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An explicitly polarizable force field based exclusively on quantum
data is applied to calculations of relative binding affinities of
ligands to proteins. Five ligands, differing by replacement of an
atom or functional group, in complexes with three serine pro-
teases—trypsin, thrombin, and urokinase-type plasminogen acti-
vator—with available experimental binding data are used as test
systems. A special protocol of thermodynamic integration was
developed and used to provide sufficiently low levels of systematic
error along with high numerical efficiency and statistical stability.
The calculated results are in excellent quantitative (rmsd � 1.0
kcal/mol) and qualitative (R2 � 0.90) agreement with experimental
data. The potential of the methodology to explain the observed
differences in the ligand affinities is also demonstrated.

molecular dynamics simulation � serine protease � drug design

The ability to accurately calculate the binding affinity, or equiv-
alently binding free energy, of a ligand for a protein would be

highly useful in the field of drug design for lead selection and
optimization. Although screening and docking methods (1, 2) have
been successful in filtering large chemical databases, they cannot
provide definitive calculations of binding energy because of the
simplified scoring functions used and the restricted number of states
tested. Hence, more accurate calculations have generally been
based on molecular mechanics models (3, 4). In these methods the
required properties of statistical ensembles are determined by
molecular dynamical or Monte Carlo simulations of systems by
using a physically grounded description of interactions between
particles. The theoretical thermodynamic foundation of such meth-
ods is clear, simple, and well established (5).

Despite these advantages, as well as initial optimism and long
development, only a limited number of successful simulations have
been published during the past decade (e.g., refs. 6–14; for review
of early results, see refs. 3 and 4). In part, this is explained by many
methodological difficulties that must be overcome, especially in
accurate and efficient description of long-range interactions and
adequate sampling of the conformational space. Major efforts
devoted to solving these problems have resulted both in partial
success (15, 16) and the recognition of some principal limitations.
Notably, several theoretically based techniques have been devel-
oped, such as umbrella sampling, the concept of potential of mean
force, and artificial restraining potentials, which restrict or decom-
pose the conformational space and simplify adequate sampling
(e.g., 11, 17–20).

The other principal problem has been the quality of the model
potentials or force fields (FFs) used to describe atom–atom inter-
actions. The most questionable point in this respect is the role of
nonadditive effects, particularly electronic polarizability. Widely
used FFs such as MMFF (21), AMBER (22), OPLS (23),
CHARMM (24), and GROMOS (25) are not explicitly polarizable
but rather include polarizability implicitly in their parameterization.
Under restricted simulation conditions such an approach can be
justified, as confirmed by reasonable solvation free energies calcu-
lated with the aid of these FFs (see, e.g., ref. 26). However, data on
solvation of small molecules and properties of uniform organic
liquids are, in fact, the major part of the training set used for

parameterization of such FFs. Thus, it is unreasonable to expect
that predictions from a nonpolarizable FF will be equally (and
universally) accurate in other environments, for example, in a very
nonuniform protein-active site. For this reason polarizable versions
of the mentioned FFs are currently under active development
(27–29), but their applications to macromolecules of biological
importance have been very limited (30, 31).

In this article, we present the methodology and results of
calculation of relative binding affinities in protein–ligand systems
with our general-purpose quantum mechanical polarizable force
field (QMPFF) (32–36). QMPFF is fitted exclusively to ab initio
quantum mechanical (QM) data on molecular properties and
intermolecular interactions without reference to condensed phase
data. The key point of the parameterization procedure is the
separate fitting of the four basic components of intermolecular
energy in dimers (electrostatics, exchange, induction, and disper-
sion) to the corresponding QM counterparts, which is essential for
FF transferability. Here, we use the functional form of the latest
QMPFF version, QMPFF3, which has been shown (34–36) to be
successful at describing properties of biologically relevant organic
molecules and their interactions in gas, liquid, and solid phases. It
should be stressed that in the present simulations the FF was used
‘‘as is’’ and without any tuning of the parameters and/or functional
form to the solvent–protein–ligand system being studied.

