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In comparison to genotypes, knowledge about haplotypes (the combination of alleles present on a single
chromosome) is much more useful for whole-genome association studies and for making inferences about human
evolutionary history. Haplotypes are typically inferred from population genotype data using computational
methods. Whole-genome sequence data represent a promising resource for constructing haplotypes spanning
hundreds of kilobases for an individual. In this article, we propose a Markov chain Monte Carlo (MCMC) algorithm,
HASH (haplotype assembly for single human), for assembling haplotypes from sequenced DNA fragments that have
been mapped to a reference genome assembly. The transitions of the Markov chain are generated using min-cut
computations on graphs derived from the sequenced fragments. We have applied our method to infer haplotypes
using whole-genome shotgun sequence data from a recently sequenced human individual. The high sequence
coverage and presence of mate pairs result in fairly long haplotypes (N50 length ∼ 350 kb). Based on comparison of
the sequenced fragments against the individual haplotypes, we demonstrate that the haplotypes for this individual
inferred using HASH are significantly more accurate than the haplotypes estimated using a previously proposed
greedy heuristic and a simple MCMC method. Using haplotypes from the HapMap project, we estimate the switch
error rate of the haplotypes inferred using HASH to be quite low, ∼1.1%. Our Markov chain Monte Carlo algorithm
represents a general framework for haplotype assembly that can be applied to sequence data generated by other
sequencing technologies. The code implementing the methods and the phased individual haplotypes can be
downloaded from http://www.cse.ucsd.edu/users/vibansal/HASH/.

[Supplemental material is available online at www.genome.org.]

Cataloging human genetic variation, and understanding its phe-
notypic impact, is central to understanding the genetic basis of
disease. This genetic variation is present in the form of single
nucleotide polymorphisms (SNPs), insertions/deletions, inver-
sions, translocations, copy number variations, etc. The abun-
dance of SNPs in the human genome and the development of
high-throughput genotyping technologies have made SNPs the
marker of choice for understanding human genetic variation and
performing disease association studies. The HapMap project (The
International HapMap Consortium 2005, 2007) has genotyped
more than 3 million common SNPs in 269 individuals from four
human populations. With the availability of commercial geno-
typing chips that can read more than 100,000 SNPs spread across
the human genome, the potential of whole-genome association
studies for finding disease-related variants has been realized (Eas-
ton et al. 2007; Helgadottir et al. 2007; McPherson et al. 2007;
Sladek et al. 2007; The Wellcome Trust Case Control Consortium
2007).

Current genotyping methods determine the two alleles at an
individual SNP and are unable to provide information about hap-
lotypes, the combination of alleles present at multiple SNPs
along a single chromosome. Haplotypes observed in human
populations are a result of shuffling of ancestral haplotypes
through recombination and contain much more information
about human genetic variation than genotypes. In the absence of
molecular methods for determining haplotypes, haplotypes are

inferred computationally from SNPs genotyped in a sample of
individuals from a population (Clark 1990; Excoffier and Slatkin
1995; Stephens et al. 2001; Niu et al. 2002; Stephens and Don-
nelly 2003). Haplotypes inferred from the HapMap genotypes
have been used for making various inferences about human evo-
lutionary history, e.g., estimate the fine-scale distribution of re-
combination events and identify genes that show signs of posi-
tive selection (The International HapMap Consortium 2005; Sa-
beti et al. 2007). The HapMap haplotypes have proven to be
invaluable for whole-genome association studies in multiple
ways. To reduce cost, disease association studies are performed
using a subset of SNPs in the human genome. The HapMap hap-
lotypes are useful for evaluating the power of these subsets to
detect association at the untyped SNPs in human populations.
Further, the haplotype data have also been used for fine-scale
mapping of variants identified in association studies (Gud-
mundsson et al. 2007) and for improving the power of whole-
genome association studies (Pe’er et al. 2006; Marchini et al.
2007; Zaitlen et al. 2007).

Nonetheless, there are some limitations of using haplotypes
reconstructed from population data. All haplotype phasing
methods, explicitly or implicitly, exploit linkage disequilibrium
(LD), the correlation of alleles at physically proximal SNPs in the
human genome. In short regions of the genome, high LD reduces
the number of distinct haplotypes, allowing these methods to
piece together haplotypes for an individual. Therefore, the accu-
racy of haplotypes is reduced in regions with low levels of LD. In
general, population data from unrelated individuals do not con-
tain enough information to reliably estimate the haplotypic
phase between distant markers (>100 kb). Accurate long-range
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haplotypes may prove useful for finding multiple genetic vari-
ants that contribute to complex diseases. To obtain such haplo-
types, additional information such as family data is invaluable.
For example, the presence of trios in two of the HapMap popu-
lations (CEU and YRI) has allowed the inference of highly accu-
rate haplotypes. This in turn has been proven to be informative
for detecting copy neutral variation such as inversions (Bansal et
al. 2007). However, family data are hard to obtain for every popu-
lation sample.

