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Demography is central to both ecology and evolution, and char-
acterizing the feedback between ecology and evolution is critical
for understanding organisms’ life histories and how these might
evolve through time. Here, we show how, by combining a range of
theoretical approaches with the statistical analysis of individually
structured databases, accurate prediction of life history decisions is
possible in natural density-regulated populations undergoing
large fluctuations in demographic rates from year to year. Our
predictions are remarkably accurate and statistically well defined.
In addition, we show that the predicted trait values are evolution-
arily and convergence stable and that protected polymorphisms
are possible.

adaptive dynamics � Carlina vulgaris � Carduus nutans � coexistence �
relative nonlinearity of competition

Ecology and evolution are intimately related as patterns of
births and deaths determine fitness, the currency of evolu-

tion, and also how populations change through time (1, 2).
Understanding the feedback between evolutionary and ecolog-
ical processes is therefore of fundamental importance when
attempting to predict life history traits and how these might vary
through time. The feedback is made explicit in the study of
adaptive dynamics (3) in which the current population state
determines which novel mutants can invade. By explicitly deriv-
ing selection pressures from ongoing observable ecological
interactions, this approach allows the quantitative prediction of
life histories, but it has rarely been applied to natural popula-
tions. Here we show how combining the adaptive dynamics
framework with recent advances in the modeling of size-
structured populations and long-term individually structured
field studies allows quantitative prediction of life history
phenomena.

At the heart of an adaptive dynamics model is an ecological
model describing the performance of individuals and how they
interact. In addition to this, some form of tradeoff function is
required to describe the costs and benefits of different life
history tactics. Given this information, we can then use tools
from adaptive dynamics to predict the traits organisms should
possess, in the terminology of adaptive dynamics these are
evolutionarily singular strategies, and determine the stability
properties of the predicted trait values. In particular we are
interested in whether the predicted trait values are: (i) evolu-
tionarily stable, which would then render the population immune
to invasion by new mutants; and (ii) convergence stable, which
ensures the gradual approach to the predicted trait values
through a series of mutations (3). In addition to this, we can also
look for the existence of protected polymorphisms about the
predicted trait values, i.e., combinations of trait values that can
coexist.

Given the power of the adaptive dynamics approach, it is
perhaps surprising that there have been very few attempts to
apply these techniques to natural populations (2, 4, 5). The
difficulty lies in constructing a realistic ecological model de-
scribing how individuals interact, characterizing the relevant

tradeoffs, and estimating appropriate parameters. Monocarpic
plants, in which reproduction is fatal, are ideal systems for the
application of these ideas because: (i) long-term individually
structured datasets are available and these allow the perfor-
mance of individuals to be quantified (6–8); (ii) individual
performance (the probability of survival, growth rate, seed
production, etc.) is size-dependent and size is straightforward to
measure in the field (7, 8); (iii) density dependence acts primarily
through seedling establishment (7–9); and (iv) reproduction is
fatal and so the cost of reproduction is known. There is also
known to be a genetic basis to size at flowering (10, 11).

Here we use data from Carlina vulgaris and Carduus nutans,
two monocarpic perennials native to Europe, which reproduce
only by seed. Carlina has no seed bank (7) whereas Carduus has
a long-lived seed bank (12). In both studies individuals were
followed through time allowing individual variation in growth,
survival, and reproduction to be quantified (6–9). In both species
demographic rates are size-dependent and vary from year to year
(see Materials and Methods). For monocarpic plants a key trait
is the flowering strategy, which describes how the probability of
flowering varies with plant size. Specifically we describe this by
using a logistic regression,

pf�x� �
exp��0 � � sx�

1 � exp��0 � � sx�

where �0 and �s are the fitted intercept and slope, respectively,
and x is plant size on a log scale. For both species, the probability
of flowering varies gradually with plant size reflecting some
constraint or else a decision to flower made some time between
censuses. We therefore imposed gradual size dependence by
fixing �s at its estimated value and characterized the flowering
strategy using �0 (see ref. 13 for further discussion). Decreasing
�0 reduces the probability of flowering, and consequently the
average size at flowering increases.

