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INTRODUCTION

Respiratory syncytial virus (RSV), the most common cause
of severe lower respiratory tract disease among infants and
young children, typically infects persons by 2 years of age and
can cause subsequent infections throughout life (122). By 2
years of age, almost all children have been infected with RSV,
and over half have been infected twice (38). In Spain, the
annual hospitalization rate is 37 out of 1,000 infants under 6
months and out of 1,000 among those under 1 year of age
(137). Persons at increased risk for severe disease or death
related to RSV include premature infants, elderly adults, and
persons of any age with compromised respiratory, cardiac, or
immune systems (27, 139). RSV is transmitted from person to
person via close contact, droplets, or fomites. In temperate
climates, peak RSV activity typically occurs during the winter.
However, year-to-year national and regional variability in the
RSV season onset and offset occurs in the United States (87).
RSV circulations also differ by geographic location; for exam-
ple, Florida has an earlier season onset and a longer season
than the rest of the United States (16). A case-control study
was undertaken in southern Israel, and the authors examined
the possible association between birth season (date of birth)
and future development of asthma in children. Infants who
were exposed to RSV infection at a very young age were better
protected against the development of asthma, although those
born at the end of winter and in early spring and who were
exposed to RSV infection during the last quarter of their first
year of life might be a higher risk for future development of
asthma (36).

About 30% of children hospitalized for acute bronchiolitis
will have recurrent respiratory symptoms in the years following

their having the disease (124, 125, 127). This observation raises
the possibility of a relationship between acute bronchiolitis and
the subsequent development of bronchial hyperreactivity. A
number of authors have studied a possible role of this virus in
the development of asthma, although the nature of the asso-
ciation between bronchiolitis and asthma is not completely
understood. Asthma could be a direct consequence of RSV
infection itself, or the virus may trigger changes in pulmonary
physiology in patients who are especially predisposed to
asthma (117). RSV infection could increase susceptibility to
asthma by acting on the immune response, genetic factors, or
neural control of the respiratory tract (82). Experimental mod-
els have also shown long-term persistence of RSV in respira-
tory epithelial cells (121). The elucidation of the relationship
between RSV infection and the development of asthma, as well
as a better understanding of the nature of their association,
would have important implications for prevention and treat-
ment. However, the studies so far have been observational, and
they differ widely with regard to population, design, method-
ology, and length of follow-up. A critical appraisal of the epi-
demiologic, experimental, and clinical links should enable us to
better understand the relation between RSV infection and the
development of asthma.

PATHOBIOLOGY OF RSV INFECTION

The RSV genome is composed of single-stranded negative-
sense RNA. The mature, infectious virus particle consists of
ribonucleoprotein (RNP) formed by the interaction of the viral
genomic RNA with the nucleocapsid (N) protein, the phos-
phoprotein (P), and the large (L) protein. The M2-1 protein is
a virus protein required for efficient transcription of the virus
genome by the polymerase complex (20, 28, 45, 53, 142). The
RNP is surrounded by two layers (the matrix [M] protein and
a lipid envelope derived from host cell); three virus-encoded
proteins (the attachment [G], fusion [F], and small hydropho-
bic [SH] proteins) are embedded within the envelope (3, 5, 15,
89, 96, 114). The two nonstructural proteins, NS1 and NS2, are
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not readily detectable in virions but are found in RSV-infected
cells (26, 59).

The receptor(s) for RSV has not been unequivocally iden-
tified, but in vitro data provide some clues about the mecha-
nisms of RSV entry. Heparin-like glycosaminoglycans, un-
branched polysaccharide chains on the surface of most
mammalian cells, have been implicated as receptors or core-
ceptors for RSV (78) or in playing some role in virus entry
(52). Although glycosaminoglycans are important for RSV G
protein interaction with target cells, the precise cellular recep-
tor of RSV remains unknown. The viral F protein, which me-
diates viral penetration by fusion of the viral envelope with the
host cell plasma membrane, has been shown to bind to inter-
cellular adhesion molecule-1 (ICAM-1) (8, 29, 72, 75). Studies
using both light and electron microscopy techniques have
shown that RSV matures predominantly as filamentous struc-
tures on the surface of infected cells. Moreover, lipid rafts have
been implicated in the assembly process of the virus particles
(13–15, 62, 80).

