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Abstract

Background: Data, data everywhere. The diversity and magnitude of the data generated in the Life Sciences defies
automated articulation among complementary efforts. The additional need in this field for managing property and access
permissions compounds the difficulty very significantly. This is particularly the case when the integration involves multiple
domains and disciplines, even more so when it includes clinical and high throughput molecular data.

Methodology/Principal Findings: The emergence of Semantic Web technologies brings the promise of meaningful
interoperation between data and analysis resources. In this report we identify a core model for biomedical Knowledge
Engineering applications and demonstrate how this new technology can be used to weave a management model where
multiple intertwined data structures can be hosted and managed by multiple authorities in a distributed management
infrastructure. Specifically, the demonstration is performed by linking data sources associated with the Lung Cancer SPORE
awarded to The University of Texas MDAnderson Cancer Center at Houston and the Southwestern Medical Center at Dallas.
A software prototype, available with open source at www.s3db.org, was developed and its proposed design has been made
publicly available as an open source instrument for shared, distributed data management.

Conclusions/Significance: The Semantic Web technologies have the potential to addresses the need for distributed and
evolvable representations that are critical for systems Biology and translational biomedical research. As this technology is
incorporated into application development we can expect that both general purpose productivity software and domain
specific software installed on our personal computers will become increasingly integrated with the relevant remote
resources. In this scenario, the acquisition of a new dataset should automatically trigger the delegation of its analysis.
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Introduction

Data management and analysis for the life sciences
‘‘The laws of Nature are written in the language of

mathematics’’ famously said Galileo. However, in recent years

efforts to analyze the increasing amount and diversity of data in

the Life Sciences has been correspondingly constrained not so

much by our ability to read it as by the challenge of organizing it.

The urgency of this task and the reward of even partial success in

its accomplishment have caused the interoperability between

diverse digital representations to take center stage [1–5]. Presently,

for those in the Life Sciences enticed by Galileo’s pronouncement,

the effort of collecting data is no longer focused solely on field/

bench work. Instead, it often consists of painfully squeezing the

pieces of the systemic puzzle from the digital media where the raw

data is held hostage[6]. It is only then that a comprehensive

representation amenable to mathematical modeling really be-

comes available[7]. This is not a preoccupation exclusive to the

Life Sciences. Integration of software applications is also the

driving force behind new information management systems

architectures that seek to eliminate the boundaries to interoper-

ability between data and services. This preoccupation indeed
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underlies the emergence of service oriented architectures [8–11],

even more so in its event driven dynamic generalization [12]. It

also underlies the development of novel approaches to software

deployment (Figure 1) that juggle data structures between server

and client applications. Presently, a particularly popular design

pattern is the usage-centric Web 2.0 [13,14] which seeks a delicate

balance in the distribution of tasks between client and server in

order to diminish the perception of a distinction between local and

remote computation.

Semantic web technologies [3,15–21] represent the latest

installment of web technology development. In what is being

unimaginatively designated as Web 3.0[22,23], a software

development design pattern is proposed where the interoperability

boundaries between data structures, not just between the systems

that produce them, is set to disappear. The defining characteristic

of this environment is that one can retrieve data and information

by specifying their desired properties instead of explicitly

(syntactically) specifying their physical location. The desirability

of this design can clearly be seen in systems in which clinical

records are matched with high throughput molecular profiles, each

of which stem from very distinct environments and are often the

object of very different access management regulations.

Inadequacy of conventional systems for Translational
Research

On the one hand, high throughput molecular Biology core

facilities and improved medical record systems are able to

document individual data elements with increasing detail. On

the other hand, researchers producing the data and models that

critically advance the understanding of biological phenomena are

increasingly separated from their use by the specialization inherent

in each of these activities. Consequently, bridging between the

information systems of basic research and their clinical application

becomes a necessary foundation for any translational exploits of

new biomedical knowledge[3,24]. The alternative, using conven-

tional data representations where the data models cannot evolve,

typically requires the biomedical community to complement the

data representation with a clandestine and inefficient flurry of

datasets exchanged as spreadsheets through email.

