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Plant cytokinesis, the final event of cell division,
generates two daughter cells by partitioning the cyto-
plasm of a mother cell. This depends on targeted secre-
tion to generate a new plasma membrane (PM; Whaley
and Mollenhauer, 1963; Samuels et al., 1995; Jurgens,
2005a, 2005b). Plant cells control cytokinesis by con-
structing a plant-specific cytoskeletal configuration, the
phragmoplast (Zhang et al., 1993; Granger and Cyr, 2000;
Assaad, 2001). The phragmoplast consists of a double
array of parallel-oriented microtubules, actin filaments,
associated molecules, and a cell plate assembly matrix
acting as a framework to transport cell plate-building
vesicles to the cell equator (Lambert, 1993; Staehelin and
Hepler, 1996; Otegui et al., 2001; Wasteneys, 2002; Segui-
Simarro et al., 2004). Homotypic fusion of these vesicles,
constricted by dynamins, gives rise to dumbbell-shaped
tubular structures and the formation of a transient mem-
brane compartment, the cell plate. The tubulovesicu-
lar network created by end-to-end fusion of vesicles
evolves into a fenestrated sheet (Samuels et al., 1995;
Otegui et al., 2001; Segui-Simarro et al., 2004). The cell
plate grows outward to the cortex of the cell by periph-
eral vesicle fusion directed by the depolymerization of
the central microtubules and polymerization of micro-
tubules at the periphery (Strompen et al., 2002; Sasabe
and Machida, 2006; Sasabe et al., 2006). When the cell
plate reaches the cortex, it fuses with the parental PM,
a process requiring heterotypic vesicle fusion. Fusion
activates the maturation of the plate to a rigid cell wall,
a process that includes closure of the plate fenestrae,
removal of excess membrane, and replacement of
callose by cellulose (Samuels et al., 1995; Segui-Simarro
et al., 2004). This review provides an update on the
membrane-trafficking events during plant somatic cy-
tokinesis involved in initial plate formation, fusion of the
cell plate with the parental PM, and trafficking events
associated with cell plate maturation (Fig. 1).

ORIGIN OF CELL PLATE-BUILDING VESICLES

The textbook scheme of vesicle trafficking during
plant somatic cytokinesis depicts the delivery of Golgi-

derived vesicles to the forming cell plate along the
parallel-oriented microtubules of the phragmoplast by
means of plus-end-directed microtubule motor pro-
teins. Indeed, ultrastructural analysis has revealed a
close association of vesicles with the phragmoplast
microtubules (Kakimoto and Shibaoka, 1987; Samuels
et al., 1995), the integrity of which is essential for cell
plate vesicle delivery (Steinborn et al., 2002). Proteins
connecting vesicles to phragmoplast microtubules
have been visualized during endosperm cellulariza-
tion and pollen cytokinesis (Otegui et al., 2001; Otegui
and Staehelin, 2004). The kinesin AtPAKRP2 is so far
the best candidate motor protein to transport the cell
plate-building vesicles to the division plane (Lee et al.,
2001), although genetic data for this are lacking.

Recently, a lot of attention has been given to the origin
of the cell plate-building vesicles. High-resolution elec-
tron tomography analysis reported the presence of two
types of vesicles surrounding the forming cell plate:
small, dark vesicles and larger, lighter stained vesicles.
These vesicles are considered the initial building
blocks of the cell plate, and the latter type is thought
to occur through pairwise fusion of the darker vesicles
(Segui-Simarro et al., 2004).