To assess the application of QMPFF3 to binding free-energy
calculations, we use the data of Katz et al. (37, 38) on affinities
of a set of related ligands (Fig. 1) to three serine proteases
frequently considered as therapeutic targets: trypsin, thrombin, and
urokinase-type plasminogen activator (uPA). The data have several
features that make it challenging and valuable as a test set. First, the
molecules are related to a real drug design problem, the search for
new uPA inhibitors. Second, although the protein sites are similar
and are relatively rigid (37–39), the binding affinities of the ligands
are diverse. Some ligands have similar affinities despite being more
structurally disparate, whereas other affinities are very different
despite small structural modifications in the respective ligands, and
moreover, the affinity differences change significantly from protein
to protein. Third, some modifications in the ligands have unusual
consequences, for example, change from an imidazole to indole
scaffold leads to an increase in affinity contrary to expectations
(38). Fourth, the data are sufficiently detailed to allow their
step-by-step comparison with calculations for cycling mutations,
which provide a useful check on errors. Finally, crystallographic
structures of almost all of the complexes are known, so the accuracy
of ligand–protein conformations obtained in the course of the
simulations can be verified.
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Materials and Methods
To determine relative binding affinities ��GA3B � �GB � �GA,
where �GA and �GB are the binding free energies of ligands A and
B to the protein, we use the traditional thermodynamical cycle (3,
4), which expresses the desired difference as the difference of the
free-energy changes resulting from two alchemical mutations be-
tween the ligands made in the bound state and in solution,
respectively: ��GA3B � ��GA3B

site � ��GA3B
water. To calculate mu-

tation free-energy differences, we applied the method of Multi-
configuration Thermodynamic Integration (41). Because of a num-
ber of the method refinements, as described in detail in the first six
sections of SI Text, we found 1 ns of productive MD trajectory per
mutation to be sufficient.

Supporting Information. For further details, see SI Text, Figs.
S1–S27, and Tables S1–S5.

Results
The inhibitors considered in the present work are shown in Fig. 1.
To reveal the role of the FF, we performed the same simulations
under the same protocol but with two FFs: our QMPFF3 (36) and
MMFF (21), the Merck molecular mechanics FF. We chose MMFF
for comparison because, like QMPFF, it is based on ab initio
quantum data, although the underlying model is less physical in that
it does not account for electron polarization, the diffuse character
of the electron clouds, atomic quadrupoles, and so on. Both FFs
were implemented in our in-house molecular dynamics package
AlgoMD (33). Calculated results for free-energy differences asso-
ciated with each mutation in water and each protein site by using
both FFs are presented in Table 1. In this and other tables, the
standard statistical errors are shown in parentheses in units of the
last digit(s). More detailed information on the results is given in
supporting information (SI) Text, dH/d� Graphs for All Simulated
Systems.

The level of statistical error depends on the length of the
trajectory used for the data accumulation and the number of
intermediate steps, and therefore determines the computational
costs of the simulation. In our investigation we took the view that
striving for statistical errors much smaller than those expected from
the FF is pointless. That decision implies a choice of the protocol
parameters providing a level of statistical error of �0.3–0.7 kcal/
mol depending on the severity of the mutation.

It should be noted that effects of a single mutation presented in
Table 1 cannot be directly compared in different FFs. In any FF the

energy of a molecule is defined only with respect to some reference
state, so the energy usually has no physical meaning. For this reason
the effect of a single mutation also has no physical meaning. In
contrast, when calculating the difference between the effects of a
mutation in two environments, say in vacuo and in water or in water
and a protein site as presented in Table 2, the contribution of these
reference constants cancels and the result can be compared with
experimental solvation or binding energies or predictions of an-
other FF.