In a constant environment, characterizing the best strategy is
straightforward because a plant should delay reproduction until
seed production this year equals that expected next year (14, 15).
Once this size or age is attained, individuals should flower. In the
field, however, things are much more complicated as a result of
spatial and temporal stochasticity in the environment. The
long-term evolutionary outcome will reflect these complexities.
Therefore, to construct a realistic ecological model we used
density-dependent stochastic integral projection models, be-
cause these allow: (i) efficient parameterization of the size-
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dependent demography using a series of regression models; and
2) temporal variation and density dependence in demographic
rates; see Materials and Methods for a description of the models.

With a parameterized ecological model, we can then use tools
from stochastic demography to characterize the fitness of rare
mutant flowering strategies. This is given by the long-term
stochastic growth rate of the mutant’s f lowering strategy in an
environment set by the resident flowering strategy (16). In this
way we capture how flowering strategies affect each other’s
fitness and can describe patterns of invasibility between different
strategies. To summarize this information we use pairwise
invasibility plots (pips) a graphical tool from adaptive dynamics
(3). Construction of the pips is described in Materials and
Methods.

Results
The pips for both species are shown in Fig. 1 a and c. Areas where
the strategy on the y axis can invade the strategy on the x axis are
shown in white; where it cannot and will go extinct are shaded.
On the diagonal crossing the graph from bottom left to top right,
the resident’s strategy is equal to the invaders’, and therefore
both have zero stochastic growth rates. The intersection of this
diagonal with the line separating areas with positive and negative
growth rates represents the singular strategy, x*. Several con-
clusions about the evolutionary dynamics emerge: for both
species: (i) the vertical line through x* is entirely in the shaded
area, indicating that the singular strategy, x*, cannot be invaded,
and is therefore evolutionarily stable (ES); (ii) the area imme-
diately above the main diagonal to the left, and below the main
diagonal to the right is white, indicating that any resident strategy
can be invaded by a mutant closer to the singular strategy, x*,
which therefore has convergence stability; (iii) the horizontal
line through x* is entirely within the white area, indicating that
x* can always spread through the population when initially rare;
(iv) protected polymorphisms occur when two strategies x and y

can mutually invade each other. This set of strategies can be
identified by taking the mirror image of the pip along its main
diagonal and then overlaying the two graphs. Sets of strategies
forming protected polymorphisms occur in areas of overlapping
positive stochastic growth rates. For both species, this set is
non-zero indicating that protected polymorphisms can occur
(Fig. 1 b and d). In all cases, the polymorphic strategies consist
of a small and large flowering strategy, which lie on opposite
sides of the ES strategy. The small f lowering strategy can be
thought of as a high-risk strategy that allows the population to
increase rapidly when conditions are favorable, but as a result of
its short generation time cannot effectively average stochastic
variation in the environment. The large flowering strategy in
contrast is a low-risk strategy with the opposite properties.
Combining the information in the pips (Fig. 1 a and c) with the
geometry of the coexistence boundaries (Fig. 1 b and d) allows
the evolutionary stability of the protected polymorphisms to be
determined (17). For both species the singular strategy is
convergence stable and the angle between the two coexistence
boundaries is narrower than 90°; so the protected polymorphisms
lack evolutionary stability. Note, for both species the singular
strategy is very close to that observed in the field.

To explore whether the results are robust to estimation errors,
we performed a bootstrapped analysis; see Materials and Meth-
ods for details. This analysis demonstrates that the singularities
are well defined and not significantly different from those
observed in the field (Fig. 2 a and b). In both species, the area
of coexistence was greater than zero for all of the bootstrapped
parameter sets (Fig. 2 c and d) indicating that uncertainty in
parameter estimation does not affect the qualitative prediction
that protected polymorphisms are possible. For both species, we
have little quantitative information on the probabilities of seed
germination (g) and death (d) and so a sensitivity analysis was
performed; see Materials and Methods for details. Increasing the
probability of seed germination increased the range of strategies
that can form protected polymorphisms (Fig. 3). Increasing the
probability of seed death, d, had a similar although smaller
effect. These effects are a consequence of increasing germina-
tion (or seed death) resulting in less efficient averaging of the
environment so making the small, high-risk flowering strategy