Vesicle fusion is accomplished through the action of
SNARE proteins (for review, see Lipka et al., 2007),
tethering factors (Rab GTPases; for review, see Zerial
and McBride, 2001; Molendijk et al., 2004), and pre-
sumably aided by components of the exocyst complex
(Segui-Simarro et al., 2004), although, to date, mutants
defective in subunits of this complex have only been
implicated in polar growth (Cole et al., 2005; Wen et al.,
2005; Synek et al., 2006; Lavy et al., 2007). The dark-
stained vesicles were also found in the vicinity of the
Golgi apparatus, and it was concluded that they were
Golgi derived. Prevacuolar compartment/multivesic-
ular bodies (MVBs) or late endosomes were detected
around the cell plate at its maturation phase, accom-
panied by an increased appearance of clathrin-coated
vesicles (Otegui et al., 2001; Otegui and Staehelin,
2004; Segui-Simarro et al., 2004; Segui-Simarro and
Staehelin, 2006). The observation that Arabidopsis
(Arabidopsis thaliana) Golgi stacks double before mito-
sis (Segui-Simarro and Staehelin, 2006) supports the
capacity for substantial vesicle secretion during plant
cytokinesis. From mitosis on, Golgi stacks accumulate
in a subcortical ring (the Golgi belt) surrounding the
site of cell plate formation. Although the Golgi stacks
do not show a preferential orientation toward the cell
plate, the Golgi belt could facilitate directed delivery
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Figure 1. Membrane trafficking during early and late plant cell plate formation. A, During early cell plate formation, vesicle
secretion becomes polarized to the cell equator. Two independent pathways, using either the KN/KEU/SNAP33/NSPN11/NSF or
the SYP31/CDC48 machinery, operate in fusing the vesicles, resulting in the formation of a transient membrane compartment,
the cell plate. Cell plate-building vesicles are likely transported by the AtPAKRP2 kinesin along the phragmoplast microtubules.
Phragmoplast microtubules guide the cell plate as it grows outward to the correct insertion site at the center of the division zone.
The PM at the division zone is at this stage marked by the absence of PM-associated KCA1 (data not shown), and this KCA1-
depleted zone remains present throughout cytokinesis. Both secretory vesicles from the Golgi and endosome-derived vesicles
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of Golgi-derived vesicles to the division plane.
(Nebenfuhr et al., 2000; Segui-Simarro and Staehelin,
2006). Golgi-derived membrane and proteins, how-
ever, are not the only source of cell plate building
blocks. When internalized by endocytosis in BY-2 cells
and Arabidopsis seedlings, the styryl dye FM4-64
(Dettmer et al., 2006; Dhonukshe et al., 2006) and the
fluid phase markers Alexa 633 and Lucifer Yellow
(Dhonukshe et al., 2006) label the forming cell plate at
a very early stage and within minutes after addition
(Dettmer et al., 2006; Dhonukshe et al., 2006). The pres-
enceofcellwall-specificcross-linked rhamnogalacturonan
and partially esterified homogalacturonan epitopes in
the cell plate (Baluska et al., 2005; Dhonukshe et al.,
2006) and the accumulation of YFP-2x-FYVE-positive
endosomes in a belt accumulating at the periphery of
the growing cell plate (Vermeer et al., 2006) strongly
favor a contribution of the endocytic pathway to the
construction of the cell plate.

Several drug studies have been carried out to un-
ravel the contribution of the secretory and endocytic
pathways in cell plate formation. To eliminate the
contribution of the secretory pathway, the fungal toxin
brefeldin A (BFA) is commonly used. BFA targets BFA-
sensitive ARF-GEFs, causing a reversible inhibition
of secretory vesicle trafficking (Renault et al., 2002;
Geldner et al., 2003). BFA induces the loss of g-COP-
forming vesicles from the Golgi cisternae in BY-2 cells
within minutes and subsequently leads to the forma-
tion of an endoplasmic reticulum (ER)-Golgi hybrid
compartment (Ritzenthaler et al., 2002). BY-2 cells
treated with BFA before chromosome condensation
failed to construct a cell plate, while BFA addition at a
later time point allowed initial cell plate formation
(Yasuhara et al., 1995; Yasuhara and Shibaoka, 2000).
This has been attributed to the formation of a pool
of cell plate-forming vesicles before the onset of cyto-
kinesis and was used to argue in favor of the contri-
bution of endocytic vesicles to cell plate formation
(Yasuhara et al., 1995; Dhonukshe et al., 2006). BFA
sensitivity in BY-2 cells implicates ARF-dependent
membrane trafficking, but not exclusively Golgi-
derived vesicle trafficking, as the target of BFA in

this system is not known (Schrick et al., 2004; Men
et al., 2008). The nature and presence of the cell plate-
forming vesicles remain to be addressed in BY-2 cells,
but in Arabidopsis the RAB-A2/A3 compartment has
been proposed to fulfill this function. The RAB-A2/A3
compartment functions in the secretory route, and
YFP:RAB-A2 colocalizes with a newly synthesized
cytokinesis-specific syntaxin, KNOLLE (KN; Lauber
et al., 1997), at punctae, distinct from Golgi stacks,
during metaphase, anaphase, and later at the cell plate,
in contrast to VHA-a1 (Chow et al., 2008).