Foundations for a novel solution
As others before us[5], we have argued previously for the use of

semantic web formats as the foundation for developing more flexible

and articulated data management and analytical bioinformatics

infrastructures[20]. A software prototype was then produced

following those technical specifications to provide a flexible web-

based data sharing environment within which a management model

can be identified[24]. In this third report we describe the resulting

core model supporting distributed and portable data representation

and management. In practice this translates into a small application

deployed in multiple locations rather than a large infrastructure at a

single central location. The open source prototype application

described here has been made public[25]. All deployments support a

common data management and analysis infrastructure with no

constraints on the actual data structures described.

A very brief history of data
The formatting of data sets as portable text mirrors the same

three stages described for web-based applications in Figure 1. As

described in Figure 2, data representation has been evolving from

tabular text formats (‘‘flat files’’), to self described hierarchical trees

of tags (extended markup languages, XML), and finally to the

subject-predicate-object triples of Resource Description Frame-

work (RDF)[26]. We have been active participants in these

transformations [24,27,28], and like many others concluded that

in order to bridge the fragmentation between distinct data

structures, we needed to break down the data structures

themselves[20], that is, to reduce the interoperable elements to

RDF triples[29]. In addition to its directed labeled graph nature,

RDF formats[29] have a second defining characteristic: each of

the three elements has a Uniform Resource Identifier (URI),

which, for the purposes of this very brief introduction, can be

thought as a unique locator capable of directing an application to

the desired content or service. It is also interesting to note that at

each level of this three-stage progression (Figure 2) we find data

elements that have ‘‘matured’’, that is, that present a stable

representation which remains useful to specialized tools. When this

happens we find that those elements remain convenient represen-

tations preserved whole within more fragmented formats. For

example, we find no advantages in breaking down mzXML[30]

representations of mass spectrometry based proteomics data.

Instead, these data structures are used as objects of regular RDF

triples. The mzXML proteomics data structure offers an

paradigmatic illustration of the evolution of ontologies as efforts

to standardize data formats[31]. It would be interesting to

understand if the lengthy effort headed by the Human Proteomics

Organization, HUPO, to integrate it reflects the difficulty to justify

reforming[32] a representation that remains useful[33].

The advancement towards a more abstract, more global and

more flexible representation of data is by no means unique to the

Life Sciences. However, because of the exceptional diversity of

Figure 1. Three generations of design patterns for web-based
applications. The original design (‘‘1.0’’) consists of collections of
hypertext documents that are syntactically (dashed lines) interoperable
(traversing between them by clicking on the links), regardless of the
domain content. The user centric web 2.0 applications use internal
representations of the external data structures. This representation is
asynchronously updated from the reference resources which are now
free to have a specialized interoperation between domain contents. An
example of this approach is that followed by AJAX-based interfaces.
Finally, the ongoing emergence of the semantic web promises to
produce service oriented systems that are semantically interoperable
such that the interface application reacts to domains of knowledge
specifically. At this level all applications tend to be web-interoperable
with peer-to-peer architectures complementing the client-server design
of w1.0 and w2.0.
doi:10.1371/journal.pone.0002946.g001
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that domain’s fluidity, the Life Sciences are where the Semantic

Web may find its most interesting challenge and as well, hopefully,

where it will find its most compelling validation[15].

