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ABSTRACT

We describe a method, microarray analysis of differential splicing (MADS), for discovery of differential alternative splicing from
exon-tiling microarray data. MADS incorporates a series of low-level analysis algorithms motivated by the “probe-rich” design
of exon arrays, including background correction, iterative probe selection, and removal of sequence-specific cross-hybridization
to off-target transcripts. We used MADS to analyze Affymetrix Exon 1.0 array data on a mouse neuroblastoma cell line after
shRNA-mediated knockdown of the splicing factor polypyrimidine tract binding protein (PTB). From a list of exons with pre-
determined inclusion/exclusion profiles in response to PTB depletion, MADS recognized all exons known to have large changes
in transcript inclusion levels and offered improvement over Affymetrix’s analysis procedure. We also identified numerous novel
PTB-dependent splicing events. Thirty novel events were tested by RT-PCR and 27 were confirmed. This work demonstrates that
the exon-tiling microarray design is an efficient and powerful approach for global, unbiased analysis of pre-mRNA splicing.

Keywords: alternative splicing; Exon array; cross-hybridization; microarray; bioinformatics

INTRODUCTION

Alternative splicing of precursor mRNAs is a prevalent
mechanism of gene regulation in higher eukaryotes. It
generates enormous transcriptome diversity from a limited
repertoire of protein-coding genes in the genome (Roberts
and Smith 2002). Alternative splicing occurs among dif-
ferent tissues (Xu et al. 2002), during cellular responses to
external stimuli (Ip et al. 2007), and in a wide range of
human diseases (Wang and Cooper 2007). However, the
full spectrum of splicing changes in a specific biological
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process or disease was difficult to gauge because, until
recently, high-throughput platforms for profiling alterna-
tively spliced transcripts were unavailable. This situation
has changed with the recent advance in microarray tech-
nology for analysis of pre-mRNA splicing (Clark et al. 2002;
Johnson et al. 2003; Pan et al. 2004; Blencowe 2006).
With the steady increase of oligonucleotide density on
microarray chips, it is now possible for an expression
microarray to tile its probes over all exons in a mammalian
genome. A current example of a microarray with this
“probe-rich” design is the Exon 1.0 array from Affymetrix
(Affymetrix 2005b; Clark et al. 2007). Traditional oligonu-
cleotide array designs are “probe-poor”; i.e., they employed
a small number of probes targeting specific parts of the
gene such as the 3" end or specific splice junctions. In con-
trast, the Exon array employs an average of nearly 150 probes
per gene distributed through the entire potential tran-
scribed region (Affymetrix 2005b). For splicing analysis,
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Microarray analysis of differential splicing

this new design has potential advantages over earlier
implementations of splice junction microarrays: The high
density (more than six million probes on a single array)
allows the placement of multiple probes against almost
every known or predicted exon; the exon-tiling design does
not depend on prior knowledge of splicing in target genes,
which is attractive for discovery of new splicing patterns.

Several computational methods have been proposed for
analysis of alternative splicing from Exon array data
(Affymetrix 2005a; Cline et al. 2005; Clark et al. 2007;
Yeo et al. 2007). Most notably, Affymetrix has developed a
tool, EXACT, which compares the “splicing index” metric
across different sample groups to identify differentially used
exons (Gardina et al. 2006; Clark et al. 2007). It calculates
an “exon expression index” to represent the abundance of
transcripts containing a particular exon, and a “gene ex-
pression index” to represent the overall transcript abun-
dance of a gene. These indices can be estimated from signal
intensities of probes targeting an exon or a gene. The met-
ric “splicing index” is defined as the ratio of exon expres-
sion index to gene expression index. A significant difference
in the splicing index of an exon between samples indicates
differential alternative splicing.

