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SLEEP DISORDERED BREATHING (SDB) IS A PREVA-
LENT AND CHRONIC CONDITION THAT IS CHARAC-
TERIZED BY RECURRENT EPISODES OF UPPER AIRWAY 
collapse during sleep. It is estimated that approximately 7% of 
adults in the general population have SDB of at least moderate 
severity.1 Several epidemiological and clinic-based studies have 
shown that the prevalence of altered glucose metabolism and 
type 2 diabetes increases with severity and frequency of self-
reported and objective measures of SDB, independent of age 
and central obesity.2,3 Of the prospective observational studies, 
two have shown a higher incidence of type 2 diabetes mellitus 
among habitual snorers,4,5 and one has shown a higher preva-
lence of type 2 diabetes among those with polysomnographi-

cally defined SDB.6 Previous work from the Sleep Heart Health 
Study (SHHS) has also demonstrated a higher prevalence of 
impaired fasting glucose, glucose intolerance, and type 2 diabe-
tes mellitus in individuals with SDB independent of body mass 
index and waist circumference.7

SDB is associated with a number of physiological derange-
ments, including intermittent hypoxemia and sleep fragmenta-
tion. Experimental and observational studies that have attempted 
to uncouple these pathognomonic components of SDB have 
shown that both hypoxia and disrupted sleep can trigger a cas-
cade of physiological events that may eventually result in altered 
glucose homeostasis. Increases in autonomic activity8,9 and circu-
lating neuroendocrine hormones such as cortisol10,11 can be elic-
ited by hypoxia and sleep disruption and thus may impair glucose 
metabolism in SDB. Epidemiologic observations from the SHHS 
cohort indicate that average oxyhemoglobin saturation during 
sleep independently correlates with impaired glucose tolerance 
and type 2 diabetes.7 Thus, measures beside the conventional ap-
nea-hypopnea index may provide a more nuanced understanding 
of the specific components of SDB that play a role in subsequent 
pathologies. In order to determine whether disordered breathing 
events with milder reductions in oxyhemoglobin saturation that 
are excluded from conventional measures are clinically relevant, 
it is important to examine the full spectrum of SDB-related events 
in the context of specific health-related outcomes.

The currently recommended criteria for defining a hypopnea 
include a reduction of airflow that is accompanied by an oxyhe-
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moglobin desaturation of at least 4%.12 An alternative definition 
includes a decrease in airflow with an oxyhemoglobin desatu-
ration of at least 3% or an arousal from sleep.12 Whether SDB 
events characterized by less stringent criteria for sleep related 
hypoxemia (e.g., 2% or 3% oxyhemoglobin desaturation) are 
important for predicting the risk of adverse events is not known. 
To delineate the potential consequences of SDB events with 
lesser degrees of oxyhemoglobin desaturation during sleep, the 
current study examined the association between events at vary-
ing thresholds of SDB-related oxygen desaturation and glucose 
metabolism. Specifically, the primary objective was to deter-
mine whether events, in particular hypopneas, based on an oxy-
hemoglobin desaturation criterion below the 4% threshold for 
defining the disorder correlate with fasting glucose levels in a 
community-based sample of middle-aged and older adults.

METHODS

Study Sample

The specific aims and design of the SHHS have been previ-
ously described.13 Briefly, the SHHS is a cohort study of the car-
diovascular consequences of SDB. The baseline cohort for the 
SHHS study was recruited from ongoing epidemiologic studies 
of cardiovascular and respiratory disease. The recruited cohort 
was assessed for SDB with a full montage in-home polysomno-
gram. Participants were considered eligible if they were at least 
40 years of age and were not being treated for SDB with positive 
airway pressure, oxygen, or a tracheostomy. The baseline SHHS 
cohort consisted of 6,441 subjects that underwent the overnight 
polysomnogram and completed a battery of interview-admin-
istered questionnaires. Informed consent was obtained from all 
participants and the study protocol was approved by the institu-
tional review board of each participating institution.

