceeds. However, unless
the decrease of temperature is impractically slow, simulated
annealing is still prone to be trapped by local minima, and
recent attempts to exploit temperature variation have empha-
sized treating the temperature t as a dynamic variable that
coevolves with the original system state x. Usually t takes value
in a finite set t1 . t2 . . . . . tk21 . tk, and the augmented
system has a state vector (t, x) following an augmented
Boltzmann density of the form aifi(x) where fi is the density of
the original system at temperature ti, and ai is a tunable
constant. The Metropolis algorithm can again be used in the
simulation of this augmented system. After reaching equilib-
rium, one selects only those augmented states with t 5 tk and
accepts the corresponding system state x as a sample value.
This ‘‘simulated tempering’’ method had been applied suc-
cessfully to the simulation of random field Ising models (6).

Sampling a Complexity Ladder

By considering a ladder of k temperatures, simulated temper-
ing simultaneously simulates from k related systems with
different levels of complexity. There is no reason why the
different levels of complexity have to be generated by varying
the temperature, and different ladders of complexity have
been suggested in specific applications (7). A fruitful approach
to construct the ladder is the sequential build-up approach (8).
In this approach we think of approximating the original system
by a system with a reduced number of degrees of freedom. The
reduced system is again approximated by a system with a
further reduced degree of freedom, until we reach a system of
a manageable size. The augmented system now has a state
vector (i, xi) where i is the indicator for the complexity level and
the dimension of xi increases as i increases.

If the augmented system can move up and down the
complexity ladder freely according to the Metropolis rule,
then satisfactory results will be obtained for the highest
complexity system. In practice, however, this is not easy to
achieve. A major difficulty concerns the choice of k, the
number of levels in the complexity ladder. Because the per-
formance of the method depends on how freely the augmented
system can move from one end of the complexity ladder to the
other end, one must make sure that the waiting time for such
a traversal of the ladder is not too large. Even in the ideal
situation when the system behaves like a symmetric random
walk along the ladder, the expected waiting time for a traversal
is of order k2. This puts a severe limit on how many levels of
complexity we can afford to employ. On the other hand, unless
we employ many levels, there will be large probability barriers
between adjacent levels in the augmented system, making it
practically impossible to accept transitions between certain
levels according to the Metropolis rule. Thus, although the
idea of sampling a complexity ladder is conceptually attractive,
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its usefulness is still severely limited by the waiting time
dilemma.

Dynamic Importance-Weighting

The approach we propose as a way out of the waiting time
dilemma can be described in loose terms as follows: If neces-
sary, the system may make a transition against a steep prob-
ability barrier without a proportionally long waiting time. To
account for the bias caused by such a transition, we compute
an importance weight and record it along with the sampled
state vector. At equilibrium, estimates for expectations are
obtained by the importance-weighted average of the sampled
values, rather than the simple average as in the Metropolis
method.

In general, the importance weight w associated with a state
x is itself a dynamic variable and may affect the next transition
for the augmented system (w, x). Note that here x may already
include other auxiliary variables such as the temperature
variable in a simulated tempering setup. Unlike simulated
tempering, however, the transition rule for this augmented
system can no longer be obtained by the Metropolis method,
because we do not have a specification of a target equilibrium
distribution for (w, x). Instead, we propose to use invariance
with respect to importance-weighting (IWIW, defined below) as
a principle for designing valid transition rules. Let f(x) be a
target density for the system x. A joint density g(w, x) is called
correctly weighted if g#(x) 5 * g(w, x)w dw as a function of x is
proportional to f(x). A transition rule for the system (w, x) is
said to satisfy IWIW if the joint density of (w, x) after a
one-step transition remains correctly weighted whenever the
initial joint density is correctly weighted. If we have indepen-
dent identically distributed samples (w1, x1), (w2, x2), . . . . , (wn,
xn) from a correctly weighted joint density, then the weighted
average [of a state function h(x) over the sample]

$( h~xi!wi%y$( wi%

will converge to the expectation of h(x) under the target
density f.† IWIW is simply a requirement that the transition
rule preserves this nice property for the joint density. We have
designed many transition rules that satisfy IWIW exactly or
approximately. The following are some useful examples.