Mathematics for data models
It has not been lost to the swelling ranks of Systems Biologists

that the reduction of data interoperability to the ternary

representation of relations [34] brings the topic solidly back to the

Galilean fold of Mathematics as a language. The reduction of data

structures to globally referenced dyadic relations (functions of two

variables), such as those of the Entity-Relationship (ER) model,

brings in rich feeds from the vein of Logic. In the process, and

beyond Galileo’s horizon, assigning a description logic value[35–

37] to some RDF predicates (for example, specifying that

something is part of or, on the contrary, is distinct from something

else) allows the definition of procedures. This further elaboration

of RDF has the potential to transform data management into an

application of knowledge engineering, and more specifically of

artificial intelligence (AI). This reclassification reflects the dilution

of the distinction between data management and data analysis that

is apparent even in an introduction as brief as this one. Another

clear indication of this transformation is that it re-ignites the

opposition between data-driven and rule-driven designs for

semantic web representation[38–42], a recurring topic in AI. It

is important to note that the management model proposed here is

orthogonal to that discussion. Its purpose is solely to enable the

distribution[43] of a semantic data management system that can

withstand changes in the domain of discourse, independently of

the rationale for the changes themselves.

Software engineering for Bioinformatics
This overview of modern trends in integrative data management is

as significant for what is covered as for what is missed – what

management models should be used to control the generation and

transformation of the data model? It is interesting to note that the

management models that associate access permissions with the

population of a data model have traditionally been the province of

software engineering. This may at first appear to be a reasonable

solution. Since instances of a data structure in conventional

databases are contained in a defined digital media, permission

management is an issue of access to the system itself. However, this

ceases to be the case with the semantic web RDF triples because they

weave data structures that can expand indefinitely between multiple

machines. Presently, the formalisms to manage data in the semantic

web realm are still in the early stages of development, notably by the

World Wide Web consortium (W3C) SKOS initiative (Simple

Knowledge Organization Systems). This initiative recently issued a

call[44] for user cases where good design criteria can be abstracted

and recommendations be issued on standard formats. As expect-

ed[15], the Life Sciences present some of the most convoluted user

cases in which a multitude of naı̈ve domain experts effectively need

to maintain data structures that are as diverse and fluid as the

experimental evidence they describe[24].

Materials and Methods

The most extreme combination of heterogeneous data struc-

tures and the need for very tight control of access is arguably found

in applications to Personalized Medicine, such as those emerging

for cancer treatment and prevention. At the Univ. Texas

MDAnderson Cancer Center at Houston and the Southwestern

Medical Center at Dallas we have deployed the S3DB semantic

web prototype to engage the community of translational

researchers of the University of Texas Lung Cancer SPORE

[45] in identifying a suitable management model. This exercise

involved over one hundred researchers and close to half a million

data entries, of clinical and molecular nature. Right at its onset

integrating access permissions in the definition of the data models

was identified as an absolute necessity by the participants, as

Figure 2. Evolution of formats for individual datasets. Hexagons, rectangles and small circles indicate data elements, respectively, attributes,
their values, and relations. First, flat file formats such as fasta or the GeneBank data model were proposed to collect attribute-value pairs about an
individual data entry. The use of tagging by extended markup languages (XML) allowed for the embedding of additional detail and further definition
of the nature of the hierarchical structure between data elements. More recently, the resource description framework (RDF) further generalized the
XML tree structure into that of a network where the relationship between resources (nodes) is a resource itself. Furthermore, the referencing of each
resource by a unique identifier (URI) implies that the data elements can be distributed between distinct documents or even locations.
doi:10.1371/journal.pone.0002946.g002
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anticipated by the SKOS group. As a consequence, a data driven

‘‘core model’’, S3DBcore, that accommodates management

specifications as part of data representation, was developed and

is described here. The software used is provided with open source

at www.s3db.org. Only open source tools were used in

development of this web-based web-service: PHP 5 was used for

server side programming and both MySQL and PostgreSQL were

tested as the relational backbone for PHP’s database abstraction

class. At the same location detailed documentation about S3DB’s

Application Programming Interface (API) is also provided.