The availability of full diploid genome sequences for a large
number of individuals would be ideal for obtaining a compre-
hensive understanding of all forms of genetic variation and es-
pecially useful for finding rare genetic variants associated with
disease. Advancements in sequencing technology are driving
down the cost of sequencing, and it should be possible to com-
pletely sequence many human individuals in a few years (Shaffer
2007; Schuster 2008). Whole-genome sequence data from a
single individual represent an alternate resource from which the
two haplotypes can potentially be determined. Each sequence
read represents a fragment of a chromosome. A read that spans
multiple variant sites can reveal the combination of alleles pres-
ent at those sites on that chromosome. Using the overlaps at
heterozygous sites between a collection of reads, one can poten-
tially assemble the two haplotypes for a chromosome (for an
illustration, see Fig. 1). This “haplotype assembly” represents a
different computational challenge in comparison to genome se-
quence assembly, where one uses the sequence overlap between
reads (ignoring the variant sites) to piece together a haploid ge-
nomic sequence.

Haplotype assembly refers to the problem of reconstructing
haplotypes from a collection of sequenced reads given a genome
sequence assembly. A more challenging problem is to separate
out the two haplotypes during the sequence assembly process
itself. This has recently been done for some small, highly poly-
morphic genomes (Vinson et al. 2005) but remains difficult to
accomplish for large eukaryotic genomes such as humans. Large
eukaryotic genomes include many repetitive sequences, and a
sequence assembly must therefore distinguish between two (al-
most identical) instances of a sequence that lie on the same chro-

mosome as well as separating the chromosomes. The haplotype
assembly problem may seem easier, but the objectives are differ-
ent. By working with a reference sequence, one can focus on
obtaining highly accurate haplotypes and estimating their reli-
ability rather than just obtaining “a single” haplotype assembly.
Also, as many individuals in a population are sequenced, it is
computationally more efficient to generate a reference assembly
once and assemble haplotypes for each of the individuals.

For haplotype assembly to be feasible, one requires a high
sequence coverage (sufficient overlaps between reads) and reads
that are long enough to span multiple variant sites. Given the
level of polymorphism in the human genome (∼0.1%), single
shotgun reads (∼8,001,000 base pairs long) at 5–8� coverage
would result in short haplotype segments. However, paired ends
or mate pairs (pair of sequenced reads derived from the same
shotgun clone) provide linkage information that can substan-
tially increase the length of inferred haplotypes. Even with mate
pairs, it is not possible to link all variants on a chromosome. A
haplotype assembly for a diploid genome is a collection of hap-
lotype segments or disjoint haplotypes. In the absence of errors
in sequenced reads, the correct haplotype assembly is unique and
is not difficult to derive. Errors in reads increase the space of
possible solutions, making this problem computationally chal-
lenging. The problem of finding the haplotype assembly that
optimizes a certain objective function (e.g., minimize the num-
ber of conflicts with the sequenced reads) has been explored from
a theoretical perspective (Lippert et al. 2002; Rizzi et al. 2002;
Halldorsson et al. 2003; Bafna et al. 2005) and has been shown to
be computationally intractable for gapped reads (e.g., mate
pairs). A statistical method was proposed (Li et al. 2004) for re-
constructing haplotypes from sequenced reads aligned to a ref-
erence genome. The method is based on inferring local haplo-
types using a Gibbs sampling approach and joining these local
haplotypes using overlaps. This method has recently been ex-
tended (Kim et al. 2007) to include polymorphism detection as
part of the haplotype reconstruction pipeline, and applied to the
genome of Ciona intestinalis.

Recently, Levy et al. (2007) sequenced the complete diploid
genome of a single human individual. Approximately 32 million
sequenced reads (from clone libraries of various lengths) were
used to generate a genome assembly referred to as HuRef. More
than 4.1 million genomic variants were detected by identifying
heterozygous alleles within the sequenced reads and through
comparison of the HuRef assembly with the NCBI version 36
human genome assembly. Of these, 1.8 million heterozygous
variants were used for haplotype assembly. The presence of
paired-end sequences or mate pairs with different insert sizes
(ranging from 2–40 kb) increases the length of the haplotype
segments that can be inferred but also results in links between
physically distant variants. As mentioned earlier, there are no
efficient algorithms for haplotype assembly in the presence of
mate pairs, and statistical methods for haplotype assembly (Li et
al. 2004; Kim et al. 2007) that start by inferring short local hap-
lotypes are not particularly suited for the HuRef data. A simple
greedy heuristic was implemented to build haplotypes incremen-
tally starting from single reads (see Methods) (Levy et al. 2007).
More than 70% of the 1.8 million heterozygous variants used for
haplotype assembly were assembled into haplotypes that cover at
least 200 variants. In addition, 1.5 Gb of the genome could be
covered by haplotypes longer than 200 kb in length. Comparison
of sequenced reads to the reconstructed haplotypes showed that
97.4% of the variant calls are consistent with the haplotype as-

Figure 1. Illustration of how haplotypes can be assembled from se-
quenced reads. Each read is a fragment of one of the two chromosomes.
Reads that share an allele at a common variant can be inferred to come
from the same chromosome and joined together. Reads that differ at a
particular variant can be inferred to come from different chromosomes
and similarly extend the two haplotypes.
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sembly. Notwithstanding the reasonable accuracy of the haplo-
type assembly for HuRef, the greedy strategy represents a rela-
tively simple approach for this problem. It incrementally recon-
structs a single haplotype assembly and does not attempt to find
a haplotype assembly that is optimal under a probabilistic or
combinatorial model. In Levy et al. (2007), we had briefly men-
tioned that it is possible to obtain a more accurate haplotype
assembly using Markov chain Monte Carlo (MCMC) methods
and had implemented one such algorithm. In this article, we
describe a novel MCMC algorithm, HASH (haplotype assembly
for single human) for haplotype assembly. The MCMC approach
represents a natural way to search the space of possible haplo-
types to find likely haplotype reconstruction(s) and also allows us
to estimate the reliability of the reconstructed haplotypes. The
transitions of the Markov chain underlying our algorithm are
determined using the graph structure of the links between the
variants and are not restricted to be local.