In simulations with QMPFF3, all components of the system—
protein, water, and ligand—are polarizable. Determination of
atomic parameters was done within the general QMPFF3 scheme
(36); no special or modified parameters were used for the simula-
tions presented here. Below we discuss some features of the results
in more detail with primary attention to the QMPFF3 results.

Stability of the Results. To be sure that the results are statistically
stable we performed a special analysis described in detail in SI Text,
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Fig. 1. Inhibitors of serine proteases from ref. 37 and 38 used as a test system. Arrows show simulated mutations. Note that four of the mutations form a closed
cycle, 13 23 33 43 1. The PDB codes (40) of the corresponding complexes with trypsin, thrombin, and uPA are also shown if they exist. According to ref.
37, the 1GJC complex contains ligand 1, but the 1GJC files from the PDB contain ligand 4. Thus, the complex of uPA with ligand 1 was obtained by substituting
the corresponding nitrogen of ligand 4 by a CH group without change of coordinates of any other atoms. Ligands are shown as they are in complexes: with
deprotonated phenyl oxygen (38). In solution the ligands will be largely protonated at this site as shown for ligand 4 in the upper right corner.

Table 1. Free-energy changes for simulated mutations (kcal/mol)

Mutation Trypsin Thrombin uPA Water*

Results of simulations by using QMPFF3 force field

132 5.3 (3) 8.1 (3) 4.0 (2) 3.2 (2)
231 �5.6 (3) �7.7 (2)
233 1.9 (3) 0.7 (3) 2.2 (3) 0.2 (4)
334 �6.8 (3) �7.9 (4) �5.0 (2) �4.6 (2)
433 7.9 (2)
431 �0.7 (3) �1.2 (3) �0.8 (2) 1.3 (3)
135† �4.0 (4) �5.7 (5) �4.3 (4) �7.7 (5)

Results of simulations by using MMFF force field

132 �3.2 (3) 2.6 (3) �1.8 (2) �4.3 (2)
233 �6.2 (2) �7.4 (2) �5.1 (2) �5.7 (2)
334 3.6 (2) �1.0 (3) 2.0 (2) 5.0 (2)
433 �3.9 (2)
431 5.7 (2) 5.5 (2) 4.5 (2) 5.0 (2)
135† �28.3 (4) �36.4 (9) �27.8 (4) �28.9 (4)

*With account for correction on different charge states of the ligands in
complexes and in solution as described in SI Text, Thermodynamical Cycle
Approach When Ligands Are in Different Charged States in Different
Environments.

†With account for NVT-NPT correction as described in SI Text, Introduction of
NVT-NPT Correction.
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Analysis of Statistical Stability of the Results. In particular, the protein
structure was followed by the dynamics of rmsd of ‘‘site’’ atoms (the
amino acids having any atom within 8 Å of the ligand and left
unfixed; see SI Text, Overview of Methods, for details). In simula-
tions with both FFs, after a pronounced increase of rmsd as a result
of the thermalization, the rmsd then approached a stable plateau,
with approximately the same plateau level reached no matter which
structure was used to start, crystallographic or molecular dynamics
(MD) equilibrated. This means that the observed rmsd represents
only the thermal fluctuations rather than some structural change of
the site.

Statistical saturation of calculated dG/d� and �G values was
checked by using the block-averaging approach (42) and tracing the
dynamics of running and sliding averages. The analysis revealed the
presence of a time-varying component with characteristic time of
�10–20 ps and variation amplitude of up to 10 kcal/mol in dG/d�
and �1–2 kcal/mol in �G. Reliable averaging of this component
generally requires at least 50–100 ps of data accumulation, justi-
fying our choice of the length of the productive trajectory per each
intermediate mutation step (100 ps).