The airway epithelium is the main target of RSV infection.
After infection, RSV replicates in the respiratory mucosa,
leading to epithelial damage and perivascular mononuclear
infiltration (4, 30). When infected by virus, epithelial cells
respond by producing a number of potent immunomodulatory
and inflammatory mediators, including cytokines and chemo-
kines (7, 31, 33, 88, 144). RSV infection activates signaling
pathways in airway epithelial cells through the surface mole-
cule toll-like receptor 4 (72). It was shown previously that RSV
replication activates various transcription factors, including
NF-�B, a central mediator of RSV-induced airway inflamma-
tion (33, 48, 61, 135, 144). The cytokines induced by viral
infection are also known to activate the JAK/STAT (signal
transducer and activator of transcription) signal transduction
pathway, which might regulate the subsequent adaptive im-
mune response (130). Subsequent to the acute infection, epi-
thelial cells are potentially capable of presenting viral antigens
to lymphoid cells (102, 103). Viral clearance involves the in-
duction of both cellular and humoral immunity; however, im-
munity is considered incomplete, as the virus can reinfect the
host (40, 54). Natural immunity to RSV appears to be minimal,
and annual reinfections are frequent during the first years of
life (57).

Autopsy studies of children who died of RSV-induced bron-
chiolitis revealed the degree of inflammation generated by the
immune response and the subsequent airway obstruction. The
infection results in the loss of cilia, sloughing of epithelial cells
into the airway, collection of desquamated epithelial cells,
polymorphonuclear leukocytes, fibrin, lymphocytes, and mucus
within the airway, and edema around the airway. The degree of
epithelial damage has been correlated with the magnitude of
inflammation and airway hyperreactivity (AHR) (47, 54, 79,
105). Lower respiratory tract RSV infection in infancy signif-
icantly increased the odds of having wheezing fits up to 11
years of age in an outpatient population and more than quin-
tupled the risk of asthma/recurrent wheeze at age 13 for infants
who had been hospitalized with RSV bronchiolitis, in compar-
ison to control subjects without infection (43% versus 8%)
(127, 131).

EPIDEMIOLOGY OF RSV

RSV is the leading cause of bronchiolitis in infants world-
wide. In temperate climates, most RSV infections occur be-
tween November and May, whereas in tropical climates, RSV
infections occur year-round (12). In the United States, RSV-
related disease is a yearly epidemic that peaks in January or
February in most parts of the country and slightly earlier in the
southeast (17). During the winter epidemics, RSV can infect
up to 100% of the children in day care centers (56). The age
related to the highest morbidity risk of RSV infection is 50,
95). RSV is also a major cause of respiratory illness in the
elderly and high-risk adults. It has been estimated that more
than 120,000 infants in the United States will be hospitalized
annually with RSV infection, with more than 200 deaths oc-
curring as a result of this illness (122, 123). About 50% of
infants hospitalized for lower respiratory tract RSV infection
have subsequent episodes of wheezing that in some cases can
persist to 11 years of age or later ages (51, 129). There is also
evidence that congenital vulnerability and host-dependent ge-
netic heterogeneity are involved in the long-term effects of the
infection (76, 77). Some studies have linked severe early RSV
infection with allergic sensitization leading to asthma (127).
Table 1 presents a list of previously conducted studies showing
the increased risk of recurrent wheezing, bronchial hyperreac-
tivity, or asthma in children after RSV-induced bronchiolitis in
infancy.