Results on the HuRef sequence data demonstrate that the
haplotypes reconstructed using HASH are more consistent with
the sequenced fragments than the haplotypes obtained using the
greedy heuristic. By use of haplotypes sampled by the MCMC
algorithm, we estimate that the HuRef haplotypes have a switch
error rate of 0.9%. By using simulations, we also demonstrate
that our MCMC algorithm can reconstruct haplotypes to a high
degree of accuracy and determine which variant calls are likely to
be incorrect. Based on comparison to population haplotypes
from the HapMap project, we estimate a switch error rate of
∼1.1% for the HuRef haplotypes inferred using HASH. In com-
parison, the switch error rate for the haplotypes reconstructed
using the greedy heuristic is 3.1%. Although we describe results
using data from whole-genome Sanger sequencing of a human
individual, our methods are valid for performing haplotype as-
sembly from sequenced reads generated using any sequencing
technology as long as the polymorphism rate for the sequenced
organism and the length of sequenced reads allow the linking of
multiple variants. They are also applicable to inferring haplo-
types using short haploid sequences from other sources (for ex-
ample, see Konfortov et al. 2007).

Methods

We assume that a list of genetic variants such as SNPs, short
insertions/deletions, etc., is available. A list of polymorphic vari-
ants can be generated while sequence assembly is performed or
can be obtained from a database of genetic variants such as
dbSNP (Sherry et al. 2001). We restrict ourselves to variants that
have been identified to be heterozygous in the genome of the
individual under consideration, as homozygous variants are un-
informative about phasing of other variants. Note that certain
variants that are truly heterozygous in the genome may be re-
ported as homozygous, as both alleles are not sampled a suffi-
cient number of times during sequencing.

Each sequenced read is mapped to the reference genomic
sequence to obtain the alleles it has at each of the heterozygous
sites. For a variant, reads with sequence matching the consensus
sequence are assigned as 0, while those not matching are as-
signed as 1. Paired-end reads from the same clone that map to the
assembly in the expected orientation and whose physical sepa-
ration is within the expected range are represented as a single
fragment. Mated reads that show some inconsistency in orienta-
tion or distance are split into two separate fragments. Note that

these aberrant mapping pairs might represent chimeric errors but
also heterozygous structural variation in the HuRef genome; Levy
et al. (2007) describe some of these variations. Here, we ignore
this additional information.

Haplotype likelihood

Formally, each fragment i is represented by a ternary string
Xi ∈ {0, 1, �}n, where the � corresponds to the heterozygous
loci not covered by the fragment. The complete data can be rep-
resented by a fragment matrix X with m rows and n columns,
where each row represents a fragment and each column corre-
sponds to a variant site. Corresponding to each variant call Xi[j],
we have an error probability qi[j], which denotes the probability
that the variant call is incorrect. As qi[j] cannot be estimated from
the fragment data, we use quality scores si[j] that usually accom-
pany sequence data. For example, the quality scores might be
obtained using phred (Ewing and Green 1998). Sequence quality
scores are integer values related to the error probabilities as

qi �j� = 10−
si �j�

10

For SNPs, si[j] describes the quality value for the allele call; for
multibase variants, si[j] is the lowest of the quality values for the
base calls in the variant; for the case of a gap (insertion/deletion),
si[j] corresponds to the lower of the two quality values on either
side of the gap. If information about the sequencing quality val-
ues is not available or for performing simulations, we assume a
uniform error probability qi[j] = q̂ for all variant calls. In what
follows, we will assume that q is available and fixed.

Let H = (h, h) represent the unordered pair of haplotypes,
where h is a binary string of length n and h is the bitwise comple-
ment of h; i.e., h[j] = 1 � h[j]. The problem of reconstructing the
most likely pair of haplotypes given the fragment data (known) is
given by

arg max
H

Pr�X|H,q�.

However, we are interested in sampling H from a probability
distribution. By using Bayes’ rule, we can write

Pr�H|X,q� =
Pr�X|q,H�Pr�H|q�

�H’ Pr�X|q,H’�Pr�H’|q�
(1)

Assuming a uniform prior on the space of haplotypes, we have

Pr�H|X,q��Pr�X|H,q� (2)

We assume that the variant calls for a fragment Xi are inde-
pendent of each other. Therefore,

Pr�Xi|q,h� = �
�j:Xi�j�� − �

��Xi�j�,h�j���1 − qi�j�� + �1 − ��Xi�j�,h�j���qi�j�

(3)

where �(Xi[j],h[j]) = 1 if Xi[j] = h[j] and 0 otherwise. Assuming
that each fragment is randomly generated from one of the two
haplotypes, we can write

Pr�Xi|q,H� =
�Pr�Xi|q,h� + Pr�Xi|q,h��

2
(4)

Finally, Pr(Xi|q,H) can be computed as a product over fragments
(assuming that fragments are independently generated):
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Pr�Xi|q,H� = �
i
Pr�Xi|q,H� (5)

In the remainder of this paper, we will refer to Pr(X|H,q) as
a distribution over H for notational convenience.