Fig. 1. Graphical analysis of evolutionary dynamics. (a and c) Flowering
strategy pairwise invasibility plots for Carlina (a) and Carduus (c). Shaded areas
represent unsuccessful invasion of the resident strategy (x axis) by an invading
strategy (y axis). The solid point and horizontal and vertical lines indicate the
observed flowering intercepts and their 95% confidence intervals. (b and d)
Graphs obtained by overlaying the pip with its mirror image. Areas in white
represent areas of coexistence.

Singularity value

F
re

qu
en

cy

-16 -14 -12 -10 -8

0
5

10
15 a

Singularity value

F
re

qu
en

cy

-10 -8 -6 -4 -2

0
5

10
15

20
25 b

Coexistence area

F
re

qu
en

cy

0.02 0.04 0.06 0.08

0
2

4
6

8
10

c

Coexistence area

F
re

qu
en

cy

0.00 0.02 0.04 0.06

0
5

10
15

d

Fig. 2. Robustness analysis. (a and b) Distribution of the evolutionary
singularities obtained from the 50 bootstrapped parameter combinations in
Carlina (a) and Carduus (b). Dashed lines are the estimated intercepts from
statistical models fitted to the data. (c and d ) Distribution of the area of
coexistence obtained for each bootstrapped parameter combination for
Carlina (c) and Carduus (d).
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more risky and allowing a wider range of large, low-risk flow-
ering strategies to coexist.

Discussion
The existence of protected polymorphisms about the predicted
flowering strategy was completely unexpected and provides a
possible mechanism contributing to the maintenance of genetic
diversity, and indeed, several selection experiments have dem-
onstrated that natural populations harbor substantial genetic
variance for flowering size (10, 11). However, it must be em-
phasized that the protected polymorphisms observed in Carduus
and Carlina are not ES; flowering strategies intermediate be-
tween strategies forming a protected polymorphism can invade
and so in the long-term genetic variability is unlikely to be
maintained by this mechanism unless genetic constraints prevent
the populations achieving the singular strategy. This might occur
if some genes, for example, the FRIGIDA gene important in
vernalization (18), which influences flowering, have large effects
making it difficult to produce intermediate flowering sizes. In
this situation, it may be impossible to produce precisely the ES
strategy, and so alternative strategies on either side of the ES
strategy will persist.

These results can also be viewed from a species perspective
and illustrate how different species might coexist solely as a
result of differences in their f lowering strategy. The mechanism
underpinning the coexistence of different strategies or species is
the relative nonlinearity of competition, which occurs because
the nonlinear responses to the shared competitive conditions
(i.e., density dependence in seed recruitment) are sufficiently
different (19).

We suspect that in many field systems where traits that
influence population growth rate are affected by fluctuations in
the environment, coexistence of different life history strategies
may occur via relative nonlinearity of competition. In particular,
it seems likely that the patterns of protected polymorphisms
observed in Carlina and Carduus will be observed in other
systems with similar life histories and for other traits that

influence the rates at which populations respond to fluctuations
in the environment. For example, in a theoretical study, Ellner
(20) showed that coexistence of high- and low-germination
strategies was possible because of relative nonlinearity of com-
petition; preliminary analysis suggests this also occurs in Car-
duus, which has a long-lived seed bank. Ellner also conjectured
that similar results would be found for seed size, growth-survival
trade-offs, and reproductive effort. In each case, the strategy
capable of rapid population growth under favorable conditions
(i.e., small seeded, rapid growth, high reproductive effort)
suffers most when conditions are unfavorable. The results pre-
sented here are in agreement with this conjecture.