The study sample for the current analysis consisted of a subset 
of the SHHS participants with a fasting glucose measurement 
performed using standardized methods in accordance with the 
parent study protocols. Three parent studies had collected data 
on fasting glucose levels including the Atherosclerosis Risk in 
Communities Study, the Cardiovascular Health Study, and the 
Framingham Heart Study. Because measurements of metabolic 
function were measured in accordance with the parent study 
timeline, only those measurements that were within a year of 
the SHHS baseline polysomnogram were included in the cur-
rent analyses (N = 2,656). Participants were excluded if they 
were on insulin therapy or using an oral hypoglycemic agent. 
Covariate data on age, sex, race, smoking status (current, for-
mer, never smoker), weight, height, waist circumference, and 
self-reported sleep duration during workdays was ascertained 
as part of the SHHS baseline exam.

Polysomnography

An unattended polysomnogram was conducted in the par-
ticipant’s home and consisted of continuous recordings of the 
following physiologic channels: C3-A2 and C4-A1 electroen-
cephalogram (EEG), right and left electrooculogram, a single 
bipolar electrocardiogram, chin electromyogram (EMG), oxy-
hemoglobin saturation by pulse oximetry, chest and abdominal 

excursion by inductance plethysmography, airflow by an orona-
sal thermocouple, and body position by a mercury gauge. The 
Nonin oximeter that was used as part of the recording montage 
calculated the oxyhemoglobin saturation once per second using 
a collection of valid pulse wave forms and an exponentially 
weighted averaging window based on heart rate. Using the ex-
ponentially weighted averaging function, the once-per-second 
oxyhemoglobin saturation values for a heart rate of 60 beats per 
minute are determined by the set of 4 recent pulse waves and an 
averaging window length of approximately 4 seconds. With in-
creasing heart rate, the averaging window decreases. Thus, at a 
heart rate of 90 beats per minute the averaging widow length is 
approximately 2.5 sec. Additional details of polysomnographic 
equipment, hook-up procedures, failure rates, scoring, and qual-
ity assurance and control have been previously described.14 

SDB severity was quantified with the following parameters: 
the apnea-hypopnea index (AHI), the apnea index (AI), and the 
hypopnea index (HI). Apneas were identified if airflow was ab-
sent or nearly absent for ≥10 sec. Hypopneas were identified if 
discernible, discrete reductions in airflow or thoracoabdominal 
movement (≥30% below baseline values) occurred for at least 
10 sec. For each of the above parameters, apneas and hypopneas 
associated with an oxyhemoglobin desaturation of 0.0%–1.9%, 
2.0%–2.9%, 3.0%–3.9% were tabulated separately to construct 
a panel of predictor variables representing SDB events based on 
less stringent desaturation criteria than typically used to define 
an event (i.e., ≥4.0%). For example, the frequencies of hypo-
pneas associated with oxyhemoglobin desaturation less than 
2.0% (HI0.0–1.9%), 2.0% to 2.9% (HI2.0–2.9%) and 3.0% to 3.9% 
(HI3.0–3.9%) were determined. Arousals were identified as abrupt 
shifts ≥3 sec in the EEG frequency.15 In REM sleep, scoring of 
arousals also required concurrent increases in chin EMG ampli-
tude. The arousal index was defined as the average number of 
arousals per hour of sleep.

Metabolic Assessment

After an overnight fast, a venipuncture was performed to ob-
tain a blood sample. Extracted serum was stored at –70°C for 
further analyses. Serum glucose in all participants was measured 
by the hexokinase method. Based on the fasting serum glucose 
levels, glycemic status was categorized using the American Dia-
betes Association criteria16 as follows: normal (<100 mg/dL), im-
paired (100 to 125 mg/dL), or diabetic (>126 mg/dL).