In Arabidopsis and maize (Zea mays) root cells, BFA
treatment does not impair cell plate formation (Boutte
et al., 2006; Dhonukshe et al., 2006). In Arabidopsis,
this is likely due to the presence of a BFA-resistant
ARF-GEF (GNOM-LIKE1 [GNL1]) mediating ER-to-
Golgi trafficking in concert with the primary target of
BFA, the ARF-GEF GNOM (Richter et al., 2007; Teh
and Moore, 2007). Indeed, gnl1 mutant seedlings
treated with BFA (mimicking the gn/gnl1 double mu-
tant) show impaired cytokinesis and locked KN in the
ER. This phenotype was used to argue that secretion of
de novo synthesized proteins is essential for cytokine-
sis (Reichardt et al., 2007), in contrast to what was
previously shown by Dhonukshe et al. (2006). In their
experiments, cycloheximide treatment did not impair
KN localization to the forming cell plate (Dhonukshe
et al., 2006). As the authors do not report cell plate
expansion after cycloheximide treatment, it cannot be
excluded that these plates were pre-existing. Life cell
imaging during cytokinesis of cycloheximide-treated
cells will be required to clarify this point.

Reichardt and coworkers used another drug, wort-
mannin, which interferes with endocytosis by inhibiting
phosphatidylinositol 3-kinase and 4-kinase (Matsuoka
et al., 1995) and causes swelling of MVBs (Tse et al., 2004).
In the presence of wortmannin, internalization of the
styryl dye FM4-64 in Arabidopsis root cells was impaired
without inhibiting cell plate formation (Reichardt et al.,
2007). However, it has been reported that wortmannin
only reduces the FM uptake in both BY-2 cells and
Arabidopsis seedlings (Emans et al., 2002; Leshem et al.,
2007). The latter experiments suggest that wortmannin

Figure 1. (Continued.)

from the PM and/or other endosomal organelles contribute to the formation of the cell plate. Secretory and endocytic pathways
likely converge at the TGN, which explains the co-occurrence of KN, RAB A2/A3, PINs, FM4-64, pectins, and fluid phase
markers at an early stage during cell plate formation. The dashed line over the TGN indicates a possible compartmentalization
based on the localization of VHA-a1 and RAB A2/A3. MVBs, labeled with YFP-2x-FYVE, which recognizes PtIns3P, accumulate
in a belt around the leading edge of the cell plate, but their contribution to the cell plate remains to be proven. B, During the late
phases of cell plate formation, membrane addition occurs predominantly at the leading edge of the torus-like phragmoplast, next
to removal and/or recycling of membrane at the maturing center of the plate. PtIns(4,5)P2 accumulates at the leading edge of the
cell plate, before fusion of the plate with the parental PM. The origin of the vesicles and the machinery required for fusion of the
cell plate with the PM remain to be identified. TPLATE accumulates in the PM at the division zone during plate insertion and
plays a role in anchoring of the cell plate. A close contact between the ER and the cell plate during the late phases of cell plate
formation could reflect direct membrane transfer between the ER and the cell plate. The sites of action of commonly used drugs
that interfere with membrane transport are indicated. CP, Cell plate; EE, early endosome; MTs, phragmoplast microtubules.
Question marks indicate possible trafficking pathways for which no conclusive evidence has been presented so far. Green arrows
represent anterograde transport, red arrows indicate retrograde transport and recycling, and black dashed arrows indicate the
possible contribution of tubulated vacuolar membrane to the cell plate.
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treatment does not totally abolish endocytosis and there-
fore cannot rule out a contribution of endocytic vesicles
during early and/or late stages of cell plate formation.

Genetic interference of the endocytic pathway during
cytokinesis, using a dominant negative (GDP-locked)
form of the Rab5 homolog ARA7, or overexpression of
the C-terminal part of clathrin heavy chain inhibited
FM4-64 internalization and caused cytokinesis defects
in Arabidopsis and BY-2, respectively (van der Bliek,
2005; Dhonukshe et al., 2006, 2007; Tahara et al., 2007).
While these genetic approaches appear more robust
than drug treatments, they cannot be used as conclusive
proof for the endocytic requirement to build the cell
plate, as a DN-ARA7 is likely to interfere with mem-
brane removal from the cell plate besides endocytosis at
the PM, and overexpression of a dominant negative
clathrin also affects spindle and phragmoplast forma-
tion (Tahara et al., 2007).