In a population-based birth cohort study conducted by
Henderson et al. (58), a total of 150 infants (1.1% of the
cohort) were admitted to the hospital within 12 months of
birth with RSV-induced bronchiolitis. The prevalences of
wheezing were 28.1% in the RSV group and 13.1% in the
controls at 30 to 42 months and 22.6% in the RSV group and
9.6% in the controls at 69 to 81 months. The cumulative
prevalences of asthma were 38.4% in the RSV group and
20.1% in controls at 91 months (58). After a study con-
ducted in Norway, the researchers concluded that children
hospitalized for early-life bronchiolitis are susceptible to
recurrent wheezing and reduced pulmonary function by 7
years of age compared to age-matched children not hospi-
talized for early-life bronchiolitis (32). In a different study,
conducted by Schauer et al. (118), a positive test for immu-
noglobulin E (IgE) antibodies was noted in 33% of RSV-
infected children as opposed to 2.3% of children in control
group. They concluded that severe RSV-induced bronchi-
olitis during the first year of life is an important risk factor
for the development of wheezing and sensitization to com-
mon allergens during the subsequent year (118). Sigurs et al.
(127) studied the outcome for 13-year-olds (46 children with
RSV and 92 control subjects). They reported 43% preva-
lence of asthma and recurrent wheezing and 39% preva-
lence of allergic rhinoconjunctivitis among the RSV-in-
fected group as opposed to 8% and 15% prevalences among
the control subjects, respectively (127). Overall, the epide-
miological studies have shown that RSV infection is a sig-
nificant risk factor for future development of asthma, par-
ticularly in individuals who have genetic predisposition for
allergic disease.
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CLINICAL STUDIES

Two very important and pertinent prospective studies in
relation to the link between RSV and asthma are noteworthy.
The first study included 47 previously healthy infants hospital-
ized for RSV-induced bronchiolitis during their first year of life
and a reference population of 93 infants, matched for age, sex,
family history of reactive airway disease (RAD) or atopy, and
general living environment and with no history of RSV infec-
tion (124). The study design included RAD, wheezing, and
recurrent wheezing as the outcome measures. The allergic
status of each patient was determined by skin prick testing and
titers of serum IgE antibodies. By 7 years of age, 30% of
children in the RSV-infected group (versus only 3% of chil-
dren in the reference group) had experienced RAD. The cu-
mulative prevalence of recurrent wheezing among children in
the RSV group was twice that observed for the reference group
(68% versus 34%, respectively), and the presence of any
wheezing at age 7 years was 38% in the RSV-infected group
and 2% in the control group. RSV-induced bronchiolitis was
the only significant risk factor for RAD, whereas RSV-induced
bronchiolitis, family history of atopy, and male sex were all risk
factors for the presence of any wheezing. Multivariate analysis
showed that the highest frequency of RAD occurred when
both RSV-induced bronchiolitis and a family history of atopy
were present as risk factors. That study also found a link
between RSV-induced bronchiolitis and atopy; this has not
been observed in other studies, possibly due to differences in
the severity of RSV-induced disease and/or genetic back-
ground among the populations examined.

A second, questionnaire-based study included 519 infants
enrolled in the Tucson Children’s Respiratory Study who de-
veloped mild to severe RSV-induced disease without necessar-

ily requiring hospitalization (131). On each of four occasions,
when the children in the study were 6, 8, 11, and 13 years old,
their parents were asked to complete a questionnaire about
current parental smoking status and the child’s history of
wheeze. The study prospectively enrolled 1,246 infants born
from 1980 to 1984. In this study, lower respiratory tract infec-
tion with RSV was associated with increased risks of both
infrequent and frequent wheezing (odds ratios of 3.2 and 4.3,
respectively) at age 6, but this risk was reduced as children
became older, such that it was not significant at age 13. These
investigators did not find a relationship between lower respi-
ratory tract RSV infection and skin test reactivity to aeroaller-
gens (131).

CELLULAR AND MOLECULAR LINKS

Epithelial cells are the first line of defense of the airway, and
their exposure to either RSV or allergens causes signals the
release of several chemokines and cytokines. These inflamma-
tory mediators damage the epithelium and cause loss of epi-
thelial cells, leading to increased airway permeability, mucous
plugging, and decreased clearance. The degree of epithelial
damage is correlated with the magnitude of inflammation and
AHR (47, 54, 79, 105). Epithelial cells also regulate inflamma-
tory events by secreting various cytokines that communicate in
a paracrine manner. One of the earliest events in response to
RSV infection is the initial innate cytokine response, with a
time-dependent increase in expression (21). The early cyto-
kines, including the type I interferons (IFNs), IFN-� and
IFN-�, interleukin-12 (IL-12), and IL-18, have been detected
in the respiratory secretions of infants with RSV infection (35,
130). Recent studies have shown that in the response to RSV