Statistical Analysis

Pearson correlation coefficients were computed to examine 
the strength of association between variously defined measures 
of SDB across desaturation thresholds. The prevalence of nor-
mal, impaired, and diabetic fasting glucose levels was deter-
mined as a function of SDB severity using the AHI, AI, and HI 
at different thresholds of oxyhemoglobin desaturation. Because 
fasting glucose levels were represented as normal, impaired, 
or diabetic, ordinal logistic regression was used to character-
ize the associations between glycemic status and parameters of 
SDB severity. Analyses were conducted with the study sam-
ple categorized in quartiles for each predictor of interest (e.g., 
AHI) across the different oxyhemoglobin desaturation thresh-
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olds (e.g., 3.0%–3.9%). Multivariable models were developed 
to adjust for confounding variables which included age, sex, 
body mass index, waist circumference, neck circumference, 
usual sleep duration, smoking status, alcohol use, and prevalent 
hypertension. The decision to include several obesity related 
measures (e.g., BMI, waist circumference, neck circumference) 
was driven by the need to adjust for not only the amount of 
body weight but also to account for the potential effects of cen-
tral adiposity. Moreover, adjustments for usual sleep duration,17 
smoking history,18,19 and alcohol use20-22 were necessary, as 
these factors have been related to altered glucose metabolism. 
Finally, to test the metabolic implications of lower thresholds 
of oxyhemoglobin desaturation, each multivariable model for 
a specific desaturation threshold included terms that would ac-
count and adjust for SDB events with oxyhemoglobin desatu-
ration above the threshold being examined. For example, in a 
multivariable model with the AHI3.0–3.9% as the primary indepen-
dent variable, AHI>4.0% was included as a covariate to account 
for the confounding effects of apneas and hypopneas associated 
with oxyhemoglobin desaturation of 4% or more. All statistical 
analyses were performed using SAS statistical software (SAS 
Institute Inc., Carey, NC, version 9.0).

RESULTS

The study sample of 2,656 subjects consisted of 54.3% 
women and 93.4% white subjects. The median age was 68.0 
years (interquartile range: 60–75) and the median BMI was 
27.6 kg/m2 (interquartile range: 24.9–30.8). The prevalence 
of normal, impaired, and diabetic fasting glucose values was 
61.3%, 32.9%, and 5.8%, respectively. As expected, the median 
AHI and HI progressively increased with less stringent oxyhe-
moglobin desaturation criteria. The median values of AHI≥4.0%, 
AHI3.0–3.9%, AHI2.0–2.9%, and AHI0.0–1.9% were 4.61, 4.38, 7.27, and 
9.03 events per hour, respectively. The median values of HI≥4.0%, 
HI3.0–3.9%, HI2.0–2.9%, and HI0.0–1.9% were 3.28, 3.86, 6.79, and 8.66 
events per hour, respectively. Finally, the median values of 
AI≥4.0%, AI3.0–3.9%, AI2.0–2.9%, and AI0.0–1.9% were 0.52, 0.17, 0.16, 
and 0.16 events per hour, respectively. As expected, measures 
based on more stringent oxyhemoglobin desaturation criteria 
were more correlated with each other than with the other mea-
sures based on less stringent desaturation criteria, indicating the 
co-occurrence of events within adjacent bins of oxyhemoglobin 
desaturation (Table 1). While correlations between AHI and HI 
ranged from high to low, correlations between AI and AHI, as 
well as AI and HI were generally low. Thus, there was sufficient 
variation in these measures to allow independent examination 
of their association with glycemic status.

