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It is widely believed that protecting health care facilities against
outbreaks of pandemic influenza requires pharmaceutical re-
sources such as antivirals and vaccines. However, early in a pan-
demic, vaccines will not likely be available and antivirals will
probably be of limited supply. The containment of pandemic
influenza within acute-care hospitals anywhere is problematic
because of open connections with communities. However, other
health care institutions, especially those providing care for the
disabled, can potentially control community access. We modeled a
residential care facility by using a stochastic compartmental model
to address the question of whether conditions exist under which
nonpharmaceutical interventions (NPIs) alone might prevent the
introduction of a pandemic virus. The model projected that with
currently recommended staff–visitor interactions and social dis-
tancing practices, virus introductions are inevitable in all pandem-
ics, accompanied by rapid internal propagation. The model iden-
tified staff reentry as the critical pathway of contagion, and
provided estimates of the reduction in risk required to minimize
the probability of a virus introduction. By using information on
latency for historical and candidate pandemic viruses, we devel-
oped NPIs that simulated notions of protective isolation for staff
away from the facility that reduced the probability of bringing the
pandemic infection back to the facility to levels providing protec-
tion over a large range of projected pandemic severities. The
proposed form of protective isolation was evaluated for social
plausibility by collaborators who operate residential facilities. It
appears unavoidable that NPI combinations effective against pan-
demics more severe than mild imply social disruption that increases
with severity.

nonpharmaceutical interventions � SEIR stochastic model �
self-isolation periods � social distancing � visitor and staff restrictions

I t has been nearly 40 years since the last influenza pandemic in
1968. A sporadic, but steadily larger series of human cases of

H5N1 avian influenza with a case fatality rate �50% stands as
a harbinger of the devastating potential a novel influenza virus
might pose. To validate estimates of mortality and morbidity,
and to explore options for the control of an influenza pandemic,
several researchers have modeled both the process of influenza
transmission and various intervention measures aimed at miti-
gating its consequences (1–7). Many of these studies suggest that
antiviral pharmaceutical agents and vaccines would be the most
effective interventions, with nonpharmaceutical interventions
(NPIs) relegated to a subordinate, incremental role. However, it
is also clear that the levels of antivirals and vaccines needed for
effective control are not likely to be available at the start of a
pandemic, even in the most aff luent societies, and should
resistance to current antivirals emerge, NPIs would be thrust to
the fore.

Recognizing the potentially critical importance of delays of a
few weeks or months after the demonstration of human-to-
human transmissibility of a new influenza virus, the current
global strategy is focused initially on containment of outbreaks
(8). Although it is uncertain whether sufficient antiviral and

vaccine resources will be available to provide effective pandemic
control in economically developed countries, it is certain that the
bulk of control efforts will rely on NPIs in less economically
developed settings in which most of the world’s population now
lives. Mathematical models (2, 3, 7) used together with historical
studies of the 1918–1919 influenza pandemic in the United
States (9, 10) suggest that the timely implementation of NPIs at
the community level may have been somewhat effective in
curtailing pandemic influenza. However, these studies conclude
that most implementations began too late and were halted too
soon. A comprehensive review of NPI containment strategies
used by U.S. communities during the 1918–1919 pandemic
concluded that the timely and continuous implementation of
NPIs seemed to have curtailed the outbreak (11–13).

A recent study (7) focused on the application of NPIs for
pandemic control within both the social community and acute-
care hospitals. The dynamical model used in that study revealed
that the tight coupling between acute-care hospitals and the
community within which they are embedded limits the extent to
which NPI measures can effectively control pandemic spread
within the hospital itself. The essential finding was that for a
pandemic of moderate severity (e.g., R0 � 2.1) or greater, there
was no practical level of within-hospital transmission control that
could protect the institution from being overwhelmed.