MCMC algorithm

Instead of computing the most likely solution, it is potentially
more useful to sample from the posterior distribution of haplo-
types. As the number of possible haplotypes grows exponentially
with the number of variants, we construct a Markov chain to
sample from the posterior distribution of H given the fragment
matrix X and the matrix of error probabilities q. The states of the
Markov chain correspond to the set of possible haplotypes. Tran-
sitions of the Markov chain are governed by subsets S of columns
of the fragment matrix X. Specifically, each transition is of the
form: H → HS, where H is the current state (haplotype pair) and
HS is a new haplotype pair created by “flipping” the values of the
columns in S. Figure 2 illustrates how HS is derived from H. For
columns not in S, such as column 1, H and HS are identical.
However, columns in S = {3, 4, 5, 11} are flipped in HS.

If � = {S1, S2, . . . , Sk} is a collection of subsets of columns of
X, then for each state H, there are k + 1 possible moves to choose
from, including the self-loop. The Markov chain in state H
chooses a subset Si ∈ � and moves to the new state Hsi with a
certain probability. The transition probabilities are chosen to en-
sure that they satisfy the detailed balance conditions. The MCMC
algorithm is described as follows.

Initialization: Choose an initial haplotype configuration H(0).
Iteration: For t = 1, 2, . . . obtain Ht+1 from Ht as follows:
1. With probability 1/2, set Ht+1 = Ht

2. Otherwise, sample a subset S from � with probability (1/|�| )
3. With probability min [1,(Pr(X|HS

t ,q)/Pr(X|Ht,q))], set Ht+1 = HS
t .

Otherwise, set Ht+1 = Ht

Our algorithm uses the Metropolis update rule (Metropolis
et al. 1953) and is completely specified by the fragment matrix X,
the matrix q of error probabilities, and the collection of subsets �.
We denote the corresponding Markov chain as �(X, q, �) or
simply by �(�), whenever X and q are implicit. Note that Step 1
of the above algorithm, which represents a self-loop probability
of 1/2, is added to ensure aperiodicity that is required for analysis
of the mixing time of the Markov chain (Randall 2006). In prac-
tice, it is not essential and can be removed as most Markov chains
are indeed aperiodic.

Choosing �

A natural choice for � is �1 = {{1},{2}, . . . , {n}}. We can show that
a Markov chain � (X, q, �) is ergodic and has the desired poste-
rior distribution Pr(X|H,q) if �1 ⊆ � (for proof, see Supplemental
material). Indeed, �(�1) was proposed by Churchill and Water-
man (1992) for a related problem. However, we prove theoreti-
cally that the mixing time of �(�1) grows exponentially with d,

the depth of coverage, for a representative family of examples
(for proof, see Supplemental material). This implies that it may
take an inordinately long time before the chain �(�1) is sampling
from the posterior distribution.

Supplemental Figure S1 illustrates this point empirically and
also provides insight for an improved algorithm. The fragment
matrix X(n, d) has n columns, with each pair of adjacent columns
linked by d fragments. X(n, d) admits two equally likely haplo-
type configurations H1 and H2, which differ by a single flip of half
of the columns. Nevertheless, the time to move from H1 to H2

increases exponentially with d (see Supplemental Fig. S1). For
d = 5, the expected time is ∼10 million steps, (increasing for
smaller values of q). However, by augmenting � slightly, by add-
ing the subset S1...n/2 (columns 1 to n/2), the mixing time reduces
to being polynomial in n and d. The proof of this assertion re-
quires advanced techniques based on the notion of graph con-
ductance and coupling arguments (V. Bafna and V. Bansal, un-
publ.; available at http://www.cse.ucsd.edu/users/vibansal/
HASH/). Our analysis on this family suggests the following
iterative strategy: When a current Markov chain �(�) has con-
verged to a local optimum, use the current haplotype and the
fragment matrix X to identify “bottlenecks” to rapid conver-
gence. Next, add subsets S to � that eliminate these bottlenecks,
and continue. As described below, we use a recursive graph par-
titioning strategy to identify bottlenecks to convergence.

A graph-partitioning approach

We construct an undirected weighted graph G(X) with each col-
umn of the fragment matrix as a separate node of this graph and
an edge between two nodes if there is some fragment that covers
both columns. The weight of an edge between two columns is the
number of fragments that cover both columns. A cut in G(X) is
simply a subset S of vertices, with weight equal to the sum of
weights of the edges going across the cut. A minimum-cut (min-
cut) is a cut with minimum weight in the graph G(X). From the
perspective of the Markov chain, a cut represents a subset of
variants, and a cut with low-weight represents a good candidate
to include in �. We partition the graph G(X) into two pieces S and
S using a simple min-cut algorithm (Stoer and Wagner 1994) and
add the two subsets S, S to �. We apply the same procedure
recursively to the two induced subgraphs G(S) and G(S), adding
two new subsets to � every time we compute a new cut. The
recursive graph-partitioning approach ensures that � includes �1

and has n additional subsets. A formal description of the graph-
partitioning algorithm is given in the Supplemental material.