(i) Type-R transitions. Draw y from a proposal transition
function T(x 3 y) and compute the usual Metropolis ratio r.
Let u be an arbitrary function of (x, w), and a 5 wry(wr 1 u).
With probability a, set x9 5 y and w9 5 wrya, otherwise set x9
5 x and w9 5 wy(1 2 a).

(ii) Type-Q transitions. Draw y from a proposal transition
function T(x 3 y) and compute the usual Metropolis ratio r.
Let u as in (i) and u be an independent random variable
uniformly distributed in [0, 1]. The computation of (y, r, u) is
called a trial. The trial is said to be a success if u is less than
a 5 min(1, wryu). Perform such a trial. If it is a success, set x9
5 y, w9 5 wrya. If it is a failure, set x9 5 x, w9 5 wyq where q 5
1 2 p is the conditional probability of rejection of a proposal.
If (1yq) is unknown, we can use an unbiased estimate of it
based on further independent trials.

(iii) Type-M transitions. Draw x9 from an invariant transition
function K(x3 x9) and then set w9 5 w. The resulting transition
(w, x) 3 (w9, x9) then satisfies IWIW. Here by an invariant
transition K(x3 x9) we mean a transition function that leaves
the target density f(x) unchanged after a one-step transition.

Thus, if we apply a series of Metropolis transitions or Gibbs
transitions on the state vector x and leave the weight w
unchanged, then the result satisfies IWIW.

Type-M and type-R moves are exactly IWIW, but type-Q
moves are only approximately so. However, in actual use, a
type-Q move does not seem to produce any noticeable bias.
When u . 0, the weights in type-R and type-Q transitions have
a tendency to increase if there are frequent rejections, and this
eventually enables the sampler to escape from a deep local
minimum. Thus, besides being essential for the computation of
weighted estimates, the importance weights also facilitate
faster mixing of the Markov chain. It is often necessary to
alternate different types of moves (and different values of u)
in the same process to achieve efficient and stable mixing.
Type-M moves are mainly used for transitions within a given
complexity level, and type-R and type-Q moves are mainly
used for transitions across complexity levels.

We usually perform the operations of stratification and
trimming on the importance weights before computing the
weighted estimate of the expectation of any state function h(x).
First the sample points are stratified according to the value of
the function h(x). The strata are of roughly the same size and
within each stratum the variation of h(x) is small. The highest
k% (usually k 5 1) of the weights within each stratum are then
trimmed to be the value of the (100 2 k)th percentile of the
weights within that stratum. In our experience, these opera-
tions induce negligible bias in the weighted estimate but can
reduce its variance substantially. Note that the trimmed
weights depend on the function of interest.

Multimodal Sampling

We test the methods on the following bimodal density:

f 5
1
3

f1I1 1
2
3

f2I2

where f1 and f2 are density functions on [2100, 100]9 having the
following form:

1
Zk

exp(2ux 2 muk)

and I1 is the indicator function of the set {x1 , 0}, I2 is the
indicator of {x1 $ 0}. Here Zk is a normalizing constant and
k 5 2 and 1.5 for f1 and f2, respectively. The centers of f1 and
f2 are at 210 and 10, respectively, for the first coordinate, and
at the origin for the 8 remaining coordinates. We will see that
simulated tempering, which is normally a powerful method,
turns out to be ineffective on this problem.

In applying simulated tempering in this example, we have
used complexity ladders with 20, 100, and 200 levels. For each
ladder, b 5 1yt increases from a low value of 0.00001 to a high
value of 1 geometrically by a constant ratio. The proposal
function in each level is a multivariate normal distribution
centered at the current position with covariance matrix sI,
where s 5 0.05y=b for the low-b levels and s 5 1.25y=b for
the medium and high-b levels. Starting from the origin, we run
simulated tempering until 4000 samples are obtained at b 5 1.
The results averaged over 50 independent runs are plotted in
Fig. 1. Clearly the ratio of the two components is not estimated
correctly. Although so many levels are used, simulated tem-
pering fails in the simulation.