Table 2 shows the cumulative adjusted relative odds for 
impaired or diabetic fasting glucose levels across quartiles 
of AHI using different oxyhemoglobin desaturation criteria 
(0.0%–1.9%, 2.0%–2.9%, 3.0%–3.9%, and ≥ 4.0%) in separate 
multivariable models. Because the oxyhemoglobin desaturation 
criterion alters the distribution of SDB indices, comparisons of 
the adjusted relative odds for quartiles across separate models 
cannot be made. As shown in Table 2, impaired glucose metab-
olism was associated with AHI≥4.0%, AHI3.0–3.9%, and AHI2.0–2.9% 
Compared to the first quartile of AHI≥4.0%, the multivariable ad-
justed relative odds for the fourth and third quartiles were 1.35 

(95% CI: 1.04–1.76) and 1.32 (95% CI: 1.02–1.71), respective-
ly. The adjusted relative odds of impaired or diabetic fasting 
glucose for the fourth, third, and second quartiles of AHI3.0–3.9% 
were 1.72 (95% CI: 1.20–2.48), 1.53 (95% CI: 1.10–2.15), and 
1.53 (95% CI: 1.13–2.06), respectively. The adjusted relative 
odds of impaired or diabetic fasting glucose values was also 
statistically significant for the fourth versus first quartile of 
AHI2.0–2.9% (odds ratio [OR] = 1.41, 95% CI: 1.07–1.86). How-
ever, no association was observed between AHI0.0-1.9% and fast-
ing glycemia even when comparing the fourth and first quartiles 
(OR = 1.07, 95% CI: 0.84–1.37).

Given the relatively low burden of apneas in the study sam-
ple and lack of association between the AI and glycemic status 
(data not shown), analyses were then conducted to focus on the 
association between the HI at varying thresholds of oxyhemo-
globin desaturation and metabolic impairment. Table 3 shows 
the relative adjusted odds for impaired or diabetic fasting glu-
cose levels across quartiles of HI for the following oxyhemo-
globin definitions: 0.0%–1.9%, 2.0%–2.9%, 3.0%–3.9%, and 
≥ 4.0%. As before, each multivariable model included terms 
to reflect the frequency of hypopneas (and apneas) associated 
with oxyhemoglobin desaturation above the threshold being ex-
amined. Thus, the independent association between hypopneas 
within specific limits of oxyhemoglobin desaturation was delin-
eated. Compared to the first quartile of HI≥4.0%, the adjusted rela-
tive odds of impaired or diabetic fasting glucose were higher 
for the fourth quartile (OR = 1.47, 95% CI: 1.13–1.92) and third 
quartile (OR = 1.25, 95% CI: 0.96–1.61). The adjusted relative 
odds of impaired or diabetic fasting glucose across quartiles 

Table 1—Pearson Correlation Coefficients Between Sleep-Dis-
ordered Breathing Indices Defined According to Type of Event 
(Apnea, Hypopnea, or Both) and Level of Oxyhemoglobin De-
saturation (0.0%–1.9%, 2.0%–2.9%, 3.0%–3.9%, ≥4.0%)

	 AHI0.0-1.9%	 AHI2.0-2.9%	 AHI3.0-3.9%	 AHI>4.0%
AHI0.0-1.9%	 1.00	 0.53	 0.11	 −0.16
AHI2.0-2.9%	 	 1.00	 0.73	 0.15
AHI3.0-3.9%	 		  1.00	 0.51
AHI>4.0%	 			   1.00
HI0.0-1.9%	 0.99	 0.51	 0.07	 −0.19
HI2.0-2.9%	 0.53	 0.98	 0.68	 0.11
HI3.0-3.9%	 0.08	 0.70	 0.95	 0.47
HI>4.0%	 −0.16	 0.18	 0.52	 0.85
AI0.0-1.9%	 0.23	 0.27	 0.29	 0.26
AI2.0-2.9%	 0.19	 0.43	 0.43	 0.19
AI3.0-3.9%	 0.11	 0.38	 0.57	 0.33
AI>4.0%	 −0.11	 0.06	 0.32	 0.82