Results

Units of representation
The most fundamental representation of data is that of

attribute-value (AV) pairs, for example, ,color,’’blue’’.. The

generic data management infrastructure proposed here can be

described as that of encapsulating AV pairs through the use of

another fundamental unit of representation, the Entity-Relation-

Entity model (ER), such as ,sky, has, color.. Each entity can

then be associated with one or more AV pairs using the entity-

attribute-value EAV model, for example, ,sky, color, ’’blue’’..

Fast forwarding three decades of computer science and knowledge

engineering and we reach the present day development of a

representation framework where each element of the triple is a

resource with a unique identifier, with the third element of the

triple having the option of being a literal, that is, of having an

actual value rather than a placeholder. This single sentence very

broadly describes the Resource Description Framework (RDF)

which is at the foundation of the ongoing development of the

Semantic Web[29], just like hypertext (HTML) was the enabling

format for the original Web. It is important to note that the

evolution of representation formats typically takes place through

generalization of the existing ones. For example, extended markup

language-based files (XML) are still text files, and RDF documents

are still XML structures (Figure 2). As noted earlier, this succession

is closely paralleled by refinements of software design patterns

(Figure 1). This reification process is often driven by the necessity

to maintain increasingly complex data at a simpler level of

representation where they remain intelligible for those who

generate and use the data. Accordingly, in the next section triple

relations will be weaved around the AV pair with that exact

purpose: to produce a core model that is simple enough to be

usable by naı̈ve users that need to interact with heterogeneous data

hosted in a variety of machines (Figure 3), yet sophisticated enough

to support automated implementation.

Weaving a distributed information management system
The objective of this exercise is to produce a data management

model that can be distributed through multiple deployments of the

Database Management Systems (DBMS) which implies a mecha-

nism for migration access permissions. Simultaneously, this model

should allow different domain experts to evolve their own data

models without compromising pre-existing data. Achieving these

Figure 3. Illustration of the desirable functionality: distinct users, with identities (solid icon) managed in distinct S3DB
deployments (circular compartments), which they control separately, share a distributed and overlapping data structure (arrows
between symbols) that they also manage independently: some data elements are shared (mixed color symbols) others are not. This
will require the identity verification to propagate between deployments peer-to-peer (P2P, dotted lines), including to deployments where neither
user maintains an identity (dotted circular compartment). This is in contrast with the conventional approach of having distinct users manage insular
deployments with permissions managed at the access point level.
doi:10.1371/journal.pone.0002946.g003
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two goals simultaneously can only be realized if the proposed

distributed system is composed of node applications that are not only

syntactically interoperable, but also semantically transparent. For a

discussion of the absolute need for evolvable data models in the Life

Sciences see [24]. That report is also where the DBMS prototype,

S3DB, was first introduced (version 1.0). Finally, the Application

Programming Interface (API) needs to support the semantic

interoperability in a way that spans multiple deployments

(Figure 3). The data model developed to achieve these goals is

described in Figure 4.

A Core data management model that is universal and
distributed

The directed labeled graph nature of RDF triples, coupled with

their reliance on unique identifiers (as URIs), enables data structures

to be scattered between multiple machines while permitting different

domains of discourse to use the same data elements differently.

However, those two characteristics alone do not address the

management issue: how to decide when, where and what can be

viewed, inserted, deleted and by whom. It is clear that the

conventional approach of dealing with permissions at the level of

access to the data store is not appropriate to the Life Sciences[5]

where multiple disciplines and facilities are contributing to a partially

overlapping representation of the system. It cannot be overstated

that this is particularly the case when the system is designed to host

clinical data. To solve this problem we have developed a core data

model where membership and permission can migrate with the data.

We have also developed a prototype application to support such a

distributed data management system (Figure 3), which we make

freely available with open source[25].