While this exon-tiling design has generated considerable
enthusiasm (Gardina et al. 2006; Clark et al. 2007; Kwan
et al. 2007; McKee et al. 2007; Yeo et al. 2007; Hung et al.
2008), it is in fact challenging to detect differential alter-
native splicing events. It is unclear whether the exon-tiling
probes alone are sufficient for reliable analysis of splicing,
without the inverse correlation between probes for exon
skipping and inclusion obtained from the splice junction
design (Srinivasan et al. 2005). Two studies using Affyme-
trix’s standard analysis procedure reported low validation
rates (21% and 45%) (Gardina et al. 2006; Kwan et al.
2007). Yeo and colleagues used Affymetrix’s GC-based
background model and a regression-based approach for
detecting differential splicing (Yeo et al. 2007). They
reported a 56% (9/16) validation rate. Another study by
Affymetrix on tissue-specific splicing validated 84% (27/32)
candidate brain-specific exons. However, the validation test
in this work was done on the top 32 candidates out of 1.4
million probe sets (Clark et al. 2007). Recently, Hung and
colleagues combined RNAi knockdown and Exon array
profiling to identify the exon targets of a splicing regulator
hnRNP L (Hung et al. 2008). Based on the analysis of the
Exon array data, they selected 50 candidate genes with
differential alternative splicing events after RNAi knock-
down of hnRNP L. Their semiquantitative RT-PCR analysis
provided strong evidence for differential splicing in 11
genes and marginal evidence in another 17 genes, yielding a
validation rate of 22%-56% (Hung et al. 2008). The high
degree of uncertainty in the performance of Exon 1.0 array
hinders the utilization and future development of this
technology. At the heart of the problem is the inherent
noise in oligonucleotide probe signals due to various

sources of artifacts such as background and cross-hybrid-
ization. Since most exons are targeted by no more than four
probes in the current design (Affymetrix 2005b), this noise
can make the estimated “splicing index” unreliable.

RESULTS

Overview of MADS

In this article, we describe microarray analysis of differen-
tial splicing (MADS), a new method for the detection of
differential alternative splicing events from exon-tiling
microarrays. This method exploits a series of low-level
analysis algorithms to construct an efficient statistic for
differential splicing. These low-level analyses take advan-
tage of the high probe density of Exon arrays to perform (1)
background correction, (2) iterative probe selection for
expression index calculation, and (3) detection/removal of
sequence-specific cross-hybridization to off-target transcripts
(see details of these algorithms in Materials and Methods).
By recognizing and correcting for the major sources of noise
in Exon array probe intensities, our method can detect
changes in splicing of individual exons with improved sen-
sitivity and specificity, as demonstrated in the results below.

Evaluation of MADS using ‘‘gold-standard”’
alternative splicing data

To evaluate MADS, we used exons with predetermined
transcript inclusion levels in response to shRNA-mediated
repression of the splicing factor polypyrimidine tract bind-
ing protein (PTB), based on a previous study of PTB-
dependent splicing events (Boutz et al. 2007). We compiled
a list of 40 Exon array probe sets whose target exons were
differentially spliced after PTB depletion (Supplemental
Table 1). We also compiled a second list of 23 Exon array
probe sets whose target exons had no change in splicing
(Supplemental Table 2). It is important to note that the
algorithm development of MADS is independent of the
gold-standard set used in our evaluation. In other words,
we did not use information from the gold-standard data set
to over-train the MADS algorithm so that it could perform
well in this data set. For each exon in this gold-standard set,
we calculated its P-value for differential splicing using
MADS based on Exon array profiles on three shRNA-
PTB-treated samples and three mock-treated controls
(Materials and Methods). We identified all exons known
to have substantial differences in inclusion levels (based on
reverse transcriptase-polymerase chain reaction [RT-PCR]
data from Boutz et al. [2007]) between shRNA-treated and
mock-treated cells. For example, an internal cassette exon
in Smap was a known target of PTB. The inclusion level of
this exon increased from 7% to 42% after PTB depletion
(Boutz et al. 2007). Our analysis of the corresponding Exon
array probe set for this exon (probe set 5521400) indicated
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a significant increase in exon inclusion in shRNA-treated
cells (P = 1.8e-06).

To assess the overall performance of our method, we
calculated the true positive fraction and false positive
fraction in our gold-standard set under varying MADS
P-value cutoffs. We also implemented Affymetrix’s pro-
cedure EXACT (Clark et al. 2007) and calculated its true
positive and false positive fractions (see Supplemental
Tables 1 and 2 for MADS and EXACT P-values of gold-
standard positive and negative exons). Considering the
importance of controlling the false discovery rate in
genome-wide analyses (Storey and Tibshirani 2003), we
compared the true positive fractions of MADS and ExACT
when the false positive fraction was small (<10%). We
observed a substantial improvement by MADS over Affy-
metrix’s method EXACT. For example, our method had a
true positive fraction of 15/40 when no false positive was
reported, compared with 8/40 from Affymetrix’s method.
At the false positive fraction of 2/23, our method’s true
positive fraction increased to 21/40, while Affymetrix’s
method was 11/40, a 25% difference. In fact, at this false
positive fraction, our true positive fraction was comparable
to the small-scale, 1342-exon splice junction array used in
the initial discovery of the gold-standard positives (Boutz et
al. 2007). This splice junction array had about eight probes
per splicing event (Boutz et al. 2007).

