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Abstract
Although the aberrant actions of protein kinases have long been known to contribute to tumor
promotion and carcinogenesis, roles for proteins phosphatases in the development of human cancer
have only emerged in the last decade. In this review, we discuss the data obtained from studies
examining the biological and pathological roles of a serine/threonine protein phosphate, PP5, which
suggest that PP5 is a potentially important regulator of both hormone- and stress-induced networks
that enable a cell to respond appropriately to genomic stress.
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Introduction
Studies into the molecular mechanisms underlying tumor promotion and the unrestrained
proliferation of cancer cells have revealed that many different protein kinases influence
signaling networks that affect cancer cell growth [1–3]. Indeed, reversible phosphorylation has
been shown to play an important role in the regulation of numerous signaling networks that
control cell growth, differentiation, senescence and programmed cell death (apoptosis).
Accordingly, there is great interest in the development of drugs to suppress the aberrant actions
of “key” kinases that promote tumor formation and growth. More recently it has become clear
that protein phosphatases are also dynamic and highly regulated enzymes [4–6], suggesting
that the aberrant actions of certain phosphatases may also contribute to the development and
progression of human cancer. Here we review the literature on a serine/threonine protein
phosphatase designated as PP5 (human gene PPP5).

Overview of PP5 and Ser/Thr phosphatases
In eukaryotic organisms, serine/threonine protein phosphatases (PPases) have been grouped
into two major families, designated as PPM (metal-dependent protein phosphatases) and PPP
(phosphoprotein phosphatases). The phosphatases of the PPP family are among the most highly
conserved proteins on earth, with homology across taxa greater than that of histones (2A and
2B) [7–11]. PP5 belongs to the PPP-family, which also contains PP1, PP2A, PP2B, PP4, PP6
and PP7 [8–17]. Most of the PPP-subfamilies contain isoforms, with mammals expressing two
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or more isoforms of PP1, PP2A, PP2B, and PP7 that share >80% identity. In contrast,
throughout Eukaryota, there is a single form of PP5. PP5 also differs from most PPP-family
phosphatases in that the principle substrate targeting, regulatory, and catalytic domains are
contained in a single polypeptide chain. Whereas the catalytic, regulatory, and targeting
subunits of PP1–PP4 are encoded by separate genes, with the holoenzyme comprised of two
or more proteins that are held together weakly via non-covalent interactions. Unlike PP1 and
PP2A, purified PP5 has low basal activity. Structural studies indicate that in the absence of
other proteins the N-terminal domain folds to cover the catalytic site blocking acess to
substrates [18,19]. Thus, it is believed that the catalytic actions of PP5 occur predominately in
protein complexes (Figure 1).

Determining the biological roles of PP5 has proven challenging. The catalytic domain of PP5,
originally designated as PP3, was first purified from a bovine brain extract [20]. Shortly
thereafter the cDNA encoding PP5 was identified in cDNA libraries derived from rat
adipocytes (designated as PPT), yeast (designated as PPT1), a human teratocarcinoma and
mouse embryos [21–23]. The human gene encoding PP5 (designated PPP5c) was then
identified on chromosome 19. It contains 13 exons with a transcript length of ~2 kb [24].

Although the fact is often ignored, PP5 is sensitive to inhibition by several natural toxins
commonly employed to study the actions of PP1 and PP2A (i.e. okadaic acid, microcystins,
nodularin, calyculin A, tautomycin and cantharidin). Therefore, although studies conducted
with these PPase binding toxins are often interpreted as providing evidence that either PP1 or
PP2A participates in a given event, in reality the involvement of PP5 should not have been
excluded. The potential actions of toxin-sensitive PP4 and/or PP6 should not be ignored either.