TABLE 1. Clinical and epidemiologic studies linking RSV infection to asthma

Researchers and yr (reference no.) Location No. of human subjects

No. of yrs after
admission to
hospital with
bronchiolitis

Outcome/comment

Rooney and Williams, 1971
(115)

Australia 62 (2–7 yrs of age) A significant association of asthma in 56% of
children who subsequently experience
wheeze

Gurwitz et al., 1981 (46) Canada 48 9–10 Incidence of bronchial hyperreactivity is 57%
Hall et al., 1984 (49) United States 29 8 An association between RSV infection and

chronic abnormalities of pulmonary
function

Mok and Simpson, 1984 (85, 86) United Kingdom 200 7 Atopy and bronchial hyperreactivity
independently contribute to augmented
response to RSV postinfection

Welliver and Duffy, 1993 (141) United States 43 7 Decreased pulmonary function following
bronchiolitis is related to atopy

Sigurs et al., 1995 (126) Sweden 47 2 RSV infection during first yr is an important
risk for asthma and allergy in the
subsequent 2 yrs, especially in genetically
predisposed children

Stein et al., 1999 (131) United States �180 13 Lower respiratory tract RSV infections are
associated with increased risk of frequent
wheeze by age 6; risk decreased markedly
with age and was not significant by age 13

Sigurs et al., 2000 (125) Sweden 47 7 RSV-induced bronchiolitis severe enough to
cause hospitalization is highly associated
with the development of asthma and
allergic sensitization at age 7.5 yrs
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infection, the airway epithelium also produces chemokines that
modulate the influx of inflammatory cells into the infected
tissues. These include CC (RANTES [regulated on activation,
normal T-cell expressed and secreted], MCP-1 [monocyte che-
moattractant protein], MIP1� [macrophage inflammatory pro-
tein 1�], and MIP1�), CXC (growth-regulated oncogene alpha
[Gro-�], Gro-�, Gro-�, IL-8, and interferon-inducible T-cell
alpha chemoattractant), and CX3C (fractalkine) subclasses of
chemokines in the lower airway epithelial cells (135, 144).
Cytokines produced by T cells in the adaptive immune re-
sponse are thought to play a role in RSV-induced disease
pathogenesis. T-helper type 1 (Th1) cells stimulate cell-medi-
ated immunity and produce inflammatory cytokines, such as
IFN-� and tumor necrosis factor alpha (TNF-�). Th2 cells
stimulate humoral immune responses and produce cytokines
such as IL-4, IL-5, IL-13, and IL-10 (22).

As shown in Fig. 1, RSV infection upregulates the expres-
sion of several cytokines and chemokines, such as IL-1�, IL-6,
IL-8, TNF-�, MIP1�, RANTES, and the adhesion molecule
ICAM-1, in cultured epithelial cells (1, 2, 25, 134). During the
acute stage of infection, airway epithelial cells can initiate
primary local inflammatory responses by directly responding
with cytokine secretion to inflammatory stimuli or by amplify-
ing an inflammatory event previously initiated by activated
macrophages, eosinophils, or lymphocytes (Table 2) (42, 54,
63). These cell types may have important roles in controlling
infection; however, inappropriate expression of inflammatory
mediators may be linked to hyperresponsiveness and exacer-
bation of RSV-associated asthma (24, 120). Acute respiratory
viral infections are often accompanied by neutrophilia of upper
and lower respiratory secretions, and it is likely that products
of neutrophil activation are involved in airway obstruction and
lower airway symptoms (37, 81).