	 HI0.0-1.9%	 HI2.0-2.9%	 HI3.0-3.9%	 HI>4.0%
HI0.0-1.9%	 1.00	 0.52	 0.07	 −0.17
HI2.0-2.9%	 	 1.00	 0.71	 0.19
HI3.0-3.9%	 		  1.00	 0.57
HI>4.0%	 			   1.00
AI0.0-1.9%	 0.11	 0.12	 0.11	 0.07
AI2.0-2.9%	 0.11	 0.23	 0.19	 0.03
AI3.0-3.9%	 0.04	 0.23	 0.27	 0.10
AI>4.0%	 −0.15	 0.00	 0.20	 0.40

AHI = apnea-hypopnea index, AI = apnea index, HI = hypopnea 
index
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pneas) with accompanying oxyhemoglobin desaturation less 
than 4% are associated with impaired and diabetic fasting glu-
cose levels. Using data from the multicenter Sleep Heart Health 
Study, the results of this study demonstrate that the prevalence 
of impaired glucose metabolism increased with the frequency 
of hypopneas that were defined using alternative and less strin-
gent oxyhemoglobin desaturation criteria, even after adjusting 
for measures of body composition, as well as demographic and 
other health-related factors such as age, sex, race, education, 
usual sleep duration, smoking status, alcohol consumption, and 
hypertension. Our results also suggest that sleep-related breath-
ing events with lesser degrees of hypoxemia are associated with 
metabolic impairment at higher event frequencies while a simi-
lar level of metabolic impairment is found at lower event fre-
quencies of more severe hypoxemia (Table 2). While not con-
clusive, the results reported herein raise the possibility that the 
impact of SDB events may be cumulative and that the adverse 
effects may accumulate even over less severe insults if they are 
recurrent and sustained.

The health-related consequences of intermittent and sus-
tained hypoxemia are now being increasingly recognized. El-
evations in fasting insulin levels have been demonstrated after 
continuous hypoxic exposure in several animal models with as 
little as 2 hours of exposure.23-25 Additional evidence from ex-
periments using murine models indicates that the derangements 

of HI3.0–3.9% were 2.25 (95% CI: 1.59–3.19), 1.46 (95% CI: 
1.05–2.01), and 1.70 (95% CI: 1.27–2.27) for the fourth, third, 
and second quartiles, respectively. The adjusted relative odds 
of impaired or diabetic fasting glucose values were also higher 
in the fourth (OR = 1.44, 95% CI: 1.09–1.90) and third (OR = 
1.29, 95% CI: 0.99–1.68) quartiles of HI2.0–2.9% compared to the 
first quartile. However, no association was observed between 
HI0.0–1.9% and fasting glycemia even when comparing the fourth 
and first quartiles (OR = 1.15, 95% CI: 0.90–1.47).

Although the primary results of this study have been reported 
in terms of the relative odds of being in a clinically defined risk 
category (i.e., impaired fasting glucose, overt diabetes) for ease 
of clinical interpretation, analysis of the data entirely preclud-
ing clinical cut-points found that mean fasting glucose levels 
significantly increased across quartiles of HI3.0–3.9% and HI2.0–2.9% 
even after full covariate adjustment (results not shown), indicat-
ing that these findings are not model-dependent. Finally, inclu-
sion of arousal frequency in each of the constructed multivari-
able models did not alter the strength of association between the 
HI at various hypoxemia thresholds and glycemic status.

DISCUSSION

The results of the current study provide evidence that breath-
ing abnormalities during sleep indexed by events (i.e., hypo-

Table 2—Adjusted Cumulative Odds Ratios* and Associated 95% Confidence Intervals (CI) for Impaired Fasting Glucose or Diabetes Across 
Quartiles of the Apnea-Hypopnea Index (AHI) Using Three Definitions of AHI Based on Associated Level of Oxyhemoglobin Desaturation 
(∆SaO2)