Information about the variant calls in the fragment matrix
can be used for assigning weights to the edges in G(X). This is
potentially more informative than just using the number of frag-
ments. Consider the example fragment matrix in Supplemental
Figure S1. The subset S1...n/2 is a good candidate for �, not only
because the cut corresponding to this subset has low weight (two
edges) but also because the two fragments linking this subset of
columns to the rest of the matrix are inconsistent with each
other. We have developed a scheme that assigns weights to the
edges of G(X) based on the consistency of a haplotype pair H with
the fragment matrix. A fragment adds 1 to the edge weight be-
tween two columns if the phase suggested by the fragment is
consistent with the current haplotype assembly. If not, it con-
tributes �1 to the edge weight. Hence, a cut with low or negative
weight corresponds to a subset of columns whose current phase
with respect to the rest of the columns is inconsistent with the

Figure 2. Illustration of how HS can be derived from a haplotype pair H
and a subset S of the columns of the fragment matrix.
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fragment matrix. This scoring scheme is fully described in the
Supplemental material, and we denote the graph partitioning
algorithm for computing � as WeightedGraphPartitioning(X, H). In
Figure 3, we give an example of the graph G(X) and illustrate the
recursive graph partitioning method for computing �.

The recursive graph-partitioning approach for constructing
� is greatly motivated by the nature of the sequencing data that
we have analyzed. Supplemental Figure S2 shows an example of
a fragment matrix from chromosome 22 of HuRef. Shotgun se-
quencing leads to nonuniform sampling of variants creating
“weak” links in the fragment matrix that the graph-partitioning
approach can exploit to construct �.

The complete MCMC algorithm

The collection of subsets � computed using the weighted graph-
partitioning approach is dependent upon the haplotype pair H.
As we sample haplotypes with greater likelihood, it is potentially
useful to update �. The complete algorithm, which we call
“HASH” (short for haplotype assembly for single human), is as
follows:

HASH(X,q)

1. Set �(0) ← �1.
2. Set H(0) at random or otherwise.
3. For t = 1, 2, . . .

(a) Let H(t) = �(�(t�1), X, H(t�1), c) be the haplotype ob-
tained after running �(�(t�1)) for c � n steps (c ≈ 1000).

(b) Compute �(t) = WeightedGraphPartitioning(X, H(t)).
4. Set � ← �(t) and discard all previous samples.
5. Run the chain �(�) initialized with H(t) for ∼106 � n steps.

Steps 1–3 in the above algorithm represent a � determina-
tion phase where we start from a haplotype H0 and � initialized
to �1. We run the Markov chain for a certain number of steps
(c � n, where c ∼ 1000) and then compute a new � using the
current haplotype pair. This is repeated until we see no improve-
ment in the likelihood of the best haplotype sampled by the
Markov chain. After this initial � determination phase, we run
the Markov chain initialized using the current haplotype and the
final � for ∼106 � n steps. The samples used to make inference
about the posterior distribution are drawn only from this Markov
chain. For drawing samples from �(�), we discard the first
10,000 � n samples and thin the chain every 1000 � n steps.

Results

HuRef sequence data

The HuRef genome assembly (Levy et al. 2007) represents the
sequence of a single human individual using traditional Sanger
sequencing technology. It was derived from ∼32 million reads
and has a sequence coverage of 7.5. Using the HuRef sequenced
reads and comparison between the HuRef genome assembly and
the NCBI reference genomic sequence, a list of potential DNA
variants was compiled. These variants are not restricted to SNPs
but also include short insertions/deletions, etc. The sequenced
reads were mapped to the HuRef assembly to determine the al-
leles at each variant. For each sequenced read, the sequencing
quality values were used to assign an error probability for the
variant sites. After applying various filters to define a set of reli-
able heterozygous variants, there were ∼1.8 million heterozygous
variants for the 22 autosomes (for details, see Levy et al. 2007).

To illustrate the coverage and con-
nectivity of the sequenced fragments,
we present some statistics for chromo-
some 22, which has 24,967 heterozy-
gous variants. For this chromosome, the
fragment matrix had 103,356 rows,
where each row corresponds to a DNA
fragment from one of the two copies of
the chromosome. Hence, paired-end
reads (sequenced ends of clones) are rep-
resented as a single row; 18,119 of these
fragments correspond to such paired-
end reads. About half of the fragments
(53,279) link two or more variants and
therefore are potentially useful for hap-
lotype assembly. These 53,279 frag-
ments correspond to 173,084 variant
calls (about seven calls per variant) in
the fragment matrix. By using the over-
lap between these fragments, the chro-
mosome can be partitioned into 609 dis-
joint haplotypes (in addition to 921 iso-
lated variants) of varying lengths, the
largest of which links 1008 variants. In
terms of the actual physical distance
spanned by haplotypes, the N50 haplo-
type length (length such that 50% of the
variants are contained in haplotype seg-
ments of the given length or greater) is
∼350 kb. Note that a haplotype segment
does not link all variants it spans (for an

Figure 3. Illustration of the recursive graph-partitioning algorithm for computing �. The weighted
graph G(X) derived from the fragment matrix X and a haplotype pair H is shown on the top right. The
tree structure below demonstrates the recursive partitioning of the columns of X using min-cut com-
putations in the graph G(X). The first cut (C1), partitions the columns of X into two subsets: S = {1, 2,
3, 4, 5} and S = {6, 7, 8, 9, 10, 11, 12, 13}. The second cut (labeled C2), further partitions the subset
S into two smaller subsets: {1, 2, 3, 4} and {5}. � is obtained from the subsets labeling the nodes of the
tree (except the root node).
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illustration of a haplotype segment, see Supplemental Fig. S2).
Even if haplotype length is measured in terms of the number of
variants linked, the N50 length is ∼400 variants.