A close contact between the trans-Golgi network
(TGN) and the Golgi could explain the number of
discussions and controversies regarding the origin of
the cell plate-building vesicles. The TGN in Arabidop-
sis shoot meristem cells appears tightly associated
with the trans-side of the Golgi apparatus, and no free-
floating TGNs could be observed using high-pressure
freezing and freeze substitution (Segui-Simarro and
Staehelin, 2006). However, it was reported that the
Golgi marker YFP-SYP31 and the TGN marker GFP-
SYP41 did not show 100% co-occurrence when tran-
siently expressed in Arabidopsis protoplasts (Uemura
et al., 2004). Detailed ultrastructural analysis will be
required to clarify whether the YFP-SYP41 punctae
that do not appear in the vicinity of the Golgi represent
true TGN compartments and whether they are in-
volved in vesicle delivery during cytokinesis. It would
be of interest to determine whether YFP-SYP41 punctae
colocalize with the RAB-A2/A3 proteins, as the latter
label endosomal compartments that contribute to the
cell plate but show only a partial overlap with the
VHA-a1-labeled TGN (Chow et al., 2008).

The TGN was recently reported to function as an
early endosome compartment (Robinson et al., 2008).
The TGN as grand central at the intersection of the
secretory and endocytic pathways and the polariza-
tion of vesicle transport during cytokinesis could
easily explain the presence of both secretory and
endocytosed PM proteins at the forming cell plate.
Concanamycin A (ConA), a specific V-ATPase inhib-
itor, blocks trafficking at the TGN, does not interfere
with endocytosis at the PM, but causes cytokinesis
defects and depletion of both KN and FM dyes from
the cell plate (Robinson et al., 2004; Dettmer et al., 2005,
2006; Reichardt et al., 2007). Whether the secretory and
the endocytic pathways that merge at the TGN mark
distinct subdomains of this compartment remains to
be proven, although the recently reported localization
of RAB-A2/A3 hints in this direction (Chow et al.,
2008). Because FM dyes, as free-flowing aspecific
membrane markers, might not be sorted in a compart-
mentalized TGN, photoconvertible forms of GFP

could be used to discriminate between recycling and
newly synthesized membrane proteins. Converging
endocytic and secretory pathways at the TGN, under-
lined by the localization of KN and FM dyes during
cytokinesis (Reichardt et al., 2007), imply that the path
of cell plate-building vesicles depends on an intact
TGN. But is trafficking through the TGN the only way
for cell plate building blocks?

The AtRAB4-mediated secretion of cell wall com-
ponents during root hair expansion, which occurs
between the Golgi and an endosomal compartment
different from the TGN, is indicative of an alternative
secretory route (Preuss et al., 2004), although it needs
to be shown whether this occurs during cytokinesis. In
the ConA-treated binucleated Arabidopsis root tip
cells, fragmented cell plate-like structures and unfused
membrane vesicles, resembling the vesicles that accu-
mulate in the kn mutant, could be seen at the cell equator
using electron microscopic resolution (Reichardt et al.,
2007). What is the origin of these structures? And if
the structures are derived from vesicle fusion, what
mechanism is involved?

During the progression from mitosis to cytokinesis,
the vacuole volume decreases by 80% and the surface
membrane area halves, a process that may involve
budding of vesicles or small tubules. An attractive
hypothesis might be that the vesicles and fragmented
cell plates are of vacuolar origin, as vacuoles tubulate
and concentrate around the cell plate during early
telophase (Segui-Simarro and Staehelin, 2006).Vacuolar
membranes, however, are unlikely to contribute sub-
stantially to the cell plate, as the vacuoleless mutant of
Arabidopsis does not show cytokinesis defects (Rojo
et al., 2001). The use of large collections of membrane
markers will be required to elucidate the nature of these
vesicles and fragmented plates.

In conclusion, evidence has been presented that both
secretory and endocytosed vesicles contribute to cell
plate formation. Due to the complexity and cross talk
of the plant endomembrane system and the diverse
actions of membrane-trafficking drugs, it remains a
challenge to distinguish between the contributions of
secretory and retrograde transport pathways in the
process of cell plate formation (Fig. 1A).