PP5 protein complexes
To date PP5 has been identified in complexes containing many proteins know to participate in
signaling networks that initiate or regulate a variety of cellular events, including the
glucocorticoid receptor (GR)- heat shock protein 90 (Hsp-90)-heterocomplex [13,25,26], the
CDC16/CDC27 subunits of the anaphase-promoting complex [27], cryptochrome 2 [28],
Hsp90-dependent heme-regulated eIF2α kinase [29], apoptosis signal-regulating kinase 1
(ASK1) [30], DNA-PKcs (DNA-dependent Ser/Thr protein kinase) [31], ATM (ataxia-
telangiectasia mutated kinase) [32], ATR (ATM and Rad 3 related kinase) [33], the A-
regulatory subunit of protein phosphatase type 2A [34], the G12-α/G13-α subunits of
heterotrimeric G proteins [35], Rac [36] and Raf1 [37]. However, unlike protein kinases where
a binding partner is often a good indication of a substrate, PP5 has less defined binding
interactions with its substrates (i.e. PP5 has no apparent consensus substrate binding sequence).
Therefore, in many cases binding may not indicate an actual substrate, but rather a partner in
a complex of proteins that contains a substrate(s).

PP5 and the glucocorticoid receptor
One of the first and most studied protein complexes containing PP5 is the glucocorticoid
receptor (GR) heat shock protein 90 (Hsp-90) complex [25]. In this complex PP5 binds directly
to Hsp-90. Mutational studies revealed that PP5 binds via its N-terminal tetratricopeptide repeat
(TPR) domain directly to the C-terminal region of Hsp-90 [13]. Binding also disrupts the auto-
inhibitory conformation maintained by the interaction of the three TPRs in the N-terminal
domain with the C-terminal J helix and catalytic domain [18]. Thus, the association of PP5
with Hsp-90 “activates” PP5 by allowing substrate access to the catalytic site [19].

The role played by PP5 in GR-signaling is complex. Hsp-90 is an essential molecular chaperone
that is responsible for the activation or maturation of several proteins in key signal transduction
pathways, including steroid hormone receptors, helix-loop-helix transcription factors, and
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protein kinases (e.g. Raf-1 and Src [reviewed in 38,40]). Steroid receptors, such as GR, bind
hormone after assembling into “mature” complexes containing several proteins. Upon hormone
binding, the GRs are released from the Hsp-90 heterocomplex, translocate into the nucleus,
dimerize and bind DNA. There, steroid receptors interact with co-transcriptional regulatory
proteins to modulate the transcription of genes.

Initially it was proposed that PP5 is required for optimal GR signaling. This hypothesis was
derived from studies using a “dominate negative” truncation mutant of PP5, in which a dramatic
inhibition of transcriptional activation by glucocorticoids was observed following the over
expression of the N-terminal TPR domain of PP5 [25]. In contrast, studies using PP5 antisense
oligonucleotides revealed a marked enhancement of dexamethasone-induced transcriptional
activation suggesting the opposite, that PP5 antagonized GR-signaling [41]. Using antisense
oligonucleotides targeting PP5, a modest increase in receptor binding to DNA was observed
even without the addition of agonist. In addition, in the presence of dexamethasone (a potent
GR-agonist) the suppression of PP5 expression produced a marked increase in GR-DNA
binding, which was observed concomitantly with increased nuclear accumulation of the
receptor [42]. Additional experiments revealed that the binding of PP5 to the GR-Hsp-90
complex occurs in the cytoplasm in a competitive manner with two immunophilin-proteins,
FKBP51 and FKBP52, which also contain TPR-domains [13,25,26]. The binding of FKBP52
augments glucocorticoid signaling [26,43], where as FKBP51 suppresses GR-signaling [44].
The binding of hormone to the GR was then shown to induce the substitution of one
immunophilin (FKBP51) for another (FKBP52), with GR-Hsp90-FKBP52 heterocomplex
binding with dynein and then moving from the cytoplasm to nucleus [45]. In contrast, the
binding of GR-Hsp90 with FKBP51 favors cytoplasmic retention of the receptor complex and
exhibits an inhibitory role in GR-function. Subsequently it was shown that PP5 exerts a
hierarchical effect on this aspect of GR-function (FKBP52 > PP5 > FKBP51) [26] (Figure 2).
This finding appears to reconcile the conflicting data produced with the TPR “dominant-
negative” mutant and the antisense oligonucleotides. That is, the over expression of the TRP-
domain of PP5 prevents the binding of FKBP52, favoring the cytoplasmic retention of the GR-
complex in a state with low affinity for hormone. The suppression of PP5 expression has the
opposite effect, facilitating FKBP52-GR interactions, which favors hormone binding,
increased nuclear translocation and enhanced transcriptional activity. However, the process is
likely to be more complex, for recently PP5 has been implicated in the dephosphorylation of
GRs at sites shown to differentially affect GR target gene expression [46]. Thus, in addition
to affecting nuclear translocation of GR via its association with Hsp-90, PP5’s direct actions
on the GR may influence the ability of the hormone-activated receptor to interact with
transcriptional coregulators.