In general, our analysis demonstrated statistical reliability of all
simulations performed with QMPFF3. The MMFF results were
also statistically reliable whenever the ligand pose was stable.
However, in thrombin, MMFF simulations starting from the crys-
tallographic pose have difficulty reproducing the configurations of
ligands 1–4 in the region of the S1� site. The terminal aryl group of
these ligands situated initially in this site is pushed into solvent
where it moves freely without finding a stable configuration. It is
interesting that this instability is avoided if one starts the simulation
from the protein structure prepared as described in SI Text,
Overview of Methods, using the QMPFF3 force field, because
QMPFF3 is able to flip a protein lysine (LYS60F) to make a

favorable interaction with the ligand aryl group. Thus, QMPFF3
finds a stable configuration that also preserves stability in MMFF,
whereas MMFF cannot find this configuration itself. Here, we give
only the stable result for MMFF simulations of the thrombin
complexes. Other cases are discussed in detail in SI Text, Analysis
of Statistical Stability of the Results.

The statistical stability does not guarantee that the results are free
from systematic errors resulting from incomplete sampling of the
thermodynamical state. Such errors could manifest themselves by
variations of results when initiating calculations from slightly dif-
ferent configurations. There are no general ways to characterize
and reveal these errors, but here we consider two approaches to
reveal possible systematic effects. First, we compare the ligand
poses predicted by the simulation with crystallographic ones. If the
pose is not reproduced, any quantitative agreement of binding free
energy with experiment should be considered as coincidental.
Mutations 13 2 and 33 4 are the most demanding in this respect,
because the initial and final ligand poses in these cases are sub-
stantially different. Fig. 2 shows that QMPFF almost perfectly
predicts the pose of ligand 2 via simulation of the 13 2 mutation
starting from the pose of ligand 1. (Also the pose of ligand 1 is well
reproduced starting from the pose of ligand 2 in the simulation of
the back mutation 2 3 1. The situation with 3 3 4 and 4 3 3
mutations is similar.)

Second, we measure how close the free-energy difference is to
zero, as calculated over a cycle of mutations simulated indepen-
dently. The simplest type of such a cycle is the forward-and-back
mutation. We performed several simulations of this type (see Table
1) and in all cases the difference of the results was within one
standard deviation. A stricter test of this type of stability is the
convergence of the cycle over four consecutive mutations (Fig. 1).
The total duration of all of the runs used in the four mutations

Fig. 2. Comparison of the simulated pose of the ligand 2 (thick sticks and balls) as obtained by mutation in trypsin (a), thrombin (b), and uPA (c) starting from
ligand 1 (thin magenta sticks) with the crystallographic pose of ligand 2 (balls and sticks). A structural water present in the complex with ligand 1 and displaced
by ligand 2 is also shown (at upper left of the ligands). The atom color code is: gray, carbon; white, hydrogen; blue, nitrogen; red, oxygen; green, chlorine.

Table 2. Binding free-energy differences for all simulated mutations (kcal/mol)

FF/Mutation 132 233 334 431 135

Trypsin

QMPFF3 2.1 (4) 1.7 (5) �2.2 (4) �2.0 (5) 3.7 (7)
MMFF 1.1 (4) �0.5 (2) �1.4 (3) 0.7 (3) 0.6 (6)
exp.* 1.3 1.2 �1.4 �1.1 2.4

Thrombin

QMPFF3 4.9 (4) 0.5 (5) �3.3 (5) �2.5 (5) 2.0 (7)
MMFF 6.9 (4) �1.7 (3) �6.0 (4) 0.5 (3) �7.5 (11)
exp.* 2.8, 3.1† 0.2, 0.4† �1.4, �1.8† �1.6, �1.7† 1.6

uPA

QMPFF3 0.8 (3) 2.0 (5) �0.4 (3) �2.1 (4) 3.4 (7)
MMFF 2.5 (3) 0.6 (3) �3.0 (3) �0.5 (3) 1.1 (6)
exp.* �1.0, 0.1† 2.5, 3.2† �0.4, �0.9† �1.1, �2.4† 2.2

*Values according to ref. 38.
†Values according to ref. 37.