We also applied dynamic importance weighting to this
example. The complexity ladder used is the same as the
20-levels (temperature) ladder used in simulated tempering.
The proposal function is the same as that used by simulated
tempering. Type-R transition is used for jumps between levels.
After one new level is reached, 50 type-M transition steps are
made within the same level. Starting from the origin, we run

†Suppose g#(x) 5 cf(x). By the law of large numbers, the numerator
divided by n will converge to * h(x)g(w, x)wdwdx 5 c* h(x)f(x)dx.
Similarly, the denominator divided by n will converge to * g(x,
w)wdwdx 5 c* f(x)dx. Thus the weighted estimate converges to the
desired expectation. The argument requires existence of the first
moments.
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the weighted method until we reach b 5 1 one thousand times.
Averaging over 10 independent runs, we can obtain the correct
estimation of the distribution (Fig. 1), with respect to both the
relative weights of the component densities and the distribu-
tional shape within each component. The computation time
used by the weighted method is about the same as that used by
simulated tempering with 100 levels.

Training of Neural Networks

In a multilayer network, each unit (node) in a hidden layer
independently processes the values fed to it by units in the
preceding layer and then presents its output to units in the next
layer for further processing. The output of any unit, except that
of an input node, is a sigmoidal transform of the connection-
weighted sum of its inputs. In supervised learning, there is a
sample of training cases where, in addition to input values,
ideal output values are also available. ‘‘Learning’’ is accom-
plished by choosing the connection strengths to make the
network outputs match the ideal outputs as closely as possible
on the training data. Currently, the most popular learning
algorithm is the back-propagation algorithm and its variants
(9). It is known, however, that back-propagation can fail badly
in some situations. A famous example is the two-spiral problem
shown in Fig. 2A, where conjugate gradient back-propagation
learning with a layer of as many as 60 hidden units still yielded
training errors larger than 4% (10). We have applied dynamic
importance weighting to train a three-layer (25 hidden units)
network for the two-spiral problem with 192 training cases. We
used the sum of squares of fitting errors as the energy function,
and sampled on a complexity scale of 4 temperatures. Because
our objective was global optimization rather than sampling, the
samples obtained at the lowest temperature were then sub-
jected to further local iterative refinement by a conjugate-
gradient-based search. Table 1 compares the performances of
our weighted sampler, simulated annealing, and back-
propagation. It is clear that the latter two essentially failed for
this problem. Their poor performance is not too surprising
when one examines Fig. 2B, where the energy around a
particular local mode is plotted as a function of one of the
connection strengths (with the other connection strengths
fixed). The picture is typical of plots of this nature and it
illustrates the extreme roughness of the energy landscape.
Remarkably, the importance-weighted Markov process ap-

pears to have sampled the connections efficiently even in the
face of such a complex energy landscape. We have also
achieved perfect training with a 2–14-4–1 network. Thus,
contrary to common belief, our results show that a standard
multilayer feedforward architecture is capable of producing a
classification rate better than that given by ‘‘cascade-
correlation networks’’ which utilize ‘‘short-cut’’ connections
(11).

FIG. 1. Simulation from a bimodal distribution in nine-
dimensional space. The two modes are separated along the first
coordinate by a large region of almost zero probability. The cumulative
distribution of the first component is presented together with estimates
of it obtained by the weighted method and by the simulated tempering
method with various temperature ladders. The mass due to the left
mode is 0.333, which is well estimated only by the weighted method.

FIG. 2. (A) The two-spirals problem. The 192 training cases
correspond to the 192 points. For each case the two input values are
the x and y coordinates of the point, and the ideal output value is either
0 or 1, depending on which spiral the point lies on. (B) Profile of the
error surface corresponding to variation in one connection with the
remaining connections at fixed values.

Table 1. Performance comparison

Statistic
Weighted
method

Simulated
annealing

Back-
propagation

Mean 14.9204 28.4318 47.7964
SD 3.3766 2.1833 0.4512
Minimum 6.016 25.5978 43.6813
Error number 6 33 81

For each method, the same network structure (2-25-1) and amount
of computation time are used. Repeated random startings are used for
simulated annealing and back-propagation. The mean, SD, and min-
imum are summary statistics of the energy of the configurations found
by each method. The error number is the minimum number of
misclassified training cases (of 192) attained by that method.
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Traveling Salesman Problem (TSP)

The TSP is the problem of finding the shortest tour through a
set of J cities of specified locations so that each is visited once
and only once. It is perhaps the most well known member of
the class of NP-complete problems [hardest problems among
those verifiable in polynomial time]. There are a number of
large TSPs, some of them having known optimal answers, that
can serve as challenging tests for newly proposed combinato-
rial optimization methods (ref. 12; see also the Website
ftp:yyftp.iwr.uniheidelberg.deypubytsplib).