We further investigated the potential cause for false nega-
tives from our analysis. We chose the P-value cutoff of 0.049
to call differentially spliced exons in our “gold-standard”
set. At this significance level, in the gold-standard exon set,
our method had a false positive fraction of 2/23 and a true
positive fraction of 21/40 (i.e., missing 47.5% [19/40] of the
“gold-standard” positives). We divided the 40 probe sets
for gold-standard positives into four distinct categories
based on the estimated change in inclusion levels after PTB
depletion by RT-PCR gel quantification (see Materials and
Methods and Supplemental Table 3). The sensitivity of our
method was positively correlated with the magnitude of the
change in exon inclusion level (Fig. 1). We only detected
one out of 11 exons with <5% change in inclusion level,
while five out of five exons exhibiting a change >25% were
detected. In addition, four false negatives were from probe
sets with a single probe on the Exon 1.0 array. Overall,
these results indicate that the current Exon 1.0 array is
capable of detecting substantial changes in exon inclusion,
but is not yet sensitive enough to identify subtle splicing
changes. Future designs that increase the probe density in
well-annotated exonic regions will likely improve the
sensitivity of this technology.

Validation of novel differential splicing events

Next, we focused on the discovery of novel differential
splicing events from Exon arrays. We ranked all probe sets
according to their MADS P-values. We selected 30 genes
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FIGURE 1. The sensitivity of MADS is positively correlated with the
magnitude of the change in exon inclusion levels. (X-axis) Change in
exon inclusion levels between shRNA-treated cells and mock-treated
cells, estimated from quantification of RT-PCR gels of “gold-standard”
positives (Boutz et al. 2007). (Y-axis) Number of Exon array probe
sets that detect gold-standard differential splicing events (i.e., true
positives) and the number of Exon array probe sets that fail to detect
gold-standard differential splicing events (i.e., false negatives).

from the top 1500 probe sets for validation (Supplemental
Table 4). The selection of these genes did not consider prior
knowledge of potential PTB binding sites or likely func-
tional relevance of the target genes. In other words, we did
not cherry-pick the 30 genes from the pool of 1500 in order
to achieve a high validation rate. The primary selection
criterion was to facilitate RT-PCR primer design and ex-
periments; i.e., the selected candidate exons should be
50-100 nucleotides (nt) in length and should be flanked
by constitutively spliced exons. The median MADS P-value
ranking of selected candidate probe sets is 154. Of the 30
genes tested, our RT-PCR experiments confirmed differ-
ential splicing events in 27 genes, yielding a validation rate
of 90% (Supplemental Fig. 1; Supplemental Table 5). We
show three examples in Figure 2 (also see Supplemental Fig.
2 for UCSC Genome Browser screenshots of these exons).
We found an exon in Garnll to be strongly up-regulated in
shRNA-treated cells (Fig. 2A; also see Fig. 4 below for
sequence of this exon and visualization of its probe inten-
sities). This exon was not present in any mouse mRNAs
and ESTs. Its probe design (probe set 4742986) was based
on a computational exon prediction by N-SCAN (van
Baren and Brent 2006). The genomic region of this exon
is highly conserved, with only a single nucleotide sub-
stitution between mouse and chicken. Our RT-PCR test
confirmed the expression of this novel exon as well as its
differential alternative splicing after PTB depletion. In
Tmem87a (Fig. 2B), we detected and validated the differ-
ential use of two mutually exclusive exons, whose upstream
introns had the major-class U1/U2 splice sites (GU-AG)
while the downstream introns had the minor-class Ul1/
U12 splice sites (AU-AC) (Letunic et al. 2002). The lengths
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FIGURE 2. Detection and validation of novel differential alternative splicing events. (A) Garnll: Splicing indices of Garnll exons suggest a
differentially spliced, novel cassette exon. The splicing index was calculated as the background-corrected probe intensity divided by the estimated
gene expression index (Materials and Methods). The splicing indices of probes 9-12, which target the cassette exon, indicate a substantially
increased exon inclusion level after PTB depletion. RT-PCR experiments confirmed a higher ratio of the exon inclusion form over the exon
skipping form in shRNA-treated cells (KD) compared with mock-treated cells (control). The RT-PCR primers are indicated (arrows) on the gene
structure diagram (right). (B) Tmem87a: Splicing indices of Tmem87a suggest a pair of mutually exclusive exons. One exon (74 nt in length) was
targeted by probes 5-8, whose splicing indices were lower after PTB depletion (probe set 5350538, MADS P-value 1.9¢-04). Another exon (71 nt
in length) was targeted by a single probe (probe 9), whose splicing index was higher after PTB depletion. RT-PCR experiments confirmed the
Exon array result. (C) NcamlI: Splicing indices of 48 probes in 12 Ncam1 probe sets suggest alternative 3'-UTR and polyadenylation. Probes 1-20
target one alternative 3'-UTR whose usage is increased after PTB depletion. Probes 21-48 target three exons in another alternative 3'-UTR whose
usage is reduced after PTB depletion.
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of these two exons only differed by 3 base pairs (bp).
Quantification of the gel image indicated that the relative
abundance of the longer Tmem87a isoform dropped from
30% to 16% after PTB depletion. We also confirmed the
differential usage of alternative 3’-untranslated region
(UTR) and polyadenylation sites