The open nature of community access makes containment in
acute-care hospital settings nearly impossible. However, other
health care and social institutions have the potential to restrict
community access to a greater degree. These include �16,000
institutions within the United States that care for individuals
who require assistance with activities of daily living, such as the
disabled (mostly elderly) and the mentally and developmentally
challenged (14). The aim of this modeling study was to estimate
the levels of NPIs that would be required to protect any
residential care facility (with the capability of controlling com-
munity access) against the introduction of a pandemic virus. We
chose an extension of a Susceptible–Exposed–Infected–
Recovered (SEIR) stochastic compartmental model to represent
a facility providing residential care to disabled persons. The
objective of this work was threefold: (i) to determine whether an
intrinsic ability to control access to these facilities provided a
basis for protection against pandemic influenza, (ii) to identify
specific NPIs and combinations thereof that could achieve
community access control, and (iii) to develop practical imple-
mentations of these NPI combinations sufficient for protection
over the full range of projected pandemic categories.
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Results
Although no formal sensitivity analyses were performed in this
study to explore the effects of uncertainty in parameter estima-
tion, we did examine the bounds of effects of one portion of our
model, the portion involving the applicability of NPIs to indi-
viduals who appear asymptomatic but are, in fact, infected with
the pandemic virus. It is not uncommon in epidemics of seasonal
influenza for persons to become infected with the circulating
virus yet remain entirely without symptoms throughout the
course of the infection. This is considered very unlikely for
infection with a virus completely novel to human immune
systems (R. Belshe, R. Couch, and P. Glezen, personal commu-
nications). Furthermore, because an asymptomatic state for a
pandemic infection is likely to be associated with a very low level
of replication and/or a high level of immunological efficacy,
shedding and transmission are likely to be both short in duration
and low in magnitude. Nevertheless, because this is widely
considered the linchpin to the efficacy of NPIs, we simulated
both the case in which NPIs had no effect in further reducing the
transmission of virus for asymptomatic persons (Fig. 1, solid
lines), and the case in which the transmission-reducing effects of
NPIs were the same for both infected and asymptomatic persons
(Fig. 1, dashed lines). Some types of NPIs (e.g., isolation) can by
their nature be applied only to symptomatic persons, whereas
other NPI types would require exceptional rigor to be applied
even approximately as stringently to asymptomatic persons. In
what follows, we have provided the results for simulations
assuming equal efficacy in transmission reduction for asymp-
tomatic and infectious persons and no efficacy for asymptomatic
persons.

We simulated a baseline scenario and three plans that in-
cluded NPIs for a range of pandemic severities (4, 6, 15)
represented by the basic reproduction number, R0 (Fig. 1, all

values displayed in the figure are listed together with 95%
confidence intervals in supporting information (SI) Tables S1
and S2). Although cases of infection are reported throughout,
corresponding cases of mortality from each of the intervention
plans simulated can be easily obtained from Table 1 by multi-
plying the final epidemic size by the case fatality proportion
(CFP) in Table 2. Simulations were scored as resulting in the
emergence of an outbreak when the clinical attack rate exceeded
5% of the facility population size (10 infections in a resident
population of 200). We set the duration of a pandemic wave to
180 days and presumed a virus introduction if a case arose within
this time in the simulations. The parameter estimates assumed in
these simulations are provided in Table 2 (see also Table S3).

Baseline Scenario. The baseline scenario assumed that no inter-
ventions were incorporated. Our results showed that the median
epidemic size (Table 1, baseline :: plan category 1–2) inside a
facility was significantly lower for relatively mild outbreaks (R0 �
1.4; 78 cases) than for severe outbreaks (R0 � 2.8; 179 cases). The
relatively high attack rates predicted by the model for a resident
facility could be attributed to the expected high contact levels
among individuals circulating within such a facility. For the
baseline scenario, a virus introduction (Intro) into a residential
facility was highly probable (Fig. 1 Upper) and occurred rapidly.
Note also that, given a virus introduction, an outbreak was
almost inevitable [p(Outbreak�Intro) � 0.97] for all values of R0
(Fig. 1 Lower).

Assessing the Role of NPIs. We chose three levels of NPI inter-
vention strategies to conform to the category classification
scheme for pandemic influenza proposed by the Centers for
Disease Control and Prevention (CDC). Generally speaking, we
found that conventional NPIs sufficed to curtail only mild

Fig. 1. p(Intro) and p(Outbreak�Intro) denote the probabilities of a virus introduction and a pandemic outbreak given a virus introduction in a facility,
respectively. These results are based on 100 realizations for each of severity scenarios described by R0 � (1.4, 2.8). Results depicted by solid and dashed lines
assumed �i � 1 and �i � �i, respectively.
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outbreaks, and that higher levels of NPIs, requiring greater social
restriction and higher levels of cooperation, were needed to
manage more severe outbreaks.