TRAFFICKING DURING CELL PLATE FUSION TO
THE PARENTAL PM

While the early steps of cytokinesis have been elab-
orately studied, both genetically (Nacry et al., 2000;
Sollner et al., 2002; Jurgens, 2005a, 2005b; Konopka
et al., 2006; Sasabe and Machida, 2006) and structurally
(Samuels et al., 1995; Otegui and Staehelin, 2004; Segui-
Simarro et al., 2004; Austin et al., 2005; Segui-Simarro
and Staehelin, 2006), few data have been generated
regarding the final steps of cytokinesis (Fig. 1B). Some
insight came from freeze fractionation of BY-2 cells, by
which it was shown that the fusion between the tran-
sient cell plate and the parental PM occurs simulta-
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neously at hundreds of sites by thin finger-like fusion
tubes emanating from the forming cell plate (Samuels
et al., 1995). Nevertheless, this closure of the physical
barrier between the two daughter cells remains to date
very poorly understood.

The observation that cytokinesis does not always
proceed symmetrically within the volume of the cell
(Cutler and Ehrhardt, 2002) led to the hypothesis that
the fusion of the plate with the PM starts at a distinct
position at the division zone (closest to the phragmo-
plast initiation point) and further expansion of the
plate results in fusion along the cortex. The asymmet-
ric initiation of cell plate formation is also used to
explain the occurrence of short cell wall protrusions
(stubs) and incomplete cell walls that are a hallmark of
defective cytokinesis. However, this type of cytokine-
sis cannot account for the presence of stubs at each
side of the cell in a midsection. Stubs at either side of
the cell can be caused by defective maturation and
tearing of the plate in mutants impeded in cell wall
formation (Nickle and Meinke, 1998; Fagard et al.,
2000; Schrick et al., 2000, 2004; Zuo et al., 2000; Lane
et al., 2001; Lukowitz et al., 2001; Pagant et al., 2002).
However, this does not explain the presence of stubs in
mutants affected in early cell plate vesicle-trafficking
events, like KN and KEULE (Lauber et al., 1997;
Waizenegger et al., 2000), stomatal cytokinesis defective1
(Falbel et al., 2003), the dynamin drp1A drp1E double
mutant (Kang et al., 2003a), the double gn/gnl1 mutant
mimicked by BFA treatment of gnl1 (Reichardt et al.,
2007), and dominant inhibitory mutants of RAB-A2
(Chow et al., 2008). As the inhibition of both GN and
GNL1 impairs ER-to-Golgi vesicle trafficking and
traps KN in the ER, the cell wall stubs have to be
generated by a KN-independent pathway (Lauber
et al., 1997; Jurgens, 2005a). Based on this, one might
speculate that vesicle fusion during cell plate insertion
does not require de novo protein synthesis and Golgi
trafficking. The latter would be in agreement with the
effects of ConA treatment of Arabidopsis root cells, in
which stubs were also formed (Reichardt et al., 2007).
What then could be the origin of the vesicles, and
which proteins are implicated in mediating their fu-
sion? One hypothesis that certainly deserves testing is
whether these vesicles are of endosomal origin.

It was recently reported that a PM-associated kine-
sin (KCA1) is selectively excluded from the PM at the
division zone in BY-2 cells from prophase to the end of
telophase. The PM band devoid of KCA1 was termed
KCA1-depleted zone, by analogy to the actin-depleted
zone (Vanstraelen et al., 2006), and it was hypothe-
sized that this could be caused by an alteration of the
membrane composition following preprophase band
formation through localized endocytosis (Dhonukshe
et al., 2005; Van Damme et al., 2007). As in animals, one
way plant cells could specify their division zone PM
is by accumulating phospholipids like phosphatidyl-
inositol 4,5-bisphosphate [PtIns(4,5)P2] (Emoto et al.,
2005). Until now, accumulation of PtIns(4,5)P2 at the
division zone and in vesicles has not been reported in

plants (Vermeer et al., 2006). However, PtIns(4,5)P2
accumulated at the margin of the cell plate during its
fusion with the parental PM in BY-2 cells (van Leeuwen
et al., 2007), suggesting a role for these phosphoinosi-
tides in the final steps of cell plate formation.