PP5 and other Hsp-90 associated proteins
PP5 has also been observed in Hsp-90 heterocomplexes containing other proteins, including
heme-regulated eIF2α kinase [29] and heat shock factor 1 (Hsf-1) [47]. PP5 appears to
negatively modulate the maturation of the Hsp-90 dependent heme-regulated kinase [29] and
to function as a negative modulator of Hsf-1 [47]. The over expression of the PP5 TPR domain
facilitates the dissociation of peroxisome proliferator activated receptors (PPARα and
PPARβ) from Hsp-90, which is associated with increased transcriptional activity measured
with a PPAR-reporter plasmid assay [48]. The over expression of the TPR domain has also
been found to result in the down regulation of aryl hydrocarbon receptor levels, suggesting that
PP5 may also play a role in the stabilization of the aryl hydrocarbon receptor [49]. These
observations suggest PP5 may play a broad role in the molecular chaperone activity of Hsp-90.
However, at this time the physiological roles played by PP5 when associated with these protein
complexes are not clear.
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PP5 as a negative regulator of p53-tumor suppressor protein
The suppression of PP5 expression with ISIS 15534, a potent antisense oligonucleotide
targeting human PP5, suppressed the growth of some, but not all, cancer cells in culture [50].
Later it was observed that the growth suppression achieved with ISIS 15534 occurred only in
cells that contain functional p53 and undergo G1-growth arrest when treated with
dexamethasone [41]. The ablation of PP5 has little effect on the binding of hormone to GR.
However, treatment with ISIS 15534 enhanced both dexamethasone-induced phosphorylation
of p53 at Ser15 and the expression of the G1-cyclin dependent kinase inhibitor, p21Waf1/cip1

[51].

p53 is a well known tumor suppressor protein that functions as a stress-induced transcription
factor. Phosphorylation at Ser15 affects p53 in several ways: 1) it decreases the binding affinity
between Mdm2 (p53-murine double minute 2, an Ub-E3 ligase) and p53, disrupting a negative
feedback loop leading to the proteolytic degradation of p53; 2) it increases the transcriptional
efficiency of certain p53-responsive genes; 3) by masking a nuclear export signal contained
near the amino terminus, phosphorylation at Ser15 allows the nuclear accumulation of p53
[52,53,54]. Thus, by suppressing the GR-dependent phosphorylation of Ser15, PP5 appears to
function as a negative regulator of p53 [41,50,51]. However, even the marked over expression
of PP5 does not prevent the UV-induced increase in p53 protein levels or phosphorylation,
suggesting that the main role of PP5 in p53 signaling is to help keep the basal activity of p53
low in cells that have not encountered genomic stress. In addition, although PP5 can
dephosphorylate p53 in vitro, in vivo PP5 is likely acting upstream, possibly by augmenting
actions of a GR-induced kinase, such as serum-glucocorticoid inducible kinase-1 (SGK-1),
which is up-regulated in cells treated with ISIS 15534 [41].

PP5, Ras, Rac and Raf-1
Another developing area of research involves PP5 as an effector of GTPase signaling networks,
which control events as diverse as metastasis and neuronal development. Yeast two-hybrid
screening identified interactions between PP5 and both Gα12 and Gα13 [35]. These G-proteins
are known to regulate the activity of a small GTPase, Rho, through Rho guanine nucleotide
exchange factor (RhoGEF) [36]. The site of interaction is the TPR-domain of PP5, and binding
is associated with the activation of PP5 catalytic activity. Although the physiological
importance of this interactions is not yet clear, recently PP5 has been shown to modulate thyroid
hormone signaling via Rho and another member of Ras-related family of monomeric GTPases,
Rac. Rac and Rho mediate opposing signaling effects in response to thyroid hormone on
KCNH2 potassium channels [55], with Rho inhibiting and Rac stimulating, KCNH2 activity
[36]. Current research shows that inhibition of PP5 with okadaic acid blocked channel
stimulation by hormone and Rac, while the expression of a toxin insensitive mutant of PP5
(Y451A) restored signaling [36]. Expression of the PP5 TPR domain blocked channel
stimulation by hormone. Furthermore, mutation of the TPR domain of the insensitive PP5
mutant at two predicted sites of interaction with Rac blocked the ability of the Y451A
substitution to rescue KCNH2 activity in the presence of okadaic acid. [36]. These studies
implicate PP5 as a modulator of Rac/Rho signaling, and future studies designed to examine
the details of this binding interaction and other Rac versus Rho signaling pathways are
warranted.