in Neaml, using primers specific

for alternative 3'-UTRs. This dif- A

reduction in shRNA-treated cells, we hypothesized that
the apparent differential splicing of this Rhobtb3 exon was
an artifact due to cross-hybridization. Indeed, RT-PCR
experiments indicated no differential splicing or even the
expression of this exon (Fig. 3C). We also tested probe sets

ferential splicing event was sup- 4.5
ported by a total of 12 probe sets

(Fig. 2C). The complete list of RT- =
PCR confirmed novel PTB-depen- 33
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dent splicing events is presented in
Supplemental Table 4. Of the 27
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complex alternative splicing pat-
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sion levels of Wdr77 across 11
mouse tissues and our samples
(Fig. 3B). Since the expression
level of Wdr77 had a 1.6-fold
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in Rab31, Nsf, Smchdl, and Ndufabl. These probe sets were
designed for exons supported by ESTs or computational
exon predictions. The observed intensities of these probe
sets were high. However, our analysis suggested that these
probes cross-hybridized to highly expressed off-target tran-
scripts (Supplemental Table 6). On the other hand, the
intensities of these probe sets had poor correlation (<0.3)
with their intended target genes. RT-PCR analyses indi-
cated that these four apparently “novel” exons were not in
fact expressed (Supplemental Fig. 1; Supplemental Table 6).

DISCUSSION

In this work, we demonstrate the efficacy of the MADS
procedure for the Exon array analysis of alternative splicing.
We evaluated the performance of our method, using a list
of 63 probe sets targeting exons with predetermined
transcript inclusion levels in response to shRNA-mediated
depletion of PTB (Boutz et al. 2007). This allowed a large-
scale, unbiased assessment of the Exon 1.0 array on its
ability to detect differential splicing events. Although the
“gold-standard” set is not sufficiently large for a robust
performance analysis (such as the receiver operating char-
acteristic analysis), we show that our method improves the
true positive fraction by as much as 25%, compared with
Affymetrix’s method (ExACT) at the same false positive
fraction. Based on prior RT-PCR gel quantification data
(Boutz et al. 2007), we show that we can reliably detect
exons with significant changes in their transcript inclusion
levels. On the other hand, the Exon 1.0 array is less sensitive
to small changes in exon inclusion than the small-scale
splicing junction array (Boutz et al. 2007), which has both
exon probes and splice junction probes. However, the Exon
array has real advantages in the number of exons profiled.
These features will be important for a number of experi-
mental applications, such as discovering the regulatory
targets of splicing regulators on a genomic scale.