The construction of pips using stochastic, density-dependent
structured population models may seem like a rather compli-
cated way to study evolution. However, this approach allows us
to quantify how changes in trait values influence fitness taking
the entire life cycle into account, in a realistic environment that
includes both the effects of density dependence and temporal
variation in demography. Simple optimization approaches as-
sume evolution maximizes some measure of population growth;
however, even in a constant environment, this may not be valid
(21). In variable environments, models with and without density
dependence can produce diametrically opposite predictions over
large areas of biologically reasonable parameter values (22),
clearly indicating the importance of density dependence when
attempting to make predictions about natural systems. Other
approaches such as selection analysis (23) are much simpler but
unfortunately may make erroneous predictions, especially for
traits such as flowering size, where there is likely to be an
‘‘invisible fraction’’ problem (24), i.e., mortality selection that
occurs before the trait is expressed. For example, in most
monocarpic plants, including Carlina and Carduus, seed produc-
tion, a measure of lifetime reproductive success, increases with
flowering size (15). A selection analysis of f lowering size would
therefore conclude there is substantial directional selection of
flowering size, even when, as in Carlina and Carduus, there is
none.

Our approach is, of course, only as good as the data used to
parameterize the models, and in particular, if important selec-
tion pressures are not included in the model then it is unlikely to
allow accurate quantitative prediction. Conversely one cannot
assume that because a model produces reasonable predictions
that all of the important processes have been included. For
example different selection pressures might cancel each other’s
effects (8, 9) making the predictions of a simple model accurate
even when important selection pressures have been ignored.

Our results indicate that prediction of trait values and char-
acterization of their evolutionary stability properties is possible
in the field, through careful analysis of long-term individually
structured data and the application of new modeling techniques.
Furthermore, we have shown that our results are statistically
robust. Extending this approach to other systems with more
complex life histories and patterns of density dependence will be
challenging, as will the integration of ideas and methods from
quantitative genetics. However, increasing dialogue between
ecologists and evolutionary biologists will allow the ecological
theatre in which evolution is played out to be understood and
should bring these challenges within reach.

Materials and Methods
Here, we describe application of adaptive dynamics techniques to evolution-
ary dynamics of flowering size for two field systems: namely Carduus nutans,
and Carlina vulgaris. To construct the pairwise invasibility plots (pips) central
to adaptive dynamics, we use stochastic density-dependent integral projec-
tion models (IPM) to describe the dynamics of a resident population (9, 25) and
characterize the fitness of rare mutant strategies using the stochastic growth
rate (9, 16, 25).
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Fig. 3. Relative area of coexistence of different flowering intercepts �0 for
Carlina for different values of the germination (g), and seed death probability,
d � 0.01 (full line), d � 0.05 (dashed line), d � 0.1 (dotted line), and d � 0.2
(dashed-dotted line). Relative area was taken as the ratio of the area of
coexistence divided by the total area of parameter space considered (Fig. 1).
Coexistence increases with g and marginally increases with d. Irregularities are
due to numerical rounding. The same pattern is obtained for Carduus (data
not shown).
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Population Biology of Carlina vulgaris and Carduus nutans. To parameterize the
IPMs, we need to describe how demography (growth, survival, fecundity)
varies with plant size. In Carlina, size was measured as length of the longest
leaf, whereas in Carduus, we used the mean radius (based on two measure-
ments), and this was converted to rosette area, assuming the plants are
circular. Annual changes in log plant size were described by a regression model
of the form y � ag � bgx where x and y are plant size this year and next year,
and ag and bg are the fitted intercept and slope, respectively. To explore yearly
fluctuations in growth, we fitted ‘‘year’’ as a fixed effect; allowing ag to vary
between years. The year effect was significant for both species (P � 0.01), and
the effect of log size (bg) was significant for Carlina (P � 0.001) but not for
Carduus (P � 0.05). For both species, survival probability, s(x), was modeled as
a logistic regression, including year as a fixed effect to capture yearly variation
in survival not related to plant size. In both species, the year effects were
significant (P � 0.01) and survival increased significantly with log size for both
species (P � 0.01). Flowering probability was modeled by using a logistic
regression and increased significantly with log size for both species (P � 0.01),
the fitted model was

pf�x� �
exp��0 � � sx�

1 � exp��0 � � sx�
, [1]

where �0 is the intercept, �s the size-specific slope, and x a measure of plant
size depending on the species. For both species the probability of flowering
varies gradually with plant size reflecting some constraint or else a decision to
flower made some time between censuses. We therefore imposed gradual size
dependence by fixing �s at its estimated value and characterized the flowering
strategy by using �0 (see ref. 13 for further discussion). Seed production was
described by using allometric relationships of the form seeds � exp(A � Bx) for
both species. The distribution of seedling size, fd(y), on a log scale for both
species was well-described by a normal distribution.