PP5 was also shown to play a role in the inactivation of Raf-1. Raf-1 is a serine/threonine kinase
that functions as a downstream effector of Ras-GTPases, playing a key role in Ras-Raf-MEK/
ERK pathways transmitting mitogenic, differentiative and oncogenic signals to down stream
kinases [56]. Raf-1 activation involves the dephosphorylation of an inhibitory site (Ser259)
located in its regulatory domain by PP2A [56], the recruitment of Raf-1 to the plasma
membrane, and its association with Ras. This is followed by phosphorylation of an activating
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residue (Ser338), resulting in the stabilization of Raf-1 in an activate conformation. Using a
proteomic approach, PP5 was identified as a protein that interacts with Raf-1 [35]. PP5/Raf-1
association occurs in response to growth factor stimulation (EGF) and results in the selective
dephosphorylation of Ser338, removing phosphate from a critical site that helps maintain Raf-1
activation. Thus, PP5 inactives Raf-1, suppressing the down stream activation of MEK. Since
another PPP-family phosphatase (PP2A) serves to dephosphorylate/activate Raf-1 (Ser259),
the coordinated efforts of PP2A and PP5 appear to be important for Raf-1 signaling.
Interestingly, PP5 has been shown to bind the A-subunit of the PP2A holoenzyme, which
functions to tether the catalytic (PP2Ac) and substrate targeting B-subunits of PP2A [34].
Therefore, it will be interesting to determine if PP5 regulates the incorporation of a particular
B-subunit into the PP2Ac/A/B holoenzyme, enabling the formation of PP2Ac/A/B trimer that
recognizes phospho-Ser259 on Raf-1. In addition, the stability of Raf-1 protein is influenced
by its association with Hsp-90. Thus, again the involvement of PP5 may be further up-stream
and more complex than suggested by the current literature.

PP5 and cell growth
Other studies using ISIS 15534 revealed that the growth of MCF-7 breast cancer cells that were
not sensitive to growth arrest by treatment with dexamethasone were growth suppressed when
PP5 expression was ablated [51,57]. Subsequent studies revealed that PP5 protein levels are
decreased by the removal of estrogen from the culture media and that the PP5 promoter
possesses a functional estrogen response element [57]. In culture, the constitutive over
expression of PP5 relieved the estrogen dependency of MCF-7 cells, allowing rapid
proliferation in estrogen-depleted media [57]. PP5 over expression has also been reported to
induce the binding of PP5 to ERs, resulting in the suppression of ER-dependent transcription
[58]. This may implicate PP5 in a feedback control mechanism. In a MCF-7 mouse xenograph
model of tumor development, the constitutive over expression of PP5 was associated with
accelerated tumor growth in a high estrogen environment [59]. However, PP5 over expression
alone failed to produce spontaneous tumors in a low estrogen environment. Therefore, although
the over expression of PP5 appears to provide a growth advantage to estrogen responsive
tumors, at this time the physiological role of estrogen-induced PP5 expression is not yet clear.