Our analysis has identified a large set of novel PTB-de-
pendent splicing events. Overall, the 27 validated differen-
tially spliced genes cover all alternative splicing patterns:
single cassette exon, skipping of multiple adjacent cassette
exons, alternative donor/acceptor splice sites, mutually ex-
clusive exon usage, intron retention, and alternative poly-
adenylation. This shows an advantage of the unbiased
exon-tiling design, which does not require prior knowledge
of the use of a particular spliced segment. The MADS P-
value rankings of RT-PCR-confirmed probe sets had an
interquartile range (IQR) of 45-299, with the lowest
ranking being 1371 (Supplemental Table 4). Extrapolating
from our validation rate (90%), hundreds of probe sets
would represent bona fide novel PTB-dependent splicing
events. This large exon list will allow new analyses of the
sequence features needed for PTB binding and regulation.
Our MADS algorithm can also be useful for Exon array
analysis of other splicing regulators, or in the reanalysis of
existing Exon array profiles (such as the hnRNP L data set)
(Hung et al. 2008).

Our work illustrates the importance of correcting probe-
level noise (such as background and cross-hybridization)
for microarray analysis of alternative splicing. The inference
of exon-level expression (such as alternative splicing) from
the Exon 1.0 array is considerably more challenging com-
pared with analysis of overall gene expression by conven-
tional gene expression microarrays. The key to reliable
expression estimates from short-oligonucleotide arrays is
to model the performance of individual probes based on
sequence information and empirical data on the probe’s
performance. This is the strategy behind several pop-
ular programs such as dChip (Li and Wong 2001) or
GC-RMA (Wu and Irizarry 2005) for the analysis of
traditional 3’ expression arrays. For Exon array analysis,
since the number of probes on individual exons is small
(four on average on the Exon 1.0 array), it becomes
extremely important to recognize and eliminate noise in
observed probe intensities due to cross-hybridization to

off-target transcripts. Because of the
ability of Exon 1.0 array to accurately

estimate the expression levels of all well-

FIGURE 3. Removal of false positive detection of differential splicing due to sequence-specific
cross-hybridization to off-target transcripts. (A) Splicing indices of Rhobtb3 probes suggest a
differentially spliced exon (targeted by probe set 4365403, probes 9—12 of this plot). The
inclusion level of this exon appears to be substantially lower in shRNA-PTB-treated cells
compared with mock-treated controls. (B) Detailed analyses of Rhobtb3 probe set 4365403
indicate cross-hybridization. (X-axis) Sample indices of 11-tissue panel and PTB samples.
Samples 1-3 are mock-treated controls; samples 4-6 are shRNA-PTB-treated cells; the
remaining samples are from Affymetrix’s mouse 11-tissue panel, with three replicates for
each tissue. (Y-axis) Probe intensity or estimated gene expression index. Each of the four black
lines represents a probe in probe set 4365403. (Red line) Estimated gene expression indices of a
potential off-target gene Wdr77. All four probes in probe set 4365403 are perfect matches to
Wdr77. Their probe intensities are highly correlated with the estimated gene expression indices
of Wdr77 across the 39 samples, with Pearson correlation coefficients of 0.62, 0.59, 0.74, and
0.74, respectively. (Blue line) Estimated gene expression indices of Rhobtb3, which are poorly
correlated with the intensities of probe set 4365403. (C) RT-PCR using primers targeting
flanking exons shows a single band corresponding to the exon-skipping form. The target
exonic region of the probe set 4365403 (probes 9—12) is not expressed. (KD) shRNA-treated
cells.

annotated genes (Kapur et al. 2007;
Xing et al. 2007), it is in principle
possible for us to first conduct sequence
searches for off-target transcripts that
have 0, 1, 2, or 3 bp mismatches, then
identify those with highly correlated
signals to our probe(s) of interest. This
strategy has not been feasible until the
availability of the Exon array, since all
previous arrays were either non-compre-
hensive or too probe-poor (i.e., not
having enough probes to construct a
robust gene-level estimate) to support
such a computation. In Rhobtb3, the
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cross-hybridization analysis eliminated a strong false
positive prediction for differential splicing. Among the
initial list of the top 500 differentially spliced probe sets,
the fraction of cross-hybridizing probes was 3.7%, com-
pared with 0.8% of all probes analyzed on the array.
Since our knowledge of the transcriptional landscape of
mammalian genomes is far from complete (Kapranov
et al. 2007b), it is possible that the true scope of cross-
hybridization is even broader. The detection and filtering of
cross-hybridizing probes will eliminate an important source
of false positives. As demonstrated in our analysis of
Rab31, Nsf, Smchdl, and Ndufabl, false discoveries of
novel transcribed regions also may be caused by cross-
hybridization. In the future, it will be useful to incorporate
cross-hybridization correction techniques in the refinement
of the global RNA transcription map inferred from
extremely dense whole-genome tiling arrays (Kapranov
et al. 2007a).