Experimental findings suggest that the cellular immune re-
sponse to RSV, particularly IFN-� production, clearly influ-
ences the clinical outcome of infection. Because the immune
response to viral infections appears to have some unique fea-
tures in persons with asthma, including reduced generation of
IFN-� in peripheral blood cells, asthmatics may suffer more-
severe lower respiratory manifestations (93). In addition to the
impact on immunogenicity due to the actions of the cytokines
and chemokines they produce, bronchial epithelial cells also
express adhesion molecules, such as ICAM-1, and major his-
tocompatibility complex class II molecules, which enable them
to present antigens directly to T cells. Thus, the role of bron-
chial epithelial cells in the viral immune response goes beyond
simply being a barrier. These cells can influence the extent and
potency of the adaptive immune response by means of the
cytokines and chemokines they secrete, as well as the major
histocompatibility complex class II and ICAM-1 surface mol-
ecules. It was shown previously that RSV colocalizes with
ICAM-1 on human epithelial HEp-2 cells and that a neutral-
izing antibody to ICAM-1 significantly reduced RSV infection
and secretion of RANTES (8).

The appearance of NF-�B in the nucleus of a RSV-infected
cell coincides with an increase in IL-8 gene transcription.
Moreover, RSV-induced IL-8 gene transcription requires viral
replication, and the inhibition of viral replication reverses
RSV-induced NF-�B activation and IL-8 transcription (19,
144). It has been proposed that RSV gene products act via the
sequestration of protein phosphatases and induction of kinases
that affect I�B kinases, which leads to the persistent activation
of NF-�B and the cellular activation of a whole battery of
cytokine and chemokine genes (10). In addition to NF-�B, the
transcription factors CCAAT/enhancer-binding protein (18)
and activator protein (AP-1) (70) have also been implicated in
postviral replication gene activation events, including expres-
sion of the genes encoding ICAM-1 and various cytokines (70).
In addition, there is increasing evidence that NF-�B is involved
in chronic inflammatory diseases such as asthma (31).

The involvement of STAT proteins in the regulation of
events underlying RSV infection has been implied but not
demonstrated. RSV infection can upregulate the expression of
IL-6, IL-8, MCP-1, TNF-�, MIP1�, RANTES, IFNs (2, 25,
134, 136), and ICAM-1, and this is partially controlled by
STAT transcription factors (8). RSV increased expression of

FIG. 1. Epithelial cell as the target of RSV and possible role of
NF-�B (hence the question mark) in mediating RSV-induced activa-
tion of genes. RSV infection upregulates the expression of several
proinflammatory and allergy- and asthma-related cytokines and che-
mokines in cultured epithelial cells (1, 2, 25, 134). GM-CSF, granulo-
cyte-monocyte colony-stimulating factor; FcER1�, Fc fragment of al-
pha subunit high-affinity (I) IgE receptor; iNOS, inducible nitric oxide
synthase; MUC-1, mucin-1.

TABLE 2. Common inflammatory cells and mediators in the upper
and lower airway in RSV infection

Immune response Immune mechanism(s)

Inflammatory cells Eosinophills
Mast cells
Basophills
Dendritic cells
Neutrophills
Th2 lymphocytes

Mediators Histamine
Cysteinyl leukotrienes
Prostaglandins
Kinins
Cytokines
Chemokines
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IRF1 (interferon-regulatory factor 1), ICAM-1, and RANTES
in normal fibroblasts but not in those from STAT1-deficient
mice, which indicated a requirement for STAT1 (70). Also, the
synergy between IFN-� and TNF-� in the transcriptional acti-
vation of genes such as those encoding IRF1 and ICAM-1 may
be mediated by the cooperation of STAT1 and NF-�B (23, 84).
IFN-�, which acts as an antiviral agent, is a potent inducer of
the STAT pathway (74). RSV infection activates STAT1 and
STAT3 in the human epithelial carcinoma line A549 and nor-
mal human bronchial epithelial cells; however, little is known
about the roles of STAT-mediated pathways during RSV in-
fection, especially during early periods prior to RSV replica-
tion within host cells (70).

Other pathways are also affected by RSV. During the early
events of RSV infection in normal human bronchial epithelial
cells, the phosphokinase C-� isozyme translocates to the cell
membrane and colocalizes with the viral particles adsorbed to
the membrane. Inhibition of phosphokinase C-� prevents viral
entry without modifying the adsorption step (116). It has been
reported that RSV infection of A549 cells activates the extra-
cellular signal-regulated kinase-1 (ERK-1) and ERK-2 path-
ways and that inhibition of these ERK pathways significantly
decreases RSV infection of these cells compared to the case
for controls (69). Blocking ICAM-1 also reduces RSV infec-
tion in A549 cells (8).