Discussion

The proposed core model is detailed in Figure 4 and will be now

discussed in more detail. This diagram is best understood

chronologically, starting with the very basic and nuclear collection

Figure 4. Core model developed for S3DB (supported by version 3.0 onwards). This diagram can be read starting from the most fundamental
data unit, the Attribute-Value pair (filled hexagonal and square symbols). Each element of the pair is object of two distinct triples, one describing the
domain of discourse, the Rules, and the other made of Statements where that domain is populated to instantiate relationships between entities. The latter
includes the actual Values. Surrounding these two nuclear collection of triples, is the resolution of Collection and its instantiation as Item that define the
relationship between the individual elements of Rules and Statements. The resulting structure is then organized in Projects in such a way that the domain
of discourse can nevertheless be shared with other Projects, in the same or in a distinct deployment of S3DB. Finally, a propagation of user permissions
(dashed line) is defined such that the distribution of the data structures can be traced. See text for a more detailed description.
doi:10.1371/journal.pone.0002946.g004
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of attribute-value pairs and then proceeding to their encapsulation

by three consecutive layers – the semantic schema, assignment of

membership and, finally the permission propagation.

Schema
The first layer of encapsulation is the definition and use of a

domain of discourse (elements in red in Figure 4). This was

achieved in typical RDF fashion by defining two sets of triples, one

defining a set of rules and the second, the statements, using them.

As discussed elsewhere [24], there are good reasons to equip those

who generate the data with the tools to define and manage their

own domains of knowledge. The ensuing incubation of experi-

mental ontologies was facilitated by an indexing scheme that

mimics the use of subject, verb, object in natural languages. This

indexing is achieved by recognizing Collections and the Items they

contain as elements of the two sets of nuclear triples (Rules and

Statements).

Organization
The second layer of formal encapsulation corresponds to the

assignment of membership. This process extends the designation of

Items in the previous level, by assigning the Collections that contain

them and Rules that relate them to Projects that are hosted by

individual Deployments of the prototype S3DB application. In the

diagram, the membership dependencies are accordingly labeled as

rdfs:subClassOf [29]. Note that memberships can also be established

with remote resources (dotted lines in Figure 4), that is, between

resources of distinct deployments. Defining remote memberships

presents little dificulty in the RDF format because each element of

the triple is refered to by a universal identifier (a URI), unique

accross deployments. On the other hand, managing permission to

access the remote content is a much harder problem, which we will

address by supporting migration of identity. The alternative solution

to migration of identities is migrating the contents along membership

lines. However, that was, unsurprisingly, found to be objectionable

by users with a special attention to privacy and confidentiality issues.

It would also present some logistic challenges for larger datasets. In

contrast, the definition of a temporary, portable, identity key or

token needed for migration of identity is typically incommensurably

smaller than the content it permits access.

Permissions
The final layer of encapsulation defines Users and Groups within

Deployments and controls their permissions to the data (blue in

Figure 4). As with rest of the core model, the identification of

proposed management of permissions was directed by user cases.

That exercise determined that user identities should be maintained

by specific Deployments of S3DB but also that they may be

temporarily propagated to other deployments. That solution,

illustrated in Figure 3, allows one application to request the

verification of an identity in a remote deployment, which then

verifies it in the identity’s source deployment and assigns it a

temporary key or token, say, for one hour. All that is propagated is

a unique alphanumeric string, the temporary token, paired with

the user’s URI. No other user information is exchanged. As a

consequence, for the remainder of the hour, the identification will

be asynchronously available in both deployments, which enables

the solution described in Figure 3, where a single interface can

manipulate multiple components of a large, distributed systems

level representation of the target data. Interestingly, because the

multiple deployments of S3DB are accessed independently by

multiple deployments of various applications, the mode of

syntactic interoperation is de facto peer-to-peer. The propagation

of permissions flows in the sequence indicated by the dashed blue

lines in Figure 4. When a permission level is not defined for a

resource, say for a Item, then it is borrowed from the parent entity,

in this example, from the corresponding Collection. When there is a

conflict then the most restrictive option is selected. For example a

conflict can arise for a Statement which inherits permissions from

both Rules and Collections. Another frequent example happens when

a user belongs to multiple groups with distinct permissions to a

common target resource.