The importance of paired-end reads for haplotype assembly
can be gauged from the comparison of the distribution of the
number of variants among haplotypes of different sizes for (1)
reads including paired-end information versus (2) unpaired reads
(see Supplemental Fig. S3). If we ignore the paired ends and split
them into separate fragments, the linkage between the variants,
and consequently, the haplotype block sizes are greatly reduced.
The number of disconnected haplotypes increases to 4378 with
no haplotype having more than 100 variants.

Performance of HASH on simulated data

To test the performance of HASH, we generated simulated data
with varying error rates as follows: First, the fragment matrix X
was modified to make it perfectly consistent with a particular
haplotype. Next, to simulate an error rate of � (0 � � � 0.1), each
variant call in the fragment matrix was “flipped” (changed from
0 to 1 or vice versa) independently with probability �. For this
modified fragment matrix, we know the true haplotypes and also
the variant calls that are correct (those that were not flipped) and
those that are incorrect (the ones that were flipped during simu-
lations). Therefore, we can assess the performance using two dif-
ferent criteria: (1) the distance of the reconstructed haplotypes
from the true haplotypes and (2) the ability to predict which
variant calls are incorrect.

In Figure 4, we plot the average switch distance of the maxi-
mum likelihood reconstructed haplotypes from the true haplo-
types as a function of �. Average switch distance or switch error
rate (Lin et al. 2002) is defined as the fraction of positions for
which the phase between the two haplotypes is different relative
to the previous position. The switch error rate increases roughly
linearly with increasing error rate and is (∼2�) lower for HASH
than for the MCMC algorithm with �1. This is expected given the
slow convergence of the Markov chain with �1. The switch error
rate for the greedy heuristic (Levy et al. 2007) is also high in
comparison with HASH (data not shown).

By using an MCMC procedure, one can estimate the poste-
rior error probability for each variant call in the fragment matrix.

Given a haplotype pair H = (h, h), let Zi(H) denote the probability
that fragment Xi is sampled from h. Denote �i[j, h] = 1 if Xi and h
disagree at position j. Finally, let �i[j] = 1 to denote that Xi[j] is
called incorrectly, and �i[j] = 0 otherwise. Then, the posterior er-
ror probability can be computed as follows:

Pr��i�j� = 1|�� = �
H

�H�Zi�H� � ∈ i�j,h� + �1 − Zi�H�� � ∈i�j,h���.

Here �H = Pr(X|H, q) is a probability distribution over H. See
Supplemental material for a complete description. We compare
the posterior error probability for the “correct” variant calls with
those for the “incorrect” variant calls to demonstrate that our
algorithm HASH can predict the incorrect variant calls. In Figure
5A, we plot the false-positive rate (fraction of correct variant calls
that had a posterior error probability greater than 0.5) for differ-
ent values of �. For an error rate of 0.02, the fraction of incorrect
variant calls with a high posterior error probability (>0.5) is
∼80%. In Figure 5B, we plot the true-positive rate (fraction of
flipped base calls that had a posterior error probability of >0.5).

Figure 4. Comparison of the switch error rate for the algorithm HASH
and the MCMC algorithm with �1. The Y-axis is the average switch dis-
tance of the reconstructed haplotypes from the true haplotypes. The
X-axis (simulated error rate) is the fraction of variant calls in the fragment
matrix that were flipped.

Figure 5. Fraction of variant calls with a posterior error probability of
	0.5 using the HASH algorithm for different values of �. (A) False-positive
rate, given by the fraction of “correct” variant calls with high posterior
error probabilities. (B) True-positive rate, given as the fraction of “flipped”
variant calls with high posterior error-probability.
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Increasing the cutoff value for the
posterior error probability reduces
both the true-positive rate and the
false-positive rate. For an error rate of
0.02, 65% of the incorrect (or
flipped) variant calls have a posterior
error probability greater than 0.95,
while only 0.015% of the correct vari-
ant calls have such a high posterior
error probability.

The plots suggest that the error
in reconstruction is very low for typi-
cal sequencing errors, but increases
with increasing error rate. Also, our
measure for estimating accuracy
is (perhaps, overtly) conservative.
For example, if there is a single call
for a variant and this variant call is
flipped, it is not possible to re-
construct the true haplotype or pre-
dict that this variant call is incorrect.
Flipping a variant call affects not
only the posterior error probability of
that variant call but also the error
probability of variant calls that cover
the same column. Therefore, in-
creasing the error rate is expected
to increase the number of “correct”
variant calls with a high posterior
error probability. Also, if the error
rate is large and the number of
fragments covering each variant is
small, it may not be possible to
reconstruct the true haplotype ex-
actly from the mutated fragment ma-
trix.