10380 � www.pnas.org�cgi�doi�10.1073�pnas.0803847105 Khoruzhii et al.

http://www.pnas.org/cgi/data/0803847105/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/0803847105/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/0803847105/DCSupplemental/Supplemental_PDF#nameddest=STXT


composing the cycle is �5 ns. The mutations together can be
considered as one complex mutation simulated in a long run (0.5
ns in each intermediate point) with a known exact theoretical result
of zero �G. For this reason it is reasonable to expect that systematic
effects from the long-scale dynamics and imperfect sampling in any
single calculation will show up as imperfect cycle closure. For all
three proteins and water, the difference of calculated closure of the
cycles (i.e., �G132 � �G233 � �G334 � �G431) from ideal (i.e.,
0) was within statistical error (Table 3).

Finally, we analyzed the stability of our methodology with respect
to parameters of the calculation protocol that are somewhat
arbitrary. Comparing results obtained with different values of these
parameters, we found typical differences in �G values of �0.1
kcal/mol, which is obviously within the expected accuracy of the
method (for details see SI Text, dH/d� Graphs for All Simulated
Systems).

Relative Binding Affinities. Calculated results for differences of
binding free energies or equivalently relative binding affinities are
compiled in Table 2 and in graphical form in Fig. 3. Statistical
characteristics of the relation between calculations and experiment
(37, 38) are shown in Table 4. As can be seen, the results obtained
with the QMPFF3 FF are well correlated with the experimental
data. The correlation is approximately the same for each protein
and for the whole set of data. Thus, the results essentially reproduce
all qualitative changes of the affinities of different ligands to
different proteins.

The slope of the straight-line fit of relative binding affinities
calculated with QMPFF3 to those determined experimentally is
�1.4 and not the value of 1.0 expected for perfect agreement. This
is caused mainly by a small but somewhat uniform overestimation
of the binding energy difference for 1 3 2 mutations and similar
underestimation for 33 4 mutations. According to our analysis, the
major reason for this may be a simplified description of torsions in
the initial version of the QMPFF3 force field used here. Because of
the high-level description of nonbonded interactions, we found it

possible to obtain good accuracy of torsion energy profiles with
torsion parameters dependent only on the types of the two central
atoms. Clearly such a simplified representation cannot be perfect.
In particular, we find that the QMPFF3 parameters underestimate
the barrier for coplanar positioning of the amidine group (terminal
NH2-C-NH2) with the adjacent aromatic ring by �1–1.5 kcal/mol in
comparison with the ab initio quantum value. [The latter was
calculated by using our in-house AlgoQMT software (43, 44) at the
MP2/TZ* level, the same level as in QM calculations used for the
QMPFF3 parameterization in ref. 36.] In-site poses of ligands 2 and
3 correspond to a favorable relative orientation of amidine group
and aromatic ring, whereas the in-site poses for ligands 1 and 4 are
unfavorable with coplanarity of these groups. In water the amidine
group is in a favorable conformation in all of the ligands. Thus,
correction for the underestimation of the torsional barrier by
QMPFF3 will subtract �1–1.5 kcal/mol from the 13 2 mutation
and similarly add this value to the 33 4 mutation, in accordance
with the observed tendency.

Over all of the comparisons, the rmsd from experiment is 1.0
kcal/mol, which is about the accuracy of the experimental data
themselves, as can be deduced from comparison of results from refs.
37 and 38 (see Table 2). This level of accuracy provides the
possibility to rationalize the differences in the effect of the same
mutation for different proteins (see next section) and potentially
help in the ligand optimization process.

Results obtained with the MMFF FF show almost no correlation
with experiment for the whole set, as well as for the separate
proteins, although some of the values almost precisely match the
experimental values. Thus, it can be argued that in the later case
some kind of the error cancellation is occurring. It should be
stressed that we use identical protocols for both FFs, and the details
of the methodology do not obviously favor one FF over the other.
Moreover, as shown in the preceding section, the methodology
provides stable results in all respects. Thus, the problems found with
the MMFF force field are not caused by any methodological errors,
such as inadequate sampling, but apparently represent the inade-
quacies of the force field itself.