Plan: Category 1–2. The preparedness plan for category 1–2
pandemics was designed to simulate the implementation of
various NPIs discussed in most U.S. state plans. We assumed that
these plans would produce a 50% reduction in transmission. This
level of effect reduced the epidemic size (median) from 171 to
9 cases for R0 � 2.4 (Table 1, baseline :: plan category 1–2) for
the case in which the NPIs were assumed not to apply to
asymptomatic persons. Results for simulations of the case in
which NPIs were assumed to apply to asymptomatic persons with
an effect comparable to that on infected persons are virtually
indistinguishable in Fig. 1. This is because, for pandemic viruses,
our information is that the asymptomatic class is likely to be both
very much smaller and much less infectious than for seasonal

influenza (see Discussion). Although the probability of a virus
introduction remained significant [p(Intro) � 0.5, R0 � 1.4], Fig.
1 Lower shows that, if a 50% reduction in transmission can be
achieved, the probability of an outbreak would be reduced by at
least twofold for most pandemics (R0 � 2.4); and that varying the
impact of the asymptomatic class over the full range did not
demonstrably change the simulation result.

Plan: Category 3–4. The simulations for category 1–2 pandemics
revealed that employee entry–reentry was the most important
element in the control of influenza introductions into a facility.
Further revealed was that approximately a 10-fold reduction in
the probability of an introduction was required to provide
substantive protection against more severe pandemics. This
could be accomplished by increasing employee commitments to
10 or more days in continuous residence at the facility, but this
was considered socially unworkable. However, any attempt to
reduce the number of days on-site (from 10) necessarily required
a mechanism for a corresponding reduction in the probability of
reintroduction of the pandemic virus to compensate for the
increased frequency of reentry. By using data on time from
infection to symptomatic illness for A(H3N2) and A(H5N1)
viruses (P. Glezen, R. Couch, and R. Belshe, personal commu-
nications), we simulated the effects of scenarios in which em-
ployees, together with all with whom they shared their domicile,
entered isolation from the community within their own homes
during the last portion of off-time away from a residential
facility.

The consequences of a 4-days-on/4-days-off/2.3-days isolation
period lowered the probability of reintroduction of the virus by
approximately a 16-fold (at R0 � 2) compared with daily 12-h
shifts; and was considered socially acceptable by collaborators
working closely with residential care facilities. Except for the
introduction of employee off-shift isolation periods and in-
creased restrictions on visitors, both of which are accounted for
explicitly in the dynamical model, the NPIs for this plan were
similar to those of plan category 1–2. Therefore, we again
assumed an overall reduction in transmission of 50%. With this
assumption, the estimated probability of virus introduction was
reduced to �50% for R0 � 2; and the probability of an outbreak
was reduced by �50% from baseline for all but the most severe
simulated pandemic (R0 � 2.8) (see Fig. 1 Lower). Again, the
impact of excluding the small and relatively noninfectious
asymptomatic class from the reduction of transmission (�i � 1;
solid curves in Fig. 1) produced no discernible difference in the
simulations.

Table 1. The final epidemic size is denoted by Episizei, where i
marks its maximum, mean, and median value

R0 Episizemax Episizemean Episizemedian

Baseline :: Plan Category 1–2

1.4 (143 :: 20) (71 :: 2) (78 :: 0)
1.6 (160 :: 22) (106 :: 3) (122 :: 1)
1.8 (177 :: 86) (132 :: 7) (142 :: 1)
2.0 (176 :: 91) (148 :: 8) (153 :: 1)
2.2 (183:: 104) (161 :: 11) (164 :: 2)
2.4 (185 :: 143) (170 :: 26) (171 :: 9)
2.6 (192 :: 125) (173 :: 45) (177 :: 45)
2.8 (194 :: 159) (178 :: 81) (179 :: 88)

Plan Category 3–4 :: Plan Category 5

1.4 (13 :: 1) (0 :: 0) (0 :: 0)
1.6 (16 :: 1) (1 :: 0) (0 :: 0)
1.9 (29 :: 1) (1 :: 0) (0 :: 0)
2.0 (34 :: 1) (1 :: 0) (0 :: 0)
2.2 (39 :: 1) (2 :: 0) (0 :: 0)
2.4 (88 :: 1) (3 :: 0) (1 :: 0)
2.6 (104 :: 1) (12 :: 0) (2 :: 0)
2.8 (118 :: 2) (26 :: 0) (12 :: 0)

Results for the baseline and intervention plans simulated (punctuation
mark :: separates these outcomes). These findings assumed that interventions
had no effect on asymptomatic persons (�i � 1). Mortality cases corresponding
to these simulations may be obtained by multiplying Episizei by the case
fatality proportion (CFP) in Table 2.