During the anchoring of the cell plate with the
parental PM, a cell plate-associated protein called
TPLATE accumulates in a 5-mm region surrounding
the cell plate insertion site (Van Damme et al., 2004,
2006). TPLATE is a plant-specific protein with simi-
larity to coat and adaptin proteins, suggesting a func-
tion in vesicle trafficking. A T-DNA insertion mutant
in TPLATE results in male sterility due to an altered
vesicular composition and excessive callose accumu-
lation in mature pollen grains, causing the pollen to
collapse (Van Damme et al., 2006). This phenotype is
highly similar to the drp1c mutant, which is proposed
to function in PM dynamics (Kang et al., 2003b). Live
cell imaging of BY-2 cells expressing a TPLATE RNA
interference construct showed that although the initial
steps of vesicle fusion and cell plate formation were
not affected, cells failed to fuse or anchor their cell
plates with the mother wall (Van Damme et al., 2006).
The above experiments suggest that TPLATE likely
functions in the vesicle fusion events occurring during
the heterotypic fusion of the cell plate with the paren-
tal PM. The identification of TPLATE-interacting pro-
teins will no doubt shed more light on the vesicle
fusion events associated with cell plate anchoring.

VESICLE TRAFFICKING INVOLVED IN CELL
PLATE MATURATION

Initial cell plate formation and cell plate anchoring
are followed by a maturation phase in which, next to
additional fusion events to close the fenestrae, endo-
cytosis of excess membrane takes place (Samuels et al.,
1995; Segui-Simarro et al., 2004). A question that re-
mains unanswered is whether the closing of the fenes-
trae is performed by the same machinery as the initial
fusion events. At least two nonredundant SNARE-
mediated vesicle fusion pathways are involved in cell
plate formation, utilizing either KN-KEULE-SNAP33-
NSPN11-NSF or SYP31-CDC48 (Feiler et al., 1995;
Lauber et al., 1997; Waizenegger et al., 2000; Heese
et al., 2001; Rancour et al., 2002; Zheng et al., 2002). The
first group is clearly essential for initial vesicle fusion
events, as kn mutants fail to develop a plate (Lauber
et al., 1997). SYP31 and CDC48 localize to the cell plate
(Feiler et al., 1995; Rancour et al., 2002), but there is no
information on whether they accumulate more in the
center or at the leading edge. The finding that NSPN11
remained associated with the PM of recently completed
cross walls (Zheng et al., 2002) suggests a function for
the KN machinery during late vesicle fusion events.

It is estimated that about 70% of cell plate membrane
is removed during the maturation process of the cell
plate to a cell wall (Otegui et al., 2001). Membrane
removal by endocytosis is necessary to establish the
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identity of the cell plate membrane as PM and to re-
establish polarity within the cell. This is embodied by
the initial accumulation of the PIN2 protein at either
side of the cell plate during the early phases of cell
plate formation and endocytosis of PIN2 from the
basal side of the cell once the cell plate is constructed.
Side-specific removal of PIN2 from the basal PM is
controlled by the sterol composition of the membrane,
as the sterol biosynthesis mutant cyclopropylsterol
isomerase1-1 (cpi1-1) fails to remove PIN2 from the
basal side of the fused cell plate following cytokinesis
(Boutte et al., 2006; Men et al., 2008). Next to failure in
establishing PIN2 polarity, cpi1-1 shows cytokinesis
defects, which are also reported for several other sterol
biosynthesis mutants like fackel ( fk), hydra1 (hyd1), and
sterol methyltransferase1/cephalopod (smt1/cph; Schrick
et al., 2004; Men et al., 2008). For fk, hyd1, and smt1/
cph, these defects are likely caused by defective cell
plate maturation, as these mutants contain reduced
levels of cellulose, together with ectopic callose and
lignin deposits (Schrick et al., 2004). It would be of
interest to investigate whether cellulose levels in the
cpi1-1 mutant are also reduced and whether the cyto-
kinesis defects seen in these sterol mutants are linked
with sterol-dependent membrane trafficking during
cell plate maturation.

Endocytosed membranes from the center of the cell
plate may also be recycled for peripheral membrane
fusion to speed up cell plate formation, although no
evidence for this has been reported so far. Interest-
ingly, in BY-2 cells, clathrin as well as several DRP1
family proteins accumulate at the periphery of the cell
plate, where vesicle fusion takes place (Hong et al.,
2003; Kang et al., 2003a, 2003b; Tahara et al., 2007),
which could reflect membrane recycling.