In Carlina, total yearly seed production was highly variable but showed no
relationship with the number of seedling recruits that appeared in monitored
quadrats the following year (7). In Carduus there was no relationship between
seed bank density in quadrats and the observed number of seedling recruits
(9). Recruitment is therefore limited by the availability of microsites allowing
successful seedling establishment, i.e., density dependence operates through
seedling establishment.

No data were available to parameterize germination and seed death from
these populations; however extensive field studies indicate that Carlina does
not form a seed bank, whereas Carduus forms a long-lived seed bank. In
keeping with this, we set the probability of seed death, d, equal to 0.2 in both
species and the probability of germination, g, to 0.2 in Carduus and 0.99 in
Carlina.

Structured Dynamics in a Stochastic Environment. To describe the dynamics of
a resident flowering strategy and estimate the fitness of invading strategies
we used IPMs parameterized from field data (25, 26). In these models the size
distribution of the established plant population is described by a density
function n(x, t), where n(x, t)dx is the number of individuals in the size range
[x, x � dx], and an additional state variable S(t) is used to track the number of
seeds in the seed bank in year t. The model takes the form,

S�t � 1� � �1 � d��1 � g�S�t� � �1 � g� �
�

f ����x�n�x, t� dx

n� y, t � 1� � g�1 � d�pe�t�fd�y�S�t�

� ��p����y, x� � gpe�t�f����y, x�	n�x, t�dx, [2]

where d and g are the probability of seed death and germination, respectively,
f(�)(x) the expected seed production of size x plants, p(�)(y, x) describes the
growth of individuals from size x to size y, f(�)(y, x) is the expected number of
recruits of size y produced by size x plants before the action of density
dependence, pe(t) is the probability of seedling establishment, and fd(y) is the
size distribution of seedling recruits. � defines the type of environment, in
terms of growth, survival, and recruitment, experienced in year t, and f(�)(x),
p(�)(y, x), and f(�)(y, x) are referred to collectively as the kernel functions. Details
of how the kernel functions are related to the fitted demographic functions,
described above, are given in Table 1. The seed bank equation is made up of
two parts: those seeds that remain in the seed bank, plus the seeds produced
this year, which remain dormant. The established plant population, n(y, t � 1),
is made up of three parts: plants that establish from the seed bank, established
plants that survive and grow, plus seeds produced this year that germinate and
establish; see ref. 9 for details of model construction.

The yearly variation in the model was generated by sampling indepen-
dently from the n 
 1 different year types, � (� � 1, 2, 3, . . . n 
 1) corre-
sponding to the n years observed in the data, i.e., each year type is associated
with the temporally varying parameter vector, including the year specific
survival and growth intercepts, and the number of recruits observed the
following year, denoted R(� � 1). The observed number of recruits is treated
as a parameter in the models because density dependence acts on recruitment
(see below), and we assume the number of microsites suitable for recruitment
varies from year to year. These parameters can be summarized by a vector
�(�) � (m0(�), ag(�), R(� � 1)). By using �(�) and the temporally invariant
parameters defined in Table 1 we can construct the kernel functions for a year
t corresponding to year type �. Because seedling establishment is density
dependent, the probability a seed establishes is given by

pe�t� �
R�� � 1�

g��1 � d�S�t� � �
�

f����x�n�x, t� dx	

, [3]

where the term on the bottom is the total number of seeds that germinate. To
simulate the model, we draw � independently at random and then construct
the kernel functions and calculate pe(t). By using these we can then use
standard numerical methods to solve Eq. 2, see (9) Appendix B for details. This
corresponds to the matrix selection approach to constructing stochastic matrix
models (27) and can be thought of as a nonparametric bootstrap from the set
of estimated kernel functions.