Our data demonstrate that the exon-tiling microarray
design is an efficient and powerful approach for global
analysis of alternative splicing. The current Exon 1.0 array
has only four probes for most exons and no splice junction
probes. Despite that, using statistical methods to recognize
and correct for microarray noise, we have identified a large
number of differentially spliced exons at a very low false
positive rate. The limitations inherent in the design of the
current Exon 1.0 arrays will be solved as newer versions of
“probe-rich” Exon arrays become available in the near
future. During the past decade, we have seen a dramatic
increase in the density of oligonucleotide expression micro-
arrays. There is a 40-fold increase in density for spotted/
inkjet arrays in the past 11 years (DeRisi et al. 1997;
NimbleGen product page: http://www.nimblegen.com/
products/exp/#eukaryotic) and an 80-fold increase for
photolithography in the past eight years (from Affymetrix
Hu6800 to Exon 1.0 array). Since photolithography has
submicron resolution, there should be considerable room
for further increases in the density of these arrays. This will
create even more powerful microarray platforms for exon-
level profiling of eukaryotic transcriptomes.

MATERIALS AND METHODS

Statistical procedure for detecting differential
alternative splicing

Briefly, our method (MADS) involves the following steps:

First, we predict the background intensities of individual probes
using a sequence-specific, 80-parameter linear model that consid-
ers the composition of nucleotides at each position of a 25-mer
probe (Johnson et al. 2006; Kapur et al. 2007). The advantage of
this background model over the standard GC-based background
model was described in detail before (Kapur et al. 2007). We train
the background model using “genomic” and “anti-genomic”
background probes on the Exon 1.0 array (Affymetrix 2005b).

1476 RNA, Vol. 14, No. 8

For every probe, we subtract the predicted background intensity
from the observed probe intensity (Kapur et al. 2007) and use the
background-corrected intensity for downstream analysis.

Second, for each gene we use a correlation-based iterative probe
selection algorithm to select a subset of probes with highly
correlated intensities across diverse samples (Xing et al. 2006).
In this work, we use Exon array data for our own samples and the
Affymetrix 11-tissue panel (Xing et al. 2006). For each gene, we
apply hierarchical clustering (distance metric: 1-Pearson correla-
tion; average linkage clustering) to cluster its core probes using
their background-corrected intensities in all samples. We cut the
clustering dendrogram at a pre-defined height (0.5 in this study).
The intensities of core probes in the biggest sub-cluster are fitted
to the Li-Wong model (Li and Wong 2001) to obtain estimated
gene expression levels. After the initial Li-Wong fit, for each core
probe, we calculate the Pearson correlation coefficient of its
background-corrected intensities with the current gene expression
estimates in all samples. If the correlation is below a pre-defined
threshold (0.7 in this study), the probe will be dropped from the
list of selected probes. If the correlation is above this pre-defined
threshold, the probe will be retained or added to the list of selected
probes. We repeat this procedure until the list of selected probes
stabilizes. The final selected probes are regarded as reliable in-
dicators of overall gene expression levels. Their background-
corrected intensities are fitted to the Li-Wong model (Li and
Wong 2001) to calculate gene expression indices. The idea of our
probe selection procedure is similar to the iterPLIER algorithm
(Affymetrix 2005¢) used by Affymetrix to calculate Exon array ex-
pression indices. Lowly expressed genes whose expression indices
are below a given cutoff (500 in this study) are removed from
further analysis. Alternatively, we can use the background model
to calculate a P-value for gene presence/absence as described
before (Kapur et al. 2007) and remove genes called absent in one
of the sample groups. We can also drop genes without enough sel-
ected probes (e.g., <11) to construct a robust gene-level estimate.