Permission management is a particularly thorny issue in life

sciences applications because of the management of multiple data

provenances. Relying on distributed hosting of the complementary

data sources compounds the management of multiple permissions

even further because it also involves multiple permission

management systems. Finally, permission management is often

treated ad hoc by the management systems themselves where it is

resolved as access permission to the system as a whole rather than

being specified in the data representation. Because each source

often describes a specialized domain, it is guarded with

understandable zeal. We argue here that propagation of

permissions is the only practical solution to determine how much

information is to be revealed in different contexts. Consequently,

whereas the relationships between the 8 S3DB entities (oval

symbols in Figure 4) are defined using RDF schema[26] (RDFS),

and their tagging uses the well established Dublin Core[46], the

permission propagation layer is a novel component of the

proposed management model. In order to respond to widest

range of the user cases driving model identification, the

propagation was defined by three parameters, view, edit, and

use. Each of these parameters can have three values, 0, 1 or 2,

corresponding to, respectively, no permission, permission only on

entries submitted by the user, and permission on all entries of that

resource. Users and Groups (blue entities in Figure 4) can have these

three types of permissions on Projects, Collections, Rules, Items and

Statements. Among those five entities, additional permissions can be

issued, for example, a Project may have specific permissions on

Collections and Rules. Collections may have further permissions on

their Items. The same reasoning, in reverse, establishes what should

happen when permission is not specifically defined for a given

entity. For example, for a Statement the permission would be

inherited from the parent entities, Item and Rule. If those two

entities did not specify specific permissions for the target statement,

then those are searched upstream (Figure 4) until reaching the

Project or even Deployment level. According to this mechanism, the

conventional role of a system administrator corresponds to a user

with permissions 222 at Deployment level. It is worth recalling that

propagation of permissions between data elements in distinct

S3DB deployments happens through the sharing the membership

in external Collections and Rules (dotted lines), not through

extending the permission inheritance beyond the local deploy-

ment. This is not a behavior explicitly imposed on the distributed

deployment; it emerges naturally from the fact that Rule sharing

specifies a permission which, remote or local, interrupts the

permission inheritance. In practice both the user of the interface

and the programmer using the API can ignore the intricacies of

this process, which was identified to be the intuitive, sensible,

propagation of permissions that we found naı̈ve users to expect in

user-case exercises.

Portability
This discussion would not be complete without unveiling some

defining technical details about how portability is addressed by this

design. So far we have been loosely equating ‘‘unique identifiers’’

with the use of Uniform Resource Identifiers (URI). More

specifically, the right hand side of Figure 4 includes a list of eight

Integrative Bioinformatics
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Figure 5. Snapshots of interfaces using S3DB’s API (Application Programming Interface). These applications exemplify why the semantic
web designs can be particularly effective at enabling generic tools to assist users in exploring data documenting very specific and very complex
relationships. Snapshot A was taken from S3DB’s web interface, which is included in the downloadable package[25]. This interface was developed to
assist in managing the database model and, therefore, is centered on the visualization and manipulation of the domain of discourse, its Collections of
Items and Rules defining the documentation of their relations. The application depicted on snapshots B–D describe a document management tool
S3DBdoc, freely available as a Bioinformatics Station module (see Figure 6). The navigation is performed starting from the Project (C), then to the
Collection (B) and finally to the editing of the Statements about an Item (D). The snapshot B illustrates an intermediate step in the navigation where
the list of Items (in this case samples assayed by tissue arrays, for which there is clinical information about the donor) is being trimmed according to
the properties of a distant entity, Age at Diagnosis, which is a property of the Clinical Information Collection associated with the sample that
originated the array results. This interaction would have been difficult and computationally intensive to manage using a relational architecture. The
RDF formatted query result produced by the API was also visualized using a commercial tool, Sentient Knowledge Explorer (IO-Informatics Inc),
shown in snapshot E, and by Welkin, developed by the digital inter-operability SIMILE project at the Massachusetts Institute of Technology. See text
for discussion of graphic representations by these tools. To protect patient confidentiality some values in snapshots B and D are scrambled and
numeric sample and patient identifiers elsewhere are altered.
doi:10.1371/journal.pone.0002946.g005
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types of locally unique identifiers that can be assigned to the same