NEUROLOGICAL LINKS

An animal model for RSV-induced bronchiolitis was devel-
oped with Fischer 344 rats (105). These rats build up a strong
immune response and are thus able to clear RSV from the
lungs in a few weeks. In one of the studies, weanling rats were
inoculated with RSV, and the long-term effects of early infec-
tion on the nonadrenergic noncholinergic nervous system
(NANC) were examined (68). It was found that NANC nerves
at the infection site released substance P and other peptide
neurotransmitters which play an important role in the initial
inflammatory process and in the modulation of the immune
response to the virus. Neurogenic inflammatory responses
across the respiratory tract were observed as the rats grew from
infancy to adulthood.

Recent evidence suggests that RSV infection induces the
expression of NK1 neurokinin receptors on T lymphocytes
within bronchiole-associated lymphoid tissue (100, 102, 103).
These G protein-coupled receptors respond to substance P
with activation of the phosphoinositide pathway and produc-
tion of inositol triphosphate. The authors hypothesized that,
following virus infection, NK1 receptor-bearing lymphocytes
are deployed into the airways and that subsequent neuropep-
tide stimulation might be involved in the release of proinflam-
matory cytokines.

Acute RSV infection is also associated with markedly in-
creased numbers of mast cells in the airway mucosa, which
might be involved in the observed massive expression of 5-li-
poxygenase, with transient production of cysteinyl leukotrienes
(138). It has been suggested that leukotrienes released as a
result of the mast cell-nerve interactions during RSV infection
could eventually potentiate the inflammatory effects of neu-
ropeptides such as substance P. Based on this model, it was
concluded that activation of the NANC by irritants could be

responsible for the recurring airway inflammation which con-
tinues after the acute RSV infection has been cleared (103). In
the most recent studies, it was shown that RSV infection pro-
motes a large increase in the expression of nerve growth factor
and neurotrophin receptors (101). Release of nerve growth
factor leads to short- and long-term changes in the distribution
and reactivity of sensory nerves across the respiratory tract.
These may participate in the exaggerated inflammatory re-
sponse seen during and after infection. It was postulated that
changes in neurotrophin expression in the respiratory tract
may represent an important factor in the association between
susceptibility to childhood asthma and RSV-induced bronchi-
olitis in infancy.

RSV-ASTHMA LINK IN EXPERIMENTAL ANIMAL MODELS

Knowledge of the clinical pathogenesis of RSV-induced dis-
ease is limited because of the relatively small number of human
studies. Animal models of RSV infection utilizing mice, rats,
guinea pigs, sheep, cows, and monkeys have been developed to
study the disease mechanism in detail, and this has resulted in
the realization that RSV causes a multifaceted disease whose
clinical manifestations and sequelae depend upon age, genetic
makeup, immunologic status, and concurrent disease within
the subpopulations. Mice have been extensively used to study
the immune mechanisms of RSV-induced disease (97). How-
ever, there are significant limitations involved in using murine
systems, including a lack of infection in bronchiolar epithelium,
failure to spread infection from upper to lower airway, and
relatively large amount of inoculum required for initiation of
pathology and illness.

In BALB/c mice, a large RSV inoculum (107 PFU/ml) ad-
ministered intranasally induces pneumonia, clinical illness,
such as weight loss or ruffled hair, and appreciable pathology in
the lung, along with infection of the lung polymorphonuclear
cells and macrophages (42, 43, 63, 92). Nevertheless, many
elements of the mouse and human responses to RSV infection
are similar, particularly in the production of cytokines and
chemokines and patterns of lung inflammation (83). The im-
munohistopathology of RSV infection in mice is well charac-
terized (39–43, 63, 92), and it resembles that of human RSV
infection (47). Similar to the case with humans, mice rendered
immunocompromised by treatment with cyclophosphamide
have increased susceptibility to RSV infection and produce
higher viral titers in the lung tissue than untreated mice (132).
A study to establish the importance of IFN-� produced during
the primary infection in the protection against the develop-
ment of airway hyperresponsiveness on reinfection was re-
cently conducted. For this study, both wild-type and IFN-�-
knockout mice were infected with RSV as neonates or
weanlings and reinfected 5 weeks later. Airway responses were
assessed on day 6 after primary or secondary infection (73).
The mouse model has several advantages over models of other
species. There is a vast array of inbred, congenic, transgenic,
and knockout strains of mice available, and they are cheap to
purchase and maintain.