Fitness of Invading Genotypes. To construct the pips we need to calculate the
fitness of rare mutant flowering strategies. In a variable environment, such as
we have for both species, fitness is determined by the invasion exponent, �,
defined by

� � lim
t3�

t
1 � ln�Nt�	 , [4]

Table 1. Summary of the functions used to construct the integral projection models.

Kernel function Component functions Fitted functions Variable parameter

p(y, x) � s(x)�1 
 pf(x)	g(y, x) Survival logit(s) � m0 � msx m0

Flowering logit(pf) � �0 � �sx
Growth g(y, x) � N(ag � bgx, �g

2) ag

f(x) � s(x)pf(x)fn(x) Seed production fn � exp(A � Bx)
f(y, x) � fd(y)f(x) Seedling size fd � N(	sd,�sd

2)

The probabilities of survival (s) and flowering (pf) are described by logistic regressions, and for survival, the intercept (m0) varies from
year to year. Growth is described by a linear regression y �ag � bgx and so is conditional on size this year, x; size next year, y, follows
a normal distribution with mean ag � bgx and variance �g

2. The variance (�g
2) is estimated from scatter about the regression line. The

intercept of the fitted relationship (ag) varies from year to year and only in Carlina is growth size-dependent (bg ¹ 0). The distribution
of seedling size ( fd) follows a normal distribution with mean and variance estimated from the data. Parameter values are given in refs.
7 and 9.
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where Nt is the total population size at time t (16). The number � is equal to
the stochastic growth rate of an invading mutant population in the environ-
ment set by the resident, i.e., � � log 
s and so if � is negative the invader will
go extinct. We assume the invader and resident experience the same sequence
of environments and only differ in their flowering strategy, and so all seed-
lings compete on an equal footing for the available microsites. To estimate �

we assume the invader is rare and so its density has no effect on its population
growth rate. We then generate a time series (5000 years) for the resident
population consisting of the year type �1, �2, . . . , �5000 and the probability of
establishment (pe

R(1), pe
R(2), . . . , pe

R(5000)). This defines the environment in
which we estimate �. We calculate � by iterating the model for the invader,
using the resident time series for � and replacing pe(t) in Eq. 2 by pe

R(t). The
maximum likelihood estimator of the invader growth rate, �, is then given by

�̂ �
ln�Nt� � ln�N1�

t � 1
, [5]

where Nt is the total population size at time t. Ellner and Rees (25) prove that
for a wide class of stochastic integral projection models, including those
considered here, the stochastic growth rate exists and may be computed by
using Eq. 5.

Construction of the Pips. To obtain the pips we estimated the stochastic growth
rate for rare invading flowering strategies by using a wide range of invading
and resident strategies (3). For each resident flowering strategy, �0, we
calculated the stochastic growth rate of rare alternative flowering strategies.
This allows us to characterize the invader-resident combinations where inva-

sion is possible. Pips assume the population is either asexual, or made up of
completely selfing diploids. However, Turelli et al. (28) have shown that
conditions for protected polymorphisms in a haploid system extend to a
system of diploids with complete or incomplete dominance.

Capturing Uncertainty in Parameter Estimates. To verify that results are robust
to uncertainty in parameter estimation, we bootstrapped the data. Specifi-
cally, for regressions incorporating year effects (growth and survival) we
sampled the data within years with replacement. For regressions without year
effects (seed allometries, probability of flowering) and the mean and variance
of seedling size we sampled the entire data set with replacement. In both
species we sampled the number of seedling recruits observed per quadrat in
each year with replacement, and took the total to obtain the bootstrapped
estimate of recruits observed in that year. We then reran the analysis to obtain
pips for each bootstrapped parameter set. For each species we generated 50
bootstrapped datasets.

To explore whether the presence of protected polymorphisms depended
on the assumed probabilities of germination and death we constructed
pips by using a range of probabilities of seed death (d � {0.01, 0.05, 0.1, 0.2})
and germination (g � {0.1, 0.2, . . . , 0.9, 0.99}) and calculated the area of
coexistence.
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