number of entities that define the core model. It is easy to see how

this indexing can be made globally unique by concatenating them

with the Deployment’s ID, itself unique, for example using its URL.

Indeed this is what is supported by the accompanying prototype

software, with a generalizing twist with very significant conse-

quences: Did can either be the deployment address or anything

that indicates what that address is. For example, it can indicate an

HTML document or even an entry in a database where this

address is specified. More interestingly, it can also be a simple

alphanumeric code that is maintained at www.s3db.org in

association with the actual URL of the target deployment. The

flexible global indexing achieved by either scenario allows the

manipulation of entire databases management systems as portable

data structures. It also allows for novel management solutions

through manipulation of the DBMS logical structure. For

example, defining a Did as ‘localhost’ would have the effect of

severing all logical connections to any usage outside that of the

server machine. None of these more fanciful configurations were

validated with the Lung Cancer SPORE user community even if

they are fully supported by the accompanying prototype.

Nevertheless, its possibility enables some interesting scenarios for

data management and indeed for Knowledge Engineering.

User Interfaces
The ultimate test for a data management model is the

intuitiveness of what it communicates through the user inter-

face[47,48]. The structure of S3DBcore offers some useful

guidelines in this regard. The experimental values are represented

in a combination of Items and Statements (Figure 4). There are two

routes to that endpoint. One possibility is to take the document

management approach of navigating from Projects to Collections,

then to their Items and finally to the Statements. This is the scenario

that will suit data centric activities such as querying and updating

existing data or inserting new data. A real, working example of

how that interface may look is depicted in Figure 5-B, which

details an intermediate step between selecting a Project (Figure 5-B),

and identifying and manipulating an individual entry made of

multiple statements about an Item (Fig. 5-D). The mechanism used

to distribute rich graphics applications and their interoperation

with S3DB is detailed in Figure 6. Another possibility is to navigate

from the Project to the collection of Rules, most likely represented as

a directed labeled graph network, and then browse the Statements as

an instantiation of the Rules, exemplified by another snapshot of a

working application, Figure 5-A. This application is the standard

web-based user interface distributed with S3DB package[25].