To apply dynamic weighting to the TSP, we first create an
ordering for the ‘‘sequential build-up’’ of the set of cities. This
is done by starting with a randomly selected city and then
adding cities one by one, and each time the city to add is the
one having the maximum separation from the set of already
ordered cities. This ordering can be achieved in low-order
polynomial time. We then consider a sequence of TSPs of
increasing level of complexity. At the lowest level we have a
TSP with the first m0 (m0 5 15, for example) cities in the
build-up ordering. At the next lowest level we add a block of
the next m cities to get a slightly larger TSP. The block size m
depends on the size of the full set and the number of levels we
want to employ on the complexity ladder. In this way we build
up a ladder of complexity consisting of TSPs on increasing
subsets of the cities. Typically we use between 15 and 25 levels,
and usually the size (I) of the TSP at the highest level of the
ladder is still much smaller than the size J of the original TSP.
In the numerical tests I is between 0.2 J and 0.4J. We think of
the I-city problem as an approximation to the J-city problem,
in the sense that a good tour for the former can be regarded
as an outline for the ‘‘global shape’’ of good complete tours for
the latter problem. A natural approach is to generate such
‘‘global shapes’’ with probabilities reflecting the chance that
they will lead to good complete tours, and then try to produce
the complete tours by local refinement. Thus our global search
strategy consists of two steps. First the I-city tours are sampled
from a Boltzmann distribution with tour length as the energy.
For each I-city tour generated this way, we use a greedy
algorithm to insert the remaining cities, one by one according
to the build-up order, until all J cities are added to the tour. In
the sampling step, to add a city to a tour, consider the 15 (say)
nearest neighbors on the tour to the city and sample a new path
through these 16 cities. This new path when connected to the
rest of the tour outside the neighborhood will then give a new
tour. The new path is sampled from a distribution designed to
mimic the local Boltzmann distribution whose energy is equal
to the path length. To add a block of m cities to the tour, the
cities are added one by one as described. An acceptyreject
decision is made after all m cities are added, and an importance
weight is computed accordingly. Deletions of cities from a tour
follow a similar procedure. All transitions are cross-level
transitions. There is no Lin-type (13) uphill moves between the
cross-level jumps because we want to see whether good
performance can be achieved without such traditional heuris-
tics. The final greedy fill-in of the remaining J 2 I cities is done
by using sequential branch and bound search over a series of
small (15 cities) path spaces.

Fig. 3 presents the solutions found on two large TSPs: att532
and grid1600. The computation time is 4h and 10h respectively
on an Ultrasparc I. For att532, our solution has an excess of
0.002 over the exact optimum. This is much better than
reported solutions from other heuristic search methods except
that of a special version of the genetic algorithm [with a
mutation based on the very powerful Lin–Kernighan (14)
moves] which gave a comparable excess. Our solution is exact
for the grid1600 problem, which has not been solved by other
heuristic search methods.

Conclusion

We have introduced the importance weight as a dynamic
variable into Markov-chain-based Monte Carlo methods. The
condition of invariance with respect to importance weighting is
proposed as a principle to guide the construction of the
Markov transition rules. The dynamically weighted sampler
can explore very rough energy surfaces more efficiently than
the classical Metropolis sampler. Basically, the proposed
scheme allows a trade-off between the length of the waiting
time (to equilibrium) and the variability of the weights.
Weighting is especially effective when used to facilitate cross-
level jumps in a complexity ladder. In this paper we have
outlined the basic theory and have provided numerical exam-
ples to demonstrate its utility. Further efforts will be needed
to clarify the limiting behavior of the weighted process and to
understand the optimal trade-off between the variability of the
weights and the ease of relaxation.

FIG. 3. (A) Our best solution for a 532-cities TSP. The tour length
is 27,744, whereas the exact minimum is 27,686. (B) One of the exact
minimal tours we found for a 1,600-cities problem.
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