Independent of recycling, clathrin-mediated endo-
cytosis removes excess membrane from the plate.
Clathrin-coated vesicles and MVBs were observed
at the newly formed cell plate using tomography
(Samuels et al., 1995; Otegui et al., 2001; Segui-Simarro
et al., 2004; Segui-Simarro and Staehelin, 2006). The
volume and number of these MVBs increase during the
late stages of cytokinesis, coinciding with enhanced
clathrin-mediated endocytosis at the cell plate.

Similar to animal cells, clathrin-mediated endocyto-
sis in plants is likely to be linked to phosphoinositide
signaling (Simonsen et al., 2001; Lee et al., 2007). In
agreement with this, phosphoinositides have been im-
plicated in cell plate maturation. PATELLIN1 (PATL1),
a SEC14-like protein that binds phosphoinositides,
localizes to the cell plate and persists for some time
after cytokinesis. PATL1 is likely to be involved in plate
maturation, as it predominantly associates with the
central region of the cell plate (Peterman et al., 2004).

Clathrin-mediated endocytosis of cell plate mem-
branes would also require the function of dynamins in
pinching off vesicles. The cell plate-localized dynamin
DRP2A is a likely candidate to perform this function
during cell plate maturation, as it localizes to the
cell plate and is involved in trafficking from the

TGN to the vacuole (Hong et al., 2003). Several mem-
bers of the plant-specific dynamin family (DRP1) also
remain present at the maturing region of the cell plate
(Hong et al., 2003). Although DRP1A and DRP1C
colocalize with clathrin at the cell cortex (Konopka and
Bednarek, 2008), suggesting a function in endocytosis,
their exact role during cytokinesis remains to be de-
termined (for review, see Konopka et al., 2006). Endo-
cytosis also removes KN from the cell plate, as KN
accumulates in the MVB/prevacuolar compartment
(Tse et al., 2004) in late mitotic cells (Reichardt et al.,
2007), in agreement with the colocalization of KN
in wortmannin-sensitive ARA7-positive endosomes
(Dhonukshe et al., 2006).

Endocytosis from the plate to ARA7- and ARA6-
positive MVBs (Haas et al., 2007; Jaillais et al., 2008)
was recently suggested as an alternative degradation
pathway to remove monoubiquitinated proteins by
the ESCRT machinery (Winter and Hauser, 2006). In
favor of this hypothesis, an Arabidopsis mutant in one
of the ESCRT-I components (elch) was reported that
produces multinucleated cells in several cell types.
The protein colocalizes with ARA6- and ARA7-positive
compartments and is thought to target a microtubule-
associated protein for degradation (Spitzer et al., 2006).
The animal homolog of elch has been reported to
function in MVB formation and in midbody abscission,
the final step of animal cytokinesis, suggesting a con-
served role for the ESCRT machinery in vesicle forma-
tion at the MVB and cytokinesis in plants and animals
(Hurley and Emr, 2006; Carlton and Martin-Serrano,
2007; Morita et al., 2007).

The presence of coatomer I (COPI) epitopes at the
cell plate in maize and BY-2 cells suggests the removal
of membrane by non-clathrin-coated vesicles (Couchy
et al., 2003) and COPI machinery working not only at
the retrograde transport between the Golgi and the ER
but also at the cell plate. ER membranes gradually
accumulate in the proximity of the cell plate during the
late phases of cell plate formation (Segui-Simarro et al.,
2004). Therefore, the presence of COPI proteins at the
cell plate may point to trafficking events between the
cell plate and the ER during the consolidation phase.

FUTURE PERSPECTIVES

Recently, it has become apparent that membrane
trafficking during cytokinesis is not simply polarized
secretion toward the cell equator (Fig. 1). Much prog-
ress has been made using high-resolution techniques
like electron microscopic tomography and by analyz-
ing marker proteins that label specific compartments.
However, the necessity for additional markers to fine-
tune and unambiguously mark various membrane
compartments remains a challenge for the coming
years. Many proteins, such as ROPs and RABs (for
review, see this issue), that have key functions in
membrane trafficking events in plants have already
been identified. New insights into the process of vesicle
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trafficking during cytokinesis will certainly emerge
by analyzing the function of these proteins and their
close homologues during cytokinesis. The recent de-
velopments in chemical genetics and high-throughput
screening systems will no doubt provide scientists with
new chemical compounds that specifically interfere
with endocytic and exocytic trafficking that can be used
as new tools to unravel the contribution of both path-
ways during the process of cell plate formation.
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