Role of the Structural Water. A potential advantage of calculating
relative binding affinities via simulation, as opposed to experiment,
in addition to determining whether a proposed modification to a
ligand will be favorable before going to the trouble of synthesizing
it, is the ability of simulation to explain the mechanism of affinity
changes. Understanding the mechanism may in turn suggest mod-
ifications that produce further improvement. To exemplify the
possibilities of our method in this respect, we discuss below the
reasons for different relative binding affinities of ligand 1 and ligand
2 for different proteins.

Mutations 1 3 2 (as well as 4 3 3) in all proteins result in
expulsion of a molecule of structural water. This molecule is
situated in the complexes with ligands 1 and 4 deep inside the
protein pocket and bridging the ligand with the protein site. (To

Table 4. Mean deviations (�dev	), rmsd values (kcal/mol), and
correlation coefficients between groups of results and
corresponding experimental data

Trypsin Thrombin uPA Trypsin � uPA All

QMPFF

�dev	 0.2 0.0 0.3 0.2
rmsd 0.9 1.2 0.9 1.0
R2 0.998 0.98 0.81 0.90

MMFF

�dev	 �0.4 �1.9 �0.3 �0.3 �0.9
rmsd 1.4 5.0 2.1 1.8 3.2
R2 0.23 0.17 0.11 0.13 0.12

Table 3. Clockwise closure of mutation cycle shown
in Fig. 1 (kcal/mol)

FF Trypsin Thrombin uPA Water

QMPFF3 �0.3 (6) �0.3 (6) 0.4 (5) 0.1 (5)
MMFF 0.1 (4) �0.3 (5) �0.4 (4) 0.0 (3)

Errors here and in Table 2 are obtained from errors of the individual
mutation steps given in Table 1 considered as statistically independent.
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Fig. 3. Comparison of experimental and calculated relative binding affini-
ties. (Left, filled points) Results obtained with the QMPFF3 force field. (Right,
open points) Results obtained with the MMFF force field. The solid line is the
diagonal x � y, the horizontal bars show the statistical errors, the vertical bars
show the experimental uncertainty derived from the data of refs. 36 and 37.
Dashed lines show linear fits derived considering the calculated points as a
function of the experimental ones (long dashes), and vice versa (short dashes).
Agreement of the two fits for QMPFF3 demonstrates a high level of correla-
tion in this case (see Table 4). Similarly, low correlation for MMFF is indicated
by the substantial discrepancy in slope of the fits.
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obtain an idea of the water position, see water 619 in the 1O2G pdb
complex.) In complexes with ligands 2 and 3 the water molecule is
thermodynamically unfavorable and is not observed in the crystal-
lographic structures. However, in the simulations starting from the
complex with ligand 1 (or 4) the water molecule, being highly
buried, cannot actually reach the bulk water because of limited
simulation time. Indeed, because the water molecule is situated
between the protein and ligand, its passage to the bulk requires
detachment of the whole ligand. Calculations of binding energy
from simulations that sample multiple bindings and detachments of
the ligand are far beyond present computational capabilities. To
overcome this problem, we have developed a special treatment of
the structural water molecule, including it in the general mutation
scheme. Theory and details of the approach are presented in the SI
Text, Protocol of Simulation of Mutations Resulting in Structural
Water Expulsion.

It should be noted that the decision to conduct the mutations
13 2 (and 43 3) with expulsion of the structural water should not
be based only on the respective x-ray structures, which might be
wrong in this respect or might not be available in other cases. The
analysis presented below demonstrates how this decision could be
made a priori and exemplifies the contribution of bridging water
molecules to overall binding affinity.