HASH versus other MCMC
algorithms

Our goal in devising HASH is to en-
able the Markov chain to move out of
local optima and transition to haplo-
types with greater likelihood. We compared the performance of
HASH against two other MCMC algorithms: (1) �(�1), the
Markov chain with �1, and (2) �(�) where � was computed once
using the recursive graph-partitioning on G(X). Recall that HASH
is similar to algorithm 2 except that � is updated iteratively. For
this, we used data from chromosome 22 and looked at the maxi-
mum-likelihood haplotype pair sampled by each algorithm. The
results shown are for a block with ∼200 columns from chromo-
some 22 (see Fig. 6A). In each case, the Markov chain was ini-
tialized with a random haplotype pair. As expected, HASH domi-
nates both in the likelihood of the sampled solution and in the
speed with which the solution is reached. �(�1) gets stuck in a
local optima and will take a prohibitively large number of steps
to sample the maximum likelihood solution.

In Figure 6B we zoom in on the “� update” phase of the
HASH algorithm for the above example. The HASH algorithm
was initialized with a completely random haplotype. We observe
that the likelihood of the best haplotype sampled by the HASH
algorithm after a few updates to � is identical to that of the

Markov chain with the graph-partitioning-based � started from a
good quality solution. Although the results shown in Figure 6 are
for one particular example, they are similar for all data sets (data
not shown). The two results combined show that the sample
space has many locally optimal solutions that one could be
trapped in, but dynamic updates to the Markov chain architec-
ture, as described by HASH, allow for rapid convergence, increas-
ing the likelihood of sampling the globally optimum solution.

Haplotypes for HuRef

We compared the most likely haplotype assembly obtained using
HASH with the greedy haplotype assembly (Levy et al. 2007) for
each of the 22 autosomes of the HuRef individual. HASH was run
independently on each of the disjoint haplotype blocks for a
chromosome. For each chromosome, we compared the haplo-
type assembly against the fragment matrix and computed the
MEC (minimum error correction) score (Bafna et al. 2005), de-
fined as the minimum number of variant calls in the fragment
matrix that need to be modified for every fragment to perfectly

Figure 6. Results of running the MCMC algorithm with different � on a fragment matrix with
n = 200 columns (from chromosome 22 of HuRef genome). (A) A comparison of the HASH algorithm
against two other MCMC algorithms: (1) �(�1) and (2) �(�) where � was computed using the
recursive graph-partitioning algorithm G(X). All algorithms were initialized with a random haplotype
pair. (B) Comparison of HASH algorithm initialized with a random haplotype against �(�) (graph-
partitioning) initialized with a good haplotype. Note that we are zooming in on the first 10,000 steps
in the iteration.

Bansal et al.

1342 Genome Research
www.genome.org



match one of the two haplotypes. The MEC score represents a
parsimonious estimate of the discordance between the haplo-
types and the fragment matrix. A more detailed formulation of
the MEC score is given in the Supplemental material. In Figure 7,
we compare the MEC scores for three different methods: Greedy
heuristic (Levy et al. 2007), MCMC algorithm with �1, and HASH.
The haplotype assembly derived using HASH has a lower MEC
score for each chromosome, reflecting the greater accuracy of the
haplotypes. For chromosome 22, the MEC score for HASH was
20% lower than the greedy algorithm. Note that the MEC score is
not expected to be zero, even for the true haplotypes, due to
errors in base-calling.

We also compared the log-likelihood of the haplotype as-
semblies for the greedy algorithm and HASH. The log-likeli-
hood was computed using the sequencing quality values to
estimate the q matrix. We found that the log-likelihood for the
haplotypes reconstructed using HASH was consistently higher
than that of the greedy haplotypes, indicating that the haplo-
types are significantly more accurate. For example, the log-
likelihood of the greedy haplotype assembly for chromosome 22
(summed over all disjoint haplotypes) was �15683.4. In com-
parison, the most likely haplotype assembly using the HASH al-
gorithm had a log-likelihood of �11,944.25 (a reduction of
23.8%).

We compared the posterior error probabilities for each vari-
ant call against the sequencing quality values. To allow an unbi-
ased comparison, the HASH algorithm was run using uniform
error probabilities estimated from the greedy haplotypes
(q̂ = fraction of inconsistent variant calls). For chromosome 22,
2.26% of variant calls (3919/173,804) had a posterior error prob-
ability greater than 0.5. For variant calls with low sequencing
quality values (q 	 0.01), 4.2% (1203/28,532) had a high poste-
rior error probability. From Supplemental Figure S4, we can see
that the fraction of variant calls with a high posterior probability
increases with increase in the error probability (or decrease in
sequencing quality value). This correlation between high poste-
rior error probabilities and low sequencing quality values repre-
sents an independent confirmation of the quality of the recon-
structed haplotypes and also indicates that some of the inconsis-
tencies between the reconstructed haplotypes and the fragments
are a result of sequencing error.