Table 2. Variables, parameter definitions, and values assumed in the numerical simulation of a resident facility

Variables Parameters Values References

R0 Basic reproduction number 1.4–2.8 4, 6, 15
m Fraction of exposed that progress to infection 0.667 16
1/� i* Average latency period, days 1.9 5, 6
1/�A Average recovery period for asymptomatic, days 5 4, 17
1/�I Average recovery period for infected, days 5 4, 17
CFP Case fatality proportion 0.03–0.15 18
�I Resident mortality rate, �I � (CFP/1 � CFP) �I (day�1) 0.0062–0.035 16
�i* Transmission reduction parameter when applied to infected 0.05–1 4
�i* Transmission reduction parameter when applied to asymptomatic 0.05–1 4
�i* Infectiousness of asymptomatics relative to symptomatics 0.02 16
1/	VF; 1/	VC Average time spent between locations by visitors, hours; days 0–2; 7 14
1/	SF; 1/	SC Average time spent between locations by staff, hours; hours 8–12; 12–16 14
pA Probability of having asymptomatics escape monitoring efforts 1 Estimated
pE Probability of having exposed escape monitoring efforts 0.14–1 Estimated
pI Probability of having infecteds escape monitoring efforts 0.1–1 Estimated

*i � R, SF, VF, SC, VC.
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Plan: Category 5. This plan simulated virtually complete facility
isolation and assumed an overall 95% reduction in transmission.
Clearly, such levels of NPI could reduce the possibility of
pandemic virus introduction to very low levels (Fig. 1).

Discussion
The model developed in this study suggests that it is indeed
possible for residential care facilities (nursing homes and the
like) to protect residents and staff from pandemic viruses even
without access to vaccine and antiviral resources. However,
protection from severe pandemics requires significant social
changes and a high degree of motivation and cooperation in the
staff of such facilities. Nearly all earlier studies evaluating
interventions for mitigating the impact of pandemic influenza
have agreed that, barring the emergence of resistance, pharma-
ceutical agents (antivirals and vaccines) will be the most effective
interventions possible. These studies also noted, however, that
adequate supplies of both antivirals and vaccines are unlikely to
be available at the start of any pandemic. Therefore, even in
developed countries, the brunt of pandemic mitigation will be
borne initially by community agencies using largely or solely
NPIs. Outside economically developed countries, NPIs will most
likely be the only intervention methods available. Further un-
fortunately, previous analyses indicated that NPIs, as previously
conceptualized, will be modest in efficacy. Our baseline and
category 1–2 scenarios suggest that conventional NPIs should be
expected to protect facilities that can control community access
only in pandemics of, at most, moderate severity. Models and
discussions of the use of NPIs have included measures such as
closures of social gathering places (e.g., school, churches, and
stadiums), social distancing techniques for interpersonal inter-
actions, isolation of infected persons, quarantine of persons
exposed to infection, and other behavioral changes aimed at
delaying the propagation of a pandemic. Mathematical models,
used together with historical studies of data on the 1918 flu
pandemic in the United States, have advanced the proposition
that community-wide application of NPIs may have been the
main factor responsible for the varying degrees of impact
experienced by U.S. municipalities in the 1918 pandemic. These
studies also suggested that NPI effectiveness was contingent on
timely implementation and consistent compliance (7, 9, 10), and
that early relaxation of these measures may have been respon-
sible for re-ignition of pandemic waves. Perhaps the most
germane and compelling study is the work of Markel et al.
(11–13), which concluded that nothing except protective isola-
tion measures worked in containing the second wave of the 1918
pandemic in the United States. Seeking pragmatic protection
against even severe pandemics, we conceptualized and evaluated
the consequences of a combination of NPIs that incorporated
notions of transmission control measures, and protective isola-
tion for both facilities themselves and for employees off-site.