The cotton rat is 100-fold more permissive (per input dose of
virus) as well as more responsive immunologically than the
mouse (43, 110). Studies with the cotton rat model showed that
RSV-neutralizing serum IgG could prevent pulmonary infec-
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tion and attenuate nasal infection, and these studies estab-
lished the rationale for clinical trials of RSV prophylaxis with
plasma-derived IgG for high-risk infants (44, 106, 108). Cotton
rats also develop a vaccine-enhanced disease similar to that in
humans and other primates (107, 109), but the lack of con-
genic, transgenic, or knockout strains has limited the use of
these animals. Thus, most RSV studies will continue to be
done with the mouse.

Although chimpanzees have the closest genetic relatedness
to humans, practical and biological considerations severely
limit the use of chimpanzees in RSV research. Chimpanzees
are scarce, extremely expensive, and available only through
primate breeding programs. Experimental RSV infections in
owl monkeys, rhesus monkeys, African green monkeys, cebus
monkeys, squirrel monkeys, bonnet monkeys, and baboons
have also been described (9, 64, 111–113, 128). The cost and
required maintenance of these species are less than those for
chimpanzees, but these species still require specialized housing
and handling methods.

Results with animal models have been disappointing in de-
fining mechanisms by which RSV might lead to asthma exac-
erbations, largely because of the lack of reproducible results
among different research groups. For instance, one group
found that primary RSV infection in BALB/c mice caused
IL-13-mediated increases in airway mucus and airway respon-
siveness to methacholine compared to the case in sham-chal-
lenged mice (133). However, this group found no airway
eosinophilia in cases of RSV infection. Another group re-
ported that RSV induced AHR and lung eosinophilia, both of
which were mediated by IL-5 in BALB/c mice and not IL-13 in
C57BL/6 mice (94, 119). Still another group found that primary
RSV infection did not induce AHR, detectable levels of IL-5
or IL-13 mRNA or protein expression, or lung eosinophilia.
However, this group found that RSV infection during allergic
lung inflammation induced significant AHR and prolonged
mucus production (55, 98, 99). AHR in BALB/c mice seems to
be linked to both IFN-� and leukotriene generation (140). It is
important to keep in mind the relative strengths and weak-
nesses of the various animal models in order to better under-
stand the mechanism by which RSV infection predisposes to
asthma or exacerbates existing respiratory disease.

PROPHYLAXIS

Despite the considerable impact of RSV on respiratory
health during childhood, the treatment options available for
the management of lower respiratory tract RSV infections are
limited and remain primarily supportive and symptomatic.
While bronchodilators are used frequently for infants with
acute bronchiolitis, their efficacy remains highly controversial
(65, 66, 91). There have been many attempts to produce an
effective RSV vaccine or anti-RSV drug but with only limited
success. Tests of the first developed vaccine on human children
ended with disastrous results when natural RSV infection de-
veloped in those children (up to 80% of the children were
hospitalized, and two children died) (67).

Passive immunoprophylaxis is currently the only option for
avoiding RSV-induced disease. The IMpact-RSV trial was a
randomized, double-blind, placebo-controlled trial conducted
at 139 sites in the United States, the United Kingdom, and