Partial effects of a mutation, that is, the effects caused by separate
atomic groups or interactions, depend on a particular alchemical
path and for this reason are not meaningful (3). To avoid this
difficulty we subdivide the discussed mutations into two steps, each
of which has a physical meaning. In the first step the molecule of
structural water is decoupled from the complex and moved to the
bulk water without changing the ligand. The complex of ligand 1
partially ‘‘dried’’ in this way is completely stable and represents one
of its physically possible states. If the cost of the water expulsion is
negative, the dried complex is more favorable and would be the
major state of the complex in solution. However, a positive effect
means an increase of the stability of the bound complex by a water
bridge between the protein and ligand. Note that such a calculation
with the modified ligand (in this case, ligand 2) can be done to
decide whether the water should be removed as a result of the
mutation. Alternatively one can compare which mutation—with or
without water expulsion—would be more favorable. Indeed, we
used this approach to validate the necessity for water displacement,
and it could also be used in the case of mutated ligands for which
the x-ray structure of the complex is unknown.

As the second step, the mutation from ligand 1 to ligand 2 in the
dried complex is simulated to estimate the role of the intermolec-
ular interactions in the affinity differences. The results of the two
steps are presented in Table 5. Note that the combined effect of the
drying step and the mutation step is equivalent to the effect of the
single mutation from ligand 1 to ligand 2 including water displace-
ment presented in Table 2. In this way, we incidentally obtained
another closed mutation cycle (13 1dried3 2dried3 1) to further
verify the stability of the methodology.

It is clear that the mutation from ligand 1 to ligand 2, viewed as
a separate process taking place in the dried site, is slightly favorable
and has approximately the same effect for all proteins. In contrast,

the water displacement is unfavorable in all cases and very sensitive
to the particular protein environment. Hence, the water is respon-
sible for almost all of the difference in binding affinity between
proteins observed experimentally. This interpretation is not trivial
and differs from that made based only on the experimental results
and difference of the structures of the S1 sites (37).

The results of this section exemplify the influence of structural
water on ligand binding, which has been increasingly discussed
in the literature (e.g., ref. 45), and underlines the critical
necessity of accounting for this effect to reproduce relative binding
affinities accurately. More generally, the analysis demonstrates the
value of the presented simulations for correct interpretation of
experimental data, which is of major importance for effective ligand
optimization.

Discussion and Conclusion. It is surprisingly difficult to assess the
current state of the art in protein–ligand free-energy calculations.
Unquestionably, a number of impressively accurate results have
been published for both relative and more recently absolute binding
free-energy calculations (6–14), with a general trend toward in-
creased ambition and accuracy as computer power and theoretical
understanding have increased. However, it is equally true that
binding affinity calculations by simulation methods are not widely
used in the pharmaceutical industry (3) and have not yet had the
same impact that simpler docking and scoring methods and general
molecular modeling have had. In part, the methods used by
academic experts and a few companies may be too time-consuming
and specialized for the average industrial computational chemist.
Moreover, a widespread feeling that the excellent results obtained
in certain cases may not be generally replicable in other cases,
especially when the experimental answer is not known beforehand
to guide method development, may also be contributing to the slow
uptake of the technology into everyday drug design practice.

In this work we have investigated whether a polarizable, trans-
ferable FF fitted exclusively to high-level QM data is advantageous
in providing adequate results in MD simulations of protein–ligand
binding. For this purpose we applied our methodology to complexes
with serine proteases, which relate to an actual drug design prob-
lem. However, these proteins are known to have relatively rigid sites
that reduce convergence and sampling problems as well as other
issues of the MD protocol and allow us to concentrate on the role
of the FF. The recently introduced ab initio force field QMPFF3 was
used, because it had demonstrated high accuracy and transferability
in crystal and liquid simulations (34–36) as a result of its strong
physical basis and explicit polarizability. It is important to repeat
that QMPFF3 was fitted only to QM data for a set of small
molecules and their multimers and was in no way tuned for the
systems being analyzed here.