Our results indicate that, in the absence of interventions, the
introduction of a pandemic virus into residential facilities is
inevitable. In our simulations, introductions occurred rapidly
and resulted in outbreaks with attack rates that increased sharply
with increasing pandemic severities, particularly for intervention
levels below those of plan category 5. In several U.S. states,
current recommendations for managing absenteeism because of
pandemic illness suggest identifying, ahead of the pandemic,
temporary workers to take the place of any facility staff aff licted.
It is critical that commitments to/from temporary workers
include a full understanding that multiple day shifts may be
required and that multiday intervals with isolation precautions
will be required between work shifts. Our simulations indicate
that off-site intervals shorter than �3 days provide insufficient
protection against introduction of the pandemic virus on reentry.
Restricting access to facilities is critical in reducing the risk of
introduction.

Our plan for pandemics of category 1–2 shows that even a level
of NPIs that seems easily implementable and involves only minor
social disruption can significantly reduce the impact of most
pandemics in these facilities. In our simulations, the projected
effect of this plan reduced the probability of a pandemic
introduction by 5-fold (R0 � 1.4) and dramatically reduced the
size of an epidemic (mean: 71 to 2 cases; median: 78 to 0 cases).
Implementation of a successful plan for category 3–4 pandemics
requires employee commitments to multiday continuous pres-
ence at the facility, to behaviors designed to reduce the proba-
bility of becoming infected during time away from a facility, and
isolation for the latter portion of multiday off-work periods.
Simulations based on this plan project �80% reductions in the
probability of an outbreak, a reduction in the maximum size of
any epidemic by �50% for all but the two most severe pandemics
evaluated (R0 � 2.6, 2.8), and a decrease in the number of cases
(median size of epidemics) by �90% for all pandemics simu-
lated. The NPI measures proposed in this plan were judged to be
implementable by managers of such facilities who have incor-
porated the results of this study into a training program and
video for their institution and other residential facilities (see
Acknowledgments). Asymptomatic carriers of infection are often
considered to be the weakest point in epidemic control. How-
ever, direct information on pandemic viruses led us to low
estimates for the size and level of infectiousness of the asymp-
tomatic class. These estimates, in turn, led to simulation results
that suggest that the degree to which NPI measures are actually
applied to asymptomatic persons will not be consequential in a
pandemic.

The most effective plan simulated (category 5) required
virtually complete facility isolation, complete visitor restriction,
expanded isolation periods for employee reentry, and high levels
of viral mitigation imposed on all goods and high-priority
services entering a facility to reduce transmission. The effec-
tiveness of such a plan would require rigorous and unfailing
implementation of the simulated NPI measures, but our study
shows that these facilities do have a viable opportunity to prevent
the introduction of the pandemic virus at almost any severity
level. These results seem reassuring, may provide an attainable
alternative for facilities that care for these highly vulnerable
populations, and may prove to be the only alternative should
resistance to available antiviral agents emerge in a pandemic
virus.

This study has demonstrated that something previously con-
sidered implausible, the protection of a health care institution
against pandemic influenza by using only nonpharmaceutical
measures, may be possible and practical. This work will succeed
if it stimulates individuals concerned with mitigating the impact
of pandemic influenza in such facilities to evaluate and consider
implementation of the recommendations implicit here. It is
apparent that, although surviving a pandemic may be possible,
its effective control will not be easy. At levels of severity above
mild, social disruption is inevitable and must increase further
with severity. The activities of daily life will be altered for all, and
commitment from every person in the facility community is
essential if the facility, its residents, and staff are to withstand
what could be humankind’s most severe test.

We have identified that the effectiveness of NPIs depends
strongly on a timely implementation and full compliance. We
have further emphasized that great risks are associated with
premature relaxation of these control measures. This model
assumes that social disruption implicit in most of the plans
proposed will not inhibit implementation of these plans. A
limitation of our approach is the lack of a comprehensive
sensitivity and uncertainty analysis to define both the role of
individual NPI elements and the degree to which lack of
compliance will degrade protection. This would greatly clarify
the role that asymptomatic-but-infected persons may play in
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propagating pandemics. The most important limitation of this
study, however, is the absence of a modeling approach that
captures the level of detail in the various control measures
proposed, and validates the level of transmission reduction
assumed. Our model simulated the estimated consequences of
these interventions rather than simulating the actions themselves
at the individual level.