Canada (60). It evaluated prophylaxis with palivizumab, a hu-
manized monoclonal antibody against the RSV fusion protein,
in 1,502 prematurely born children with or without chronic
lung disease (CLD) by using reduction in hospitalizations for
RSV as the primary datum of this study. Children received an
intramuscular injection of either palivizumab (15 mg/kg of
body weight) or placebo every month for 5 months. An overall
55% reduction in hospitalizations for RSV (10.6% in the pla-
cebo group hospitalized versus 4.8% in the palivizumab group
hospitalized) was observed. Specifically, prematurely born chil-
dren without CLD had a 78% reduction in RSV-related hos-
pitalizations (8.1% versus 1.8%) compared with a 39% hospi-
talization reduction for children with CLD (12.8% versus
7.9%). A cohort of preterm infants, including 191 who had
received palivizumab and were not hospitalized for RSV and
230 who had never received palivizumab, out of which 76 were
hospitalized for RSV, were assessed for recurrent wheezing
beginning at a mean age of 19 months and continuing for 24
months. The incidence of recurrent wheezing in the palivi-
zumab-treated subjects (13%) was significantly lower than that
in the group of untreated subjects (26%) (129). The high cost
of palivizumab is the main factor for its restricted use. The
cost-effectiveness of the use of palivizumab in children at high
risk of hospitalization, preterm infants (�35 weeks gestation),
children with bronchopulmonary dysplasia, and children with
congenital heart disease was assessed. The United Kingdom
National Health Sciences study showed that palivizumab pro-
phylaxis against severe RSV infection in children at high risk is
effective in preventing hospitalization and may be cost-effective
in comparison to no prophylaxis (90).

These results coupled with epidemiologic evidence of the
link between RSV and RAD raise the issue of whether immu-
noprophylaxis against RSV can reduce the risk for develop-
ment of RAD. In the Fischer 344 rat model, prophylaxis with
palivizumab prevented the development of acute neurogenic
inflammatory changes in the lower respiratory tract following
inoculation of RSV (104). Palivizumab prophylaxis also ap-
peared to guard against development of long-term vulnerabil-
ity to neurogenically mediated inflammation.

Another potential area of anti-RSV research has been the
investigation of small interfering RNAs (siRNAs) against viral
proteins as a means of blocking virus replication (6). Prophy-
lactic intranasal administration of an siRNA formulation spe-
cific for RSV P protein is able to significantly reduce the viral
load and the disease parameters in RSV-infected BALB/c mice
(11). Although intranasal administration of naked siRNA to
humans was found to be safe in a phase I study, other studies
have shown toxicity for this method.

siRNA specific for the RSV NS1 mRNA also elicited anti-
viral effects in BALB/c mice (143). Silencing of the NS1 gene
attenuated RSV replication and boosted the immune response
through increased IFN-� production (143). The use of si-
lenced-NS1 (siNS1) prophylaxis may be an effective method
for preventing RSV-induced bronchiolitis and potentially re-
ducing the later development of asthma associated with severe
respiratory infections. The nonstructural proteins of RSV, NS1
and NS2, afford promising targets for siRNA therapy since
they are produced early in the infection cycle and are necessary
for survival of virus.

In a study conducted with Fischer 344 rats, prophylaxis with
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siNS1 significantly reduced lung RSV titers and AHR to
methacholine challenge in comparison to its effect on the con-
trol group (71). Treatment of rats with siNS1 prior to RSV
exposure was effective in reducing virus titers in the lungs and
in preventing the inflammation and airway hyperresponsive-
ness associated with the infection that have been linked to
development of asthma (71). A phase I study using nanopar-
ticle-incorporated siNS1 is currently under development, and it
may have future implications in prophylaxis/therapy globally.

CONCLUSION

Despite progress in the treatment of asthma, the incidence
of asthma appears to be increasing in all age groups, including
children. RSV-induced bronchiolitis constitutes a proven risk
factor for the development of childhood asthma. The evidence
from epidemiologic and clinical studies has been considered in
the debate about the role of RSV-induced bronchiolitis in
childhood asthma. Some of the variations between results have
come from the study design and the geographic regions and the
population of subjects being studied. Cellular and molecular
studies of RSV infection in human cell lines and neurologic
evidence in animal models have demonstrated a possible
causal relationship between RSV-induced bronchiolitis during
infancy and asthma later in life. Prophylaxis with antibodies or
siRNAs in animal models has been shown to prevent acute
infections and offer long-term protection from chronic lung
diseases. Nonetheless, further studies with humans, particu-
larly children, are needed to verify this. Such studies are im-
portant, as they are expected to demonstrate whether achiev-
ing successful prophylaxis against RSV infection might reduce
the risk for development of asthma in children later in life.
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