Third, for each probe, we calculate its splicing index as the ratio
of its background-corrected probe intensity to the estimated gene
expression index. We conduct two separate one-sided t-tests to
assess whether the splicing indices of a probe are significantly
higher or lower in one sample group over another group. After we
obtain P-values for individual probes, we summarize a probe-set-
level P-value using Fisher’s method as follows. The P-values for
individual probes are transformed via the formula x = —2log(p).
Under the null hypothesis that the exon targets are not differen-
tially spliced, the P-values follow a uniform [0,1] distribution, and
the transformed P-values follow x3 distribution. The sum of the
transformed P-values follows x3; distribution where k equals the
number of probes. This sum of the transformed P-values is used
to calculate a probe-set-level P-value, which is used to rank all
probe sets. The t-test of splicing index is similar to the ANOVA-
based method used by Affymetrix in the analysis of tissue-specific
and cancer-specific alternative splicing (Affymetrix 2005a; Gardina
et al. 2006; Clark et al. 2007). The main distinction is that MADS
calculates splicing indices and P-values of individual probes sep-
arately, prior to the summarization of a probe-set-level P-value.
By contrast, Affymetrix’s approach first calculates an overall exon-
level expression index (from no more than four probes per probe
set), prior to splicing index calculation and statistical testing.
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Finally, to eliminate false positives due to cross-hybridization,
we use an efficient sequence search algorithm (H. Jiang and W.H.
Wang, unpubl; http://biogibbs.stanford.edu/~jiangh/SeqMap/)
to search all 25-mer oligonucleotide probes against all RefSeq-
supported exon regions, allowing up to 3-bp mismatches. Once a
potential off-target gene is found for a probe, we calculate the
Pearson correlation coefficient between the probe’s intensities and
the off-target gene’s expression indices (also estimated from Exon
arrays) across our own samples and the Affymetrix 11-tissue panel
(Xing et al. 2006). We define a probe to be cross-hybridizing if
there is an off-target gene within 3-bp mismatches, and if the
computed Pearson correlation coefficient is above a given thresh-
old (0.55 in our current computation). Probe sets with cross-
hybridizing probes are regarded as unreliable and are filtered from
the final result. In this paper, we use cross-hybridization merely in
the follow-up analysis of exons selected for validation. In the
future it will be useful to incorporate the cross-hybridization
analysis directly into the statistics for ranking of exons.

Compilation of a “gold-standard”’ exon set

To evaluate the performance of our method, it is essential to have
a “gold-standard” set of exons whose splicing patterns are known
in particular samples. For this purpose, we used a list of 79 exons
with known inclusion/exclusion profiles in response to shRNA-
mediated knockdown of the splicing factor PTB. PTB is a well-
characterized splicing repressor. It binds to pyrimidine-rich ele-
ments on pre-mRNAs and suppresses the

splicing of a wide range of mammalian

tissue-specific exons (Black 2003). Previ- A
ously, we used shRNA to deplete PTB in

we obtained 40 probe sets as our “gold-standard” positives and 23
probe sets as our “gold-standard” negatives.

Exon array hybridization and analysis

Short hairpin knockdown of PTB was performed as described
before (Boutz et al. 2007). The efficiency of the PTB knockdown
was monitored by Western blot using PTB-NT primary antibody
and Cy5 labeled secondary antibody (GE Life Sciences). The blots
were imaged using Typhoon 9410 (GE Life Sciences). The band
intensities were measured using ImageQuant and normalized to
GAPDH. In all cases, the efficiency of the knockdown was close to
80% (data not shown).