Methods
Mathematical Model. The dynamics of residents in a facility and staff and
visitors circulating between the community and a facility were simulated
stochastically by using a compartmental model depicted in Fig. 2. These
dynamics were simulated for a facility housing 200 residents and 75 on-site
staff. The model assumed that each resident received an average of 3 h of care
daily and that staff members worked an average of 8 h/day shifts (5 day/week
schedules). The model assumed an initial population size of 40 visitors who
had contact with residents (only 1 resident in 5 receives any visitors at all),
visitations averaging 2 h, and homogenous mixing of the effect of visitation
on all residents. Table 3 provides the population sizes assumed in these
simulations. Residents were classified according to the epidemiological
classes: susceptible (SR), exposed (ER), asymptomatic (AR), infectious (IR), re-
covered (RR), and deceased (DR). Susceptible individuals became exposed at
rate 
R. A fraction m of exposed persons became symptomatic and progressed
to infection (IR) at rate �R, whereas the remaining 1 � m remained asymp-
tomatic and infectious at a reduced level (AR). Infected individuals recovered
at rate �I or succumbed to disease at rate �I. Asymptomatic individuals recov-
ered at rate �A. Mortality rates (�I) for infected residents were estimated from
the case-fatality proportion of residents (CFP), as �I � ((CFP/(1 � CFP)))�I. Case
fatality rates attributable to infection by pandemic influenza will likely vary
from pandemic wave to wave in a manner that cannot be known a priori. Our
results assume a constant relationship between attack rates and mortality
rates both within and between pandemic waves. Mortality projected by our

models can be obtained by multiplying the total estimated number of cases for
all scenarios by the CFP that appears in Table 2.

The circulation dynamics of visitors and staff between a facility and the
community are depicted in Fig. 2. These populations were defined according
to their immediately current location (e.g., community or facility) and the
epidemiological states: susceptible (S), exposed (E), asymptomatic (A), in-
fected (I), and recovered (R). Visitors located in the community or in the facility
were indexed by VC and VF, respectively. Similarly, staff located in the com-
munity or a facility were indexed by SC and SF, respectively. We indexed
individuals in the general community by C. We let 1/	i denote the average time
that visitors (i � VF ,VC) and staff (i � SF, SC) spent in the facility and the
community (Table 2) (see also Table S4). For simplicity, we have assumed that
the time spent by staff and visitors in the community/facility was exponentially
distributed.

The total population was given by Ntot � Nin � Nout, where Nin and Nout

describe the total population size inside and outside a facility, respectively.
The per capita rates at which susceptible individuals acquired infection inside
and outside the facility were denoted by �in and �out, respectively. The rate �in

is also called the force of infection for individuals inside the facility. It included
the contribution of all individuals that circulate within a facility (residents,
staff, and vsitors). �in � [¥i � R,SF,VF 
i(�iIi 
 �i�iAi)]/Nin, where 
i represents
the disease transmission of both populations and �i represents the relative
lack of infectiousness of the Ai population. Efforts to reduce disease trans-
mission were accounted via the parameters �i and �i. We considered two cases,
�i � 1 (NPIs not applicable to asymptomatic persons) and �i � �i (NPIs equally
applicable to infected and asymptomatic persons). Similarly, �out is the force
of infection for individuals outside a facility. It included contributions from
contacts among staff off-duty (indexed by SC), visitors in the community
(indexed by VC), and general community members (indexed by C). �out �

¥i � SC,VC,C 
i(�iIi 
 �i�iAi)/Nout. Further details on the model formulation, the
force of infection, simulation approach, and the calculation of the basic
reproduction number are provided in the SI Text.