Unlike the bookkeeping approach of the document centric model

(Figure 5-B), the rule centric view (Figure 5-A) is most suitable to

investigate the relationship between different parts of the domain

of knowledge and to incubate[24] a more comprehensive and

exact version of the ontology. However, and this may be the most

relevant point, since S3DB’s API returns query results as RDF, any

RDF browser can be used to explore it. This point is illustrated in

figures 5E and F where, respectively, a commercial semantic web

knowledge explorer (Sentient, IO-Informatics Inc) and Welkin, a

popular RDF browser developed at the Massachusetts Institute of

Technology, are use to visualize the same S3DB Lung Cancer

project depicted in Figs. 5A and B. Whereas the former is designed as

a tool for knowledge discovery, the latter offers a global view of

distributed data structures. The value of the core model described in

Figure 4 as a management template for individual data elements will

be apparent upon close inspection of Fig. 5E. The different colors,

automatically set by Sentient KE, distinguish the core model (pink),

where permission management takes place, from the instantiation of

their entities, in yellow. These two layers describe the context for

individual entries specifying the age at surgery of 5 patients. The

same display includes access to molecular work on tumor samples, in

this case using tissue arrays and DNA extracts. The distinct domains

are therefore integrated in an interoperable framework in spite of the

fact that they are maintained, and regularly edited, by different

communities of researchers. As a consequence, the database can

evolve with the diversification of data gathering methodologies and

with the advancement in understanding the underlying processes. In

figure 5F it can be seen that MIT’s Welkin RDF visualizer easily

distinguished the query results as the interplay of 4 collections of 380

Statements about 41 Items from 5 Collections related by 40 Rules. For

comparison, see Figure 5E where one of its Statements is labeled

(describing that Age of patient providing pathology sample #90 with

Clinical Information #I3646 is 90 years old), along with the parent

entities. For examples of other Statements about the same Item see

Fig. 5D. For examples of other statements of the same nature (about

the same domain), see 4 statements listed at the bottom-right of

Figure 5E.

Conclusion
The Semantic Web[15] technologies have the potential to

addresses the need for distributed and evolvable representations

that are critical for systems Biology and translational biomedical

research. As this technology is incorporated into application

development we can expect that both general purpose productivity

software and domain specific software installed on our personal

computers will become increasingly integrated with the relevant

remote resources. In this scenario, the acquisition of a new dataset

should automatically trigger the delegation of its analysis. The

relevance of this achievement becomes very clear when we note that

what prevents a new microarray result from being of immediate use

to the experimental Biologist acquiring it is not the computational

capability of the experimentalist’s machine. Biostatisticians do not

Figure 6. Prototype infrastructure for integrated data man-
agement and analysis being tested by the Univ. Texas Lung
cancer SPORE. The system is based on two components, a network of
universal semantic database servers and a code distribution server that
delivers applications in response to the use of ontology. Four distinct
user cases are represented, a–d, which rely on a combination of
download of interpreted code (green arrows) or direct access to web-
based graphic user interfaces or web-based API (blue arrows, in the
latter case using Representational State Transfer, REST). The dotted lines
represent regular updating of the application, propagating improve-
ments in the application code.
doi:10.1371/journal.pone.0002946.g006
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necessarily have more powerful machines than molecular Biologists.

Moreover, in neither case is high end computation expected to be

performed in the client machine[8]. Rather, once data gathering and

data analysis applications become semantically interoperable, at the

very least, those who acquire the illustrative microarray data should

expect their own machines to automatically trigger its sensible

analysis by background subtraction, normalization and basic

multivariate exploratory analysis such as dimensionality reduction

and clustering. As a consequence, the quantitative scientist’s role can

be focused on defining the sensibility of alternative contexts of data

generation.

The consequences of semantic integration are just as advanta-

geous for those dedicated to data analysis. Statistical analysts

typically spend the majority of their time parsing raw datasets

rather than assessing the reasonableness of alternative analytical

routes. This contrasts with the critical need to validate any given

analysis by comparing results produced by alternative configura-

tions applied to independent experimental evidence. It is this final

step that ultimately determines the sensibility of the data analysis

procedures triggered by the acquisition of data. In summary, any

data management and analysis system that will scale for systems

level analysis in the Life Sciences has to be semantically

interoperable if automated validation is to be attainable.

In this report, we have demonstrated the design of a semantic

web data model, S3DBcore, capable of delivering the desired

features of distribution and evolvability. This solution relies on

RDF triples, the language developed to enable the semantic web in

the same fashion that HTML was developed to enable the original

web. However, collections of subject-predicte-object triples do not

establish a management model by themselves. That exercise

requires the encapsulation of the data within two additional layers,

one confining membership and another permitting access. The

effort of identifying management models for information systems

has conventionally been the property of technology deployment.

This is not feasible when the challenge is scaled to the level of

complexity and distribution of Systems Biology. This report

describes such a working management model and the authors also

make its prototype deployment freely available with open source.

In conclusion, a distributed integrated data management and

analysis system might look like the prototype infrastructure

described in Figure 6 which is based on a semantic database

backbone coupled to a code distribution server reacting to the

domain of discourse being used.
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