PP5 and cellular responses to stress
Several studies suggest that many of the growth regulating actions of PP5 are responsive to
cellular stress, with PP5 acting in the regulation of signaling cascades induced by oxidative
stress, DNA-damage and hypoxia (Figure 3). An increase in PP5 protein levels is also observed
following prolonged hypoxia or treatment with reagents that induce oxidative stress [30,60].
This increase in expression under low oxygen conditions is mediated by the activation and
stabilization of a transcription factor, hypoxia inducible factor-1 (HIF-1), which binds to a
HIF-1 response element in the PP5 promoter [60]. Both, hypoxia and acute oxidative stress
also induce the association of PP5 with apoptosis signal regulating kinase (ASK1) [30,60].
ASK1 is a member of the MAPKKK family of kinases that activates both p38 and MKK4/JNK
pathways. Most reports indicate that ASK1 initiates a signaling cascade that favors apoptosis,
but the activation of ASK1 has also been reported to aid differentiation and survival [61,62].
Current research indicates that after exposure to oxidative stress (e.g. treatment with H202)
ASK1 is transiently activated by autophosphorylation at Thr845. In vitro, PP5 can
dephosphorylate ASK1 at Thr845, suggesting that PP5 can inactivate ASK1 [30]. However,
the ablation of PP5 expression using siRNA or antisense oligonucleotides results only in the
prolonged activation of the ASK1/MKK4/JNK arm of ASK-signaling, without affecting the
phosphorylation of p38 [60]. Thus, the association of ASK1 with PP5 may suppress the ability
of ASK1 to phosphorylate/activate MKK4, possibly implicating MKK4 or an ASK1/MKK4
scaffolding protein as substrate [30,60,62]. Other studies have shown that a decrease in PP5
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activity following rapamycin treatment subsequently leads to an increase in ASK1-mediated
apoptosis [63]. However, the role for PP5 in rapamycin mediated activation of ASK1 and
apoptosis was only observed in p53−/− cells. This supports studies suggesting p53 acts to
suppress rapamycin-induced activation of ASK1 [63] and may further link the actions of p53,
PP5 and ASK1.

In response to DNA-damage, PP5 has been reported to associate with ATM (ataxia
telangiectasia mutated kinase) [32], ATR (ATM and Rad3 related kinase) [33] and a DNA-
damage activated protein kinase, DNA-PKcs [31]. DNA breaks can have serious consequences
if they are not repaired, leading to cell death, genomic instability and tumorigenesis. Therefore,
humans have evolved elaborate mechanisms to repair or eliminate cells that have encountered
genomic damage. All three of the proteins PP5 associates with in response to DNA-damage
are serine/threonine kinases that are key regulators of cellular responses to genomic stress.
DNA-PKcs plays a key role in the repair of double-strand breaks via non-homologous end-
joining repair [64]. Studies suppressing the expression of PP5 with antisense oligonucleotides
or siRNA suggest that the interaction of PP5 with DNA-PKcs is associated with the
dephosphorylation of a functional site (Thr2609) on DNA-PKcs, suggesting PP5 acts as a
negative regulator of DNA-PKcs [31].

In contrast to its inhibitory role in DNA-PKcs activation, PP5 appears to function as positive
regulator in ATM and ATR signaling. ATM and ATR are two related protein kinases that are
key regulators of DNA-damage cell cycle checkpoint controls, coordinating many processes
that induce cell cycle arrest, G2/M-, and S-phase checkpoint control mechanisms [65]. In ATM
signaling the suppression of PP5 expression prevents ATM-mediated G-1 growth arrest [33].
After exposure to ionizing radiation, cells with reduced levels of PP5 also fail to arrest at the
normal G2/M checkpoint and have decreased ATM activity [66]. Similarly, in ATR-signaling
PP5 has been reported to be necessary for ATR-mediated checkpoint control (31), again with
the suppression of PP5 resulting in impaired ATR-mediated phosphorylation of known down
stream substrates that mediate intra S-phase checkpoint responses.