Baseline. This scenario assumed that staff spent 8 h (per day) caring for
residents, and visitors spent, on average, 2 h (per week) in the facility without
restrictions. Our information was that only one resident in five receives
visitors, and these were assumed not to modify their visiting behavior on the
basis of their own infectious state. Because of our assumption of homoge-
neous mixing within each model compartment, we treated this situation as
equivalent to a reduction in overall visitation effect by a factor of 1/5. Staff and
visitors did not apply social distancing measures during the time spent outside
the facility, and in-facility monitoring was not implemented. Intervention
plans scenarios considered included the baseline above and plans that simu-
lated the consequences of implementing the following nonpharmaceutical
interventions: (i) Restrictions on visitors and staff entering the facility, (ii)
social distancing measures for staff and visitors, (iii) monitoring of staff
returning to the facility, and (iv) isolation of symptomatic residents and
immediate removal from the premises of symptomatic staff. The range of
visitor restrictions considered included reducing average visiting periods to a
single hour and complete restriction of all visitor–resident contact. Social
distancing practices implemented by visitors and staff involved both those
directed to the community (e.g., abstaining from social gatherings and public
places such as schools, churches, and theaters) and those directed to intrafa-
cility interactions (e.g., maintaining 3-foot distances for other than required
direct contact and eliminating meetings and resident gatherings). In-facility
monitoring of staff returning to work was conceptualized to involve assess-
ment of oral temperature and evaluation of stated history.

Plan: Category 1–2. Control measures in this plan increased staff shifts from five
8-h shifts per week to four 12-h shifts per week, assumed social distancing
practices for staff and visitors that directly reduced a resident’s risk of infection
by 50%, and reduced the average duration of visits in the facility from 2 to 1 h.
We considered both the case in which �i � �i (NPIs fully applicable to persons
without symptoms) and �i � 1 (NPIs inapplicable to asymptomatic persons).

Plan: Category 3–4. In addition to the array of NPIs delineated in plan category
1–2, the category 3–4 plan further assumed the following: complete visitor
restrictions, temperature monitoring and history assessment of returning
staff. Visitor restrictions involved communication via electronic devices and/or
from behind transparent impermeable barriers with airflow control. Most
importantly, plan category 3–4 introduced an employee work schedule that
comprised four full days on-site and four full days off-site with a period of
isolation from the community at home for the last portion of the time off-site.
A 2.3-day self-isolation period was defined as the employee entering isolation
with her/his living group within her/his home on the evening of the second day

Fig. 2. Compartmental epidemic model for residents in a facility (Upper) and
visitors and staff in the community and in a resident facility (Lower).

Table 3. Initial conditions assumed in the numerical simulation
of a resident facility

Epidemiological
classes Initial population size Reference

SC, SR, SVC, SVF, SSC, SSF 50,000, 200, 27, 13, 8, 75 14
EC, ER, EVC, EVF, ESC, ESF 1, 0, 1, 0, 1, 0 14
IC, IR, IVC, IVF, ISC, ISF 1, 0, 1, 0, 1, 0 14
Ai, Ri, Di 0, 0, 0 14
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off-work. The employee entered sequestration only if she/he and all members
of her/his living group were asymptomatic and afebrile at the time scheduled
for entry. Subsequently, the employee reported to the facility at the end of the
isolation period (the morning of the fifth day) only if all members of the
household remained asymptomatic and afebrile. As for plan category 1–2, we
separately considered the case in which the NPIs for category 3–4 were
applicable (�i � �i) and not applicable (�i � 1) to asymptomatic persons.
Because the combination of NPIs assembled for this plan was otherwise similar
to the NPIs for plan category 1–2, we again assumed a reduction in the
residents’ risk of infection of 50%.

Plan: Category 5. For ultimately severe pandemics, we evaluated a plan that
included all interventions used in the plan category 3–4 pandemics, increased
isolation periods to 3.3 days (while maintaining a 4-day-on/4-day-off staff shift
scheduling), and assumed increased social distancing measures to the level at
which a resident’s risk of infection was reduced by 95%. This might be
achieved by completely banishing visitation and imposing strict viral mitiga-
tion monitoring on all material and high-priority services entering the facility.

Numerical Simulations. We solved the model (illustrated in Fig. 2) numerically
via stochastic simulations (Matlab, Mathworks) with 100 realizations for each

of the intervention plans for an array of pandemic severity levels, separately
considering the interventions to be applicable/inapplicable to asymptomatic
persons. The simulation approach assumed that the number of individuals
transitioning between the various epidemiological states (e.g., susceptible,
infected, recovered) were Poisson distributed.
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