The results presented in this article, in particular, comparison
with the widely used molecular mechanics force field MMFF, show
that a transferable quantum mechanically modeled FF such as
QMPFF3 can indeed be important for accurate free-energy calcu-
lations. In the system analyzed, the calculated relative binding
affinities using QMPFF3 are in good quantitative agreement with
experiments for the whole dataset. They provide correct qualitative
conclusions on the relative tightness of the protein–ligand com-
plexes and are able to predict subtle differences between effects of
the same mutation for different proteins. Moreover, analysis of the
remaining deviations of the current results from experiment sug-
gests that further improvement is possible by refining the torsion
component of our FF to more closely reproduce ab initio QM
results, which will be done in future versions of QMPFF (36).

As mentioned above MMFF was chosen for comparison because,
like QMPFF, it was parameterized from ab initio QM data. Of
course, it could be argued that MMFF may not be the best possible
nonpolarizable FF and the results obtained by using some other FF
might be better. However, we would like to stress again that all
MMFF predictions (except for one outlying point for thrombin) are

Table 5. Relative binding free energies in mutations involving
structural water replacement obtained with QMPFF3
force field (kcal/mol)

Mutation Trypsin Thrombin uPA

131dryed 3.4 (3) 4.8 (3) 0.5 (2)
1dryed32dryed �0.8 (3) �0.2 (3) 0.0 (3)
132dryed* 2.1 (4) 4.9 (3) 0.8 (3)
cycle closure 0.5 (6) �0.3 (5) �0.3 (5)

*Results for 132dryed are taken from Table 2.
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in a reasonable range and some are even perfect: it is only by
considering the whole set that one can conclude that the FF is
inadequate in the system studied. Such a situation represents exactly
what can be expected if a FF is accurate in systems close to those
used for its training but is restricted in its transferability to other
systems. This idea is supported by a more detailed consideration of
the results obtained in ref. 13. In this investigation, the authors used
the CHARMM force field fitted specially for protein simulations.
Nevertheless, although all calculated absolute affinities presented in
table 3 of ref. 13 are in the experimental range, a considerable
achievement, they still say nothing regarding the relative tightness
of the protein–ligand complexes, because the computational-
experimental correlation coefficient is R2 � 0.0063.

To allow the use of a polarizable FF with reasonable computa-
tional efficiency, a special mutation protocol based on Multicon-
figuration Thermodynamic Integration was applied. Appropriate
choice of the alchemical path (the manner of parameter switching)
allows simulation of the whole mutation in one step with only a few
windows for the alchemical parameter. To make the protein
calculations computationally effective, a suitable method of periph-
ery fixation was developed and validated. For the same reason, a
cutoff approach was used while we attempted to avoid known
artifacts by appropriate discharging of the protein periphery. By
combining these and other ideas (all methods used are described in
detail in SI Text), and despite the use of a more computationally

intensive polarizable FF, it was possible to simulate each mutation
in only 49–60 h (9–15 h with MMFF) on a cluster of 10 micro-
processors, avoiding any need for a supercomputer or even for a
large cluster. Although we attempted to minimize the impact of
the necessary approximations on accuracy by extensive validation,
as described in the SI Text, further testing of our methodology
and FF is highly desirable, by applying it to a diverse set of
protein–ligand complexes including those involving larger al-
chemical transformations.

The good quantitative agreement with experiment seen here and
the ability to distinguish differences in mutation effects for different
ligands and different proteins provides a possibility to use our
methodology to rationalize the ligand optimization procedure. An
example of such a rationalization was given by demonstrating the
role of structural water replacement in some of the considered
mutations. Understanding why certain alterations increase binding
affinity is critical in suggesting new ligands, which can then be tested
by MD simulation before chemical synthesis. Thus, the current
investigation is a step toward the realization of the long-standing
hope to use modern free-energy calculation methodologies in
practical drug design.
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