PP5 and cancer
To date, there have only been a few studies that directly implicate PP5 in the development of
cancer. The first observation linking PP5 with cell growth comes from studies in yeast, where
the homologue of PP5 (PPT1) is expressed at elevated levels in proliferating cells [67]. In rats
PP5 mRNA levels were reported as markedly elevated in highly malignant ascites hepatomas
[68]. Antibody microarray expression studies of mantle-cell lymphomas also indicate PP5 is
overexpressed ≥ two-fold compared to controls [69]. However, the number of patients in this
study was limited (data from 6 patients). Immunostaining of human tumor tissue microarrays
(>250 samples) also revealed a positive correlation between elevated levels of PP5 and human
breast cancer, and the PP5 gene has been linked to a region of chromosome amplification in
osteosarcoma samples from human patients [70,71]. A survey of PP5 (locus at 19q13.3) on the
NCI CGAP web site [72] comparing Mitelman Breakpoint data section reveals a large number
of alterations (1212 cases) at this chromosomal site for several types of cancers. However, the
data is correlative, and a direct demonstration that aberrant PP5 expression contributes to
tumorigenesis has not been confirmed experimentally. Nonetheless, when considered with the
above mentioned observations linking the expression of PP5 to both HIF-1 and estrogen (which
have both been linked to the progression of human cancer) and the participation of PP5 in the
regulation of GR- and stress-induced signaling networks that suppress cell cycle progression
or induce apoptosis, there is certainly circumstantial evidence suggesting that aberrant
expression of PP5 may aid the development or progression of human cancer. On theo ther hand,
recent studies implicating PP5 as a negative regulator of Raf1 and reports suggesting that PP5
is needed for ATM- and ATR-signaling may argue for the contrary.
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Structural considerations for PP5 drug design
For studies to determine the biological roles of PP5, and possibly for development of novel
antitumor drugs, a specific inhibitor of PP5 is desired. In the absence of enzymes, the
uncatalyzed hydrolysis of simple phosphate monoester dianions is very slow. The half-time
for the uncatalyzed hydrolysis of alkyl phosphate dianions at 25 °C is over 1 trillion years;
knon = ~2 × 10−20 s−1 [73]. In comparison, typical substrate turnover rates (kcat) for PPP family
phosphatases range from 1 to 100 s−1. Therefore, PPases enhance the rate of hydrolysis by a
factor of ~1021, placing them among the most powerful known catalysts on earth (catalytic
proficiencies ([kcat/kM]/knon) of ~1025–1026 M−1 [73].

The high resolution (1.6 Å) structure of PP5 indicates that phosphomonoester hydrolysis occurs
through in-line nucleophilic attack requiring the activation of a bound water molecule to the
more nucleophilic hydroxide, its precise alignment with the electrophilic phosphorus atom of
the substrate phosphoryl group, and profound stabilization of the altered substrate in the
transition state [18]. The structure of the PP5 catalytic domain shows that the essential catalytic
motif contains 6 conserved features: Asp274, His304, Asp271, the backbone carbonyl of
His427, the two active site metal ions, and W1 (water/hydroxide coordinated to the two active
site metal ions). Sequence alignments and comparisons to other crystal structures reveal that
this motif is common to all members of the PPP family phosphatases, as is the hydrogen bond
network that ensures this catalytic activity (Figure 4). The necessary alignment of substrate
and nucleophile is facilitated by substrate contacts with M1, M2, Arg275, Asn303, His304, and
Arg400 and interactions of W1 with M1, M2, and His427. Thus, there are many sights for
inhibitor binding that should disrupt catalytic activity.

Still, the development of a specific inhibitor may be challenging, for the catalytic core of PP5
is highly homologous with other eukaryotic PPP phosphatases. In addition both structural and
mutational studies indicate that PP1, PP2A, PP2B and PP5 share a common catalytic
mechanism that is likely common to the PPP-family. Superposition of the structure of PP5c
onto the structures of other eukaryotic PPP phosphatases such as PP1, PP2A and PP2B gives
root mean square deviations of <2.0 Å within the highly homologous ~270-residue region used
in the calculations. Nonetheless, comparisons of the loop regions of PP5, PP1, PP2A and PP2B
reveal differences that may be relevant for drug discovery efforts, such as sequence/
conformational differences in the β12/β13 loop that plays an important role in microcystin-LR
and okadaic acid-mediated inhibition of catalytic activity. Such structural differences closely
apposed to the conserved catalytic site suggest the feasibility of developing type-specific
inhibitors.