AHI (∆SaO2 criteria)	 AHI cut-points	 Impaired fasting	 Diabetic fasting	 Adjusted cumulative
		  (events/hr)	 glucose (%)	 glucose (%)	 odds ratio (95% CI)*
AHI (∆SaO2: ≥4.0%)
Model 1
	 I	 <1.44	 22.6	 4.4	 Reference
	 II	 1.44–4.60 	 31.5	 3.5	 1.06 (0.82–1.37)
	 III	 4.61–11.37	 35.5	 7.1	 1.32 (1.02–1.71)
	 IV	 ≥11.38	 42.0	 8.3	 1.35 (1.04–1.76)
AHI (∆SaO2: 3.0%–3.9%)
Model 2
	 I	 <2.25	 21.8	 3.2	 Reference
	 II	 2.25–4.37	 32.3	 5.3	 1.53 (1.13–2.06)
	 III	 4.38–7.33	 35.2	 6.3	 1.53 (1.10–2.15)
	 IV	 ≥7.34	 42.2	 8.4	 1.72 (1.20–2.48)
AHI (∆SaO2: 2.0%–2.9%)
Model 3
	 I	 <4.69	 25.4	 3.8	 Reference
	 II	 4.69–7.27	 30.0	 4.5	 0.93 (0.71–1.20)
	 III	 7.27–10.92	 34.2	 6.2	 1.18 (0.90–1.54)
	 IV	 ≥10.93	 42.0	 8.7	 1.41 (1.07–1.86)
AHI (∆SaO2: 0.0%–1.9%)
Model 4
	 I	 <5.48	 33.2	 5.0	 Reference
	 II	 5.48–9.04	 33.3	 5.3	 1.00 (0.79–1.27)
	 III	 9.04–14.69	 31.3	 6.5	 1.06 (0.83–1.34)
	 IV	 ≥14.70	 33.8	 6.5	 1.07 (0.84–1.37)

*Odds ratio are adjusted for sex, age (quartiles), race (categories), smoking status (former, current, or never), alcohol consumption (none, 
moderate, heavy), usual sleep duration categories (<6, 7, 8, >9), prevalent hypertension, neck circumference (quartiles), waist circumference 
(quartiles), body mass index (quartiles), and AHI (quartiles) based on apneas and hypopneas that are associated with more severe desaturation 
than the upper cut-point of predictor variable.
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combinant human IL-6 to healthy volunteers leads to higher 
fasting glucose levels in a dose dependent fashion.40 While the 
role for TNF-α in the development of an insulin resistant state 
remains to be defined, neutralization of TNF-α has been associ-
ated with improvements in insulin sensitivity in obese rats.41 
Finally, hypoxemia can increase sympathetic neural traffic42,43 
and the release of glucoregulatory neuroendocrine hormones 
such as cortisol44-46 that can result in hyperglycemia. Thus, the 
available evidence provides sound biologic plausibility for hy-
poxia as a modulator of glucose metabolism. Nonetheless, the 
putative causal pathways linking SDB, and in particular noc-
turnal hypoxemia, to altered glucose metabolism remains to be 
better defined.

A discussion of the mechanisms through which SDB may 
impair glucose metabolism must also consider the impact of 
SDB-related recurrent arousals form sleep. As previously noted, 
sleep fragmentation can elicit a set of pathophysiologic events 
that may play a role in the development and progression of im-
paired glucose metabolism. For example, increased sympathet-
ic and corticotropic activity triggered by frequent arousals from 
sleep may provide the milieu for altering glucose homeostasis. 
Activation of the sympathetic nervous system, a hallmark of 
SDB, is known to increase catecholamines, pancreatic secretion 
of glucagon, release of cortisol from the adrenals, and lipoly-
sis in adipose tissue, thus providing the resources for inducing 
a hyperglycemic state. Experimentally induced arousals from 