We conducted Exon array profiling on RNAs from three
shRNA-PTB-treated samples and three mock-treated controls
(using empty vectors). Probes for the Affymetrix Exon Array ST
1.0 were prepared and hybridized to the array using the GeneChip
Whole Transcript Sense Target Labeling Assay (Affymetrix) ac-
cording to the manufacturer’s suggestions. Briefly, for each sam-
ple, 2 ng of total RNA was subjected to ribosomal RNA reduction.
Following rRNA reduction, double-stranded cDNA was synthe-
sized with random hexamers tagged with a T7 promoter sequence.
The double-stranded cDNA was used as a template for amplifi-
cation with T7 RNA polymerase to create antisense cRNA. Next,
random hexamers were used to reverse transcribe the cRNA to
produce single-stranded sense strand DNA. The DNA was frag-
mented and labeled with terminal deoxynucleotidyl transferase.
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exon-containing isoform. Since these ex-
ons were annotated on the mmb5 version
of the mouse genome at the time of the
initial work (Boutz et al. 2007), we map-
ped these exons to the mm8 version using
the LiftOver tool of UCSC Genome
Browser (Kent et al. 2002). We then
mapped Exon array probe sets to these
exons, requiring that the target region of a
probe set to be fully contained by an exon
in our gold-standard set. After removing
exons without Exon 1.0 array probe sets,
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FIGURE 4. A screenshot of our stand-alone Exon array genome browser for the novel PTB-
dependent exon of Garnll. (A) Probe intensities of the novel PTB-dependent exon of Garnll and
its flanking exons are visualized by our Exon array genome browser. (Top track) RefSeq gene
structure, (middle track) probe intensities in mock-treated cells (control), (bottom track) probe
intensities in shRNA-treated cells (KD). Each vertical line represents the background corrected,
normalized intensity of a probe. (Box) PTB-dependent exon. The intensities of its four probes are
significantly higher in KD samples compared with control samples, using the probes of the
flanking constitutive exons as the control. This stand-alone Exon array genome browser is
available at http://biogibbs.stanford.edu/~jiangh/browser/. (B) The nucleotide sequence of the
Garnll PTB-dependent exon. This exon has no mRNA/EST evidence and is supported by a
computational exon prediction of N-SCAN (van Baren and Brent 2006). (Horizontal lines)
Placement of four Exon array probes.
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The probes of triplicate samples of the shRNA-PTB-treated cells
and mock-treated controls were hybridized to the Affymetrix
mouse Exon 1.0 arrays and scanned.

We used the “gold-standard” sets of known positives and
known negatives to count the numbers of true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN). We
calculated the true positive fraction and false positive fraction at a
particular MADS P-value cutoff as:

TP
TPY = ———
& TP+ FN’
Fp
FP0 = ————.
& FP+TN

RT-PCR validation of differential alternative splicing

We conducted RT-PCR validation of novel PTB-dependent splicing
events discovered from genome-wide Exon array analysis. Total RNA
was collected from adherent tissue culture cells using Trizol (Invi-
trogen) according to the manufacturer’s instructions. RNA samples
were then treated with DNase I to remove residual DNA contami-
nation and extracted with chloroform. RNA was quantified (A260)
using a Nanodrop-1000 spectrophotometer (Nanodrop Technolo-
gies). Total RNA (2 g) was reverse transcribed with SuperScript ITI
(Invitrogen) according to the manufacturer’s protocol. For each
candidate differential splicing event, we used PRIMER3 (Koressaar
and Remm 2007) to design forward and reverse primers against its
flanking exon regions. One-fortieth volume of the RT reaction was
used in a 10-pL PCR reaction containing **P-labeled primers. PCR
reactions were run in an MJ Research PTC-200 thermocycler for 25
cycles with an annealing temperature of 60°C. The reaction products
were resolved on 8% denaturing polyacrylamide gel and imaged using
Typhoon 9410. The images were quantified using ImageQuant TL
(GE Lifesciences). The inclusion levels of the exons were calculated as
the percentage of exon-containing isoforms.

Available software/datasets

Our software tools and datasets are publicly available to the research
community: (1) We release the MADS source code for detection of
differential splicing events from Exon 1.0 array data (http://
biogibbs.stanford.edu/~yxing/MADS/). We also provide at this
URL the lists of cross-hybridizing probes on human and mouse
Exon 1.0 arrays and their potential off-target genes. These lists are
obtained by analyzing a diverse set of public and in-house
Affymetrix Exon array profiles, using the cross-hybridization detec-
tion method described in this manuscript. (2) We develop and main-
tain a light-weight, stand-alone genome browser for visualization
of Exon 1.0 array profiles along the genome (http://biogibbs.
stanford.edu/~jiangh/browser/; see Fig. 4 for a screen shot showing
the probe intensities of the novel PTB-dependent exon of Garnll).
Using this genome browser, researchers can inspect the data in
specific genes of interest to assess the exon-level expression patterns
(e.g., differential alternative splicing) discovered by our computa-
tional analysis. (3) We have deposited our Exon array data set to the
NCBI GEO database under the accession number GSE11344.

SUPPLEMENTAL DATA

Supplemental material can be found at http://www.rnajournal.org.
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