Conclusions
Although to date, there is no direct experimental proof that PP5 over expression aids tumor
promotion or carcinogenesis, both the correlative and experimental studies discussed above
provide substantial data demonstrating that PP5 potentially plays a key role in the regulation
of both hormone- and stress-induced signaling networks that allow a cell to respond
appropriately to genomic stress. Therefore, it seems likely that aberrant alterations of PP5
function may indeed contribute to neoplastic transformation and cancer progression. In
addition, because many of the pathways that PP5 has been shown to influence share common
components and are themselves targets for cancer drug development (i.e. p53, ASK-1, GR-
Hsp90, ATR, ATM, DNA-PKcs), understanding the biological actions of PP5 should not only
provide insight into cell behavior, they should also aid the development of new methods for
the medical management of human cancers.
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Figure 1. Structure of PP5
A ribbon representation of full-length PP5 (pdb code 1WAO). Also displayed are the active
site metal ions (white spheres) and the side chain of glu76 (stick representation). PP5 has three
principal regions, an N-terminal domain (white) containing three tetratricopeptide repeats
(labeled TPR1, TPR2, and TPR3) a catalytic domain (gray), and a flexible linker that connects
the N-terminal and catalytic domains. The 3 TPRs form 3 sets of antiparallel amphipathic alpha
helices that are arranged into a partial superhelix and are involved in mediating protein-protein
interactions. The catalytic domain has an overall fold that is strikingly similar to that of the
catalaytic subuints of PP1, PP2A, and PP2B. Also present is a regulatory C-terminal subdomain
(black) containing the J-helix that helps to maintain a closed, inactive conformation by
stabilizing the position the N-terminal domain over the catalytic site, thereby blocking substrate
access. The figure was produced using PYMOL (http://www.pymol.org).
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Figure 2. Model of FKBP51, FKBP52 and PP5 regulation of GR function
A) The GR-heterocomplex can contain FKBP51, FKBP52 or PP5. In the basal state the inactive
GR-heterocomplex contains FKBP51 as the predominant TPR protein. In this state GR has
low hormone binding activity. The acquisition of PP5 by the GR-complex results in a GR-with
intermediate hormone-binding and transcriptional activities. When the GR acquires FKBP52,
it has the highest transcription activity due to both enhanced hormone binding affinity and
enhanced nuclear translocation. B) The model above enlightens previous conflicting
experiments such that the over expression of the TPR-domain (thought to be a dominant-
negative mutant) of PP5 prevents the binding of FKBP52, favoring the cytoplasmic retention
of the GR-complex in a state with low affinity for hormone. The suppression of PP5 expression
has the opposite effect, facilitating FKBP52-GR interactions, which favors hormone binding,
increased nuclear translocation and enhanced transcriptional activity.
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Figure 3. Roles of PP5 in the regulation of stress-induced signaling cascades
In response to DNA damage, ATM, p53 and DNA-PK are activated, triggering and/or
propagating signaling cascades leading to growth arrest or apoptosis. Both hypoxia and 17-β
estradiol induce PP5 transcription, leading to the suppression of p53-, DNA-PK- and ASK-1-
mediated responses that result in growth arrest or apoptosis. In p53 −/− cells rapamycin
produces a decrease in PP5 activity and a concomitant increase in ASK-1 mediated apoptosis
suggesting that the suppression of PP5 activity contributes to the antitumor activity of
rapamycin. PP5 has also been reported to play a positive role in the propagation of an ATM-
mediated response leading to growth arrest. Arrows indicate stimulatory actions. Lines with
filled circles at the end indicate inhibitory actions.
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Figure 4. Structural comparison of PP5 to other members of the PPP
family. A. Superposition of the active sites of (1S95:white), PP2A (2IE4:light gray), PP1
(1JK7:dark gray), and PP2B (1TCO:black) showing the positions and conformations of 11
absolutely conserved residues. The active site metal positions are derived from 1JK7. PP5
numbering of residues is observed. B. Superposition (shown as Cα traces) of the catalytic
domains of PP5 (1S95:white), PP2A (2IE4:light gray), PP1 (1JK7:dark gray), and PP2B
(1TCO:black). The active site metal positions are derived from 1JK7. These structural
alignments show the remarkable similarity of the overall fold in these four representatives of
the PPP family. This similarity is particularly evident in and around the catalytic center where
the conserved residues are found in essentially identical conformations (an exception being
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Arg275 which takes on different conformations depending upon which ligand is bound in the
active site). Structural alignments were done with STRAP
(http://www.charite.de/bioinf/strap/) and the figure was prepared with PyMOL
(http://www.pymol.org).
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