in glucose homeostasis with intermittent hypoxia may be most 
significant in the presence of obesity.26 Although experimental 
work on the sequelae associated with hypoxia in humans is lim-
ited, several investigators have shown that even brief periods of 
hypoxic exposure can have detrimental effects on glucose me-
tabolism. Conditions of altitude and hypobaric or normobaric 
hypoxia have been shown to consistently increase insulin levels, 
decrease insulin sensitivity, and worsen glucose tolerance.27-29 
Furthermore, patients with hypoxic pulmonary disease exhibit 
impaired glucose tolerance 30 that improves with supplemental 
oxygen therapy.31 Thus, there is sufficient experimental and ob-
servational evidence to implicate SDB related intermittent hy-
poxemia as one of the putative intermediates for altered glucose 
metabolism. The findings of the current study indicate that the 
even milder degrees of sleep related hypoxemia, if recurrent, 
may have an important role in the pathogenesis of metabolic 
dysfunction.

Repetitive cycles of hypoxemia and re-oxygenation in SDB 
can induce the release of reactive oxygen species and trigger an 
inflammatory response. Compared to normal subjects, patients 
with SDB have higher levels of plasma IL-6 and TNF-α which 
improve with continuous positive pressure therapy.32-35 IL-6 is a 
pleiotropic cytokine that is released by adipose tissue, endothe-
lial cells, and immune cells as a glycosylated protein.36 Higher 
serum levels of IL-6 positively correlate with insulin resistance 
and incident type 2 diabetes mellitus.37-39 Administration of re-

Table 3—Adjusted Cumulative Odds Ratios* and Associated 95% Confidence Intervals (CI) for Impaired Fasting Glucose or Diabetes Across 
Quartiles of the Hypopnea Index (HI) Using 3 Definitions of HI Based on Associated Level of Oxyhemoglobin Desaturation (∆SaO2)

HI (∆SaO2 criteria)	 HI cut-points	 Impaired fasting	 Diabetic fasting	 Adjusted cumulative
		  (events/hr)	 glucose (%)	 glucose (%)	 odds ratio (95% CI)*
HI (∆SaO2: ≥4.0%)
(Model 1)
	 I	 <1.08	 22.7	 4.2	 Reference
	 II	 1.08–3.27	 28.2	 4.1	 1.01 (0.78–1.30)
	 III	 3.28–7.56	 35.9	 6.2	 1.25 (0.96–1.61)
	 IV	 ≥7.57	 44.8	 8.7	 1.47 (1.13–1.92)
HI (∆SaO2: 3.0%–3.9%)
(Model 2)
	 I	 <1.99	 20.7	 3.2	 Reference
	 II	 1.99–3.85	 32.3	 5.3	 1.70 (1.27–2.27)
	 III	 3.86–6.43	 32.7	 5.6	 1.46 (1.05–2.01)
	 IV	 ≥6.44	 45.9	 9.2	 2.25 (1.59–3.19)
HI (∆SaO2: 2.0%–2.9%)
(Model 3)
	 I	 <4.46	 25.2	 3.3	 Reference
	 II	 4.46–6.78	 28.8	 4.9	 0.94 (0.72–1.22)
	 III	 6.79–10.32	 35.4	 6.5	 1.29 (0.99–1.68)
	 IV	 ≥10.33	 42.2	 8.4	 1.44 (1.09–1.90)
HI (∆SaO2: 0.0%–1.9%)
(Model 4)
	 I	 <5.21	 33.5	 4.7	 Reference
	 II	 5.21–8.65	 32.9	 5.9	 1.09 (0.85–1.38)
	 III	 8.66–13.99	 31.9	 6.0	 1.09 (0.86–1.39)
	 IV	 ≥14.00	 33.3	 6.6	 1.15 (0.90–1.47)

*Odds ratio are adjusted for sex, age(quartiles), race (categories), smoking status (former, current, or never), alcohol consumption (none, 
moderate, heavy), usual sleep duration categories (<6, 7, 8, >9), prevalent hypertension, neck circumference (quartiles), waist circumference 
(quartiles), body mass index (quartiles), and AHI (quartiles) based on apneas and hypopneas that are associated with more severe desaturation 
than the upper cut-point of predictor variable.
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