Estimating accuracy of HuRef
haplotypes

The HuRef haplotypes obtained using
HASH are highly consistent with the se-
quenced fragments and have a low MEC
error rate (see Fig. 7). However, we also
want to be able to estimate the absolute
accuracy of the HuRef haplotypes. The
absolute accuracy can be expressed in
terms of the “switch error rate” (Lin et al.
2002) or the fraction of adjacent pairs of
variants whose phase in the HuRef hap-
lotypes is incorrect. We have computed
two independent estimates of the switch
error rate: one based on the haplotypes
samples generated by our MCMC algo-
rithm and another through comparison
of the HuRef haplotypes to the popula-
tion haplotypes from the HapMap
project.

Switch error estimates using samples from the MCMC algorithm

We used the haplotypes sampled by the algorithm HASH to es-
timate the reliability of the phase between adjacent pairs of vari-
ants in a haplotype segment. For a pair of adjacent variants (i, j),
if we denote the two alleles at each site by 0 and 1, there are
two possible haplotype pairs: (00, 11) and (01, 10). Based on
haplotypes sampled by the Markov chain, the switch error
probability for a pair (i, j) was estimated as the fraction of
times the less frequent haplotype pair was observed. See Supple-
mental Figure S2 for a plot of switch error probabilities for a
haplotype segment from HuRef. The switch error rate for a
chromosome can be approximated as the average of the switch
error probabilities for adjacent pairs. For chromosome 22 of
HuRef, the switch error rate was estimated to be 0.009 using 1000
samples.

Switch error rate based on comparison to HapMap haplotypes

One of the benefits of inferring haplotypes from sequence data is
that the local accuracy of the haplotypes is unlikely to be affected
by the level of LD in a region. This also presents the opportunity
of using LD in population data to detect switch errors in the
HuRef haplotypes. For a pair of variants that are in strong LD in
population data, the correct HuRef phasing is expected to match
the more likely population based phasing. If the inferred HuRef
phasing does not match the preferred population phasing, one
can infer a switch error with some probability (the probability
value depends upon the strength of LD between the pair of vari-
ants). We use this idea to empirically estimate the switch error
rate of the HuRef haplotypes. As the HuRef individual is of Cau-
casian origin, we have used the haplotypes from the CEU popu-
lation in the HapMap project (www.hapmap.org) for this com-
parison. We identified the subset of SNP variants in HuRef that
were also genotyped in the HapMap project. For each pair of
adjacent SNPs in this subset, there are two possible haplotype
phasings: (00, 11) and (01, 10). Let f00, f11, f01, and f10 represent
the frequencies of the four haplotype pairs in the HapMap CEU
sample. If (f00 � f11) > (f01 � f10), the pair (00, 11) is defined to
be the preferred HapMap phasing. Otherwise, (01, 10) is the pre-
ferred HapMap phasing. For a pair of adjacent HapMap SNPs in

Figure 7. The percentage of variant calls that are inconsistent with the best haplotype assembly for
three different methods: Greedy heuristic (Levy et al. 2007), MCMC algorithm with �1 and the HASH
algorithm for the 22 autosomes of HuRef.
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the HuRef haplotypes (that were part of the same haplotype seg-
ment), the phasing of the HuRef individual is compared to the
preferred HapMap phasing for that pair. The mismatch rate is
defined as the fraction of pairs for which the HuRef phasing does
not match the preferred HapMap phasing. In Figure 8, we plot
the mismatch rate of the HuRef haplotypes for chromosome 22
(estimated using HASH) as a function of LD (measured using r2).
The mismatch rate is lowest for pairs with high levels of LD
(0.008 for pairs with r2 > 0.8) and increases to 0.031 for all pairs.
The mismatch rate for pairs with high levels of LD can mainly be
attributed to switch errors in the HuRef haplotypes. For pairs of
SNPs with low LD, mismatches between the HuRef haplotypes
and the preferred HapMap phasing can represent switch errors or
chance mismatches (for an illustration, see Fig. 9). To correctly
estimate the error rate, we first compute an expected mismatch
rate for the HapMap haplotypes as follows: for every pair of ad-
jacent SNPs, we sample one of the two
haplotype pairs ([00, 11] or [01, 10])
based on the haplotype frequencies in
the HapMap haplotypes. The expected
mismatch rate is the fraction of pairs for
which the sampled pair mismatches the
preferred HapMap phasing. The ex-
pected mismatch rate is an estimate of
the mismatch rate for a haplotype pair
with no switch errors. For a particular
value of r2, we define the “adjusted mis-
match rate” as the mismatch rate minus
the expected mismatch rate. The ad-
justed mismatch rate represents an esti-
mate of the switch error rate of the
HuRef haplotypes that is corrected for
variation in LD in the HapMap haplo-
types. We observe that the adjusted mis-
match rate for HASH (Fig. 9) is nearly
independent of LD, ranging from 0.011
for all pairs to 0.0078 for pairs of SNPs
with r2 > 0.8. The adjusted mismatch
rate for the greedy heuristic is almost
three times that of HASH, providing the

strongest proof of the greater accuracy of the haplotypes inferred
using HASH.

Both internal and external estimates indicate that the
switch error rate of the HuRef haplotype assembly is ∼0.01. The
switch error rate for HapMap individuals from the CEU and YRI
samples has been estimated to be 0.0053 and 0.0216, respectively
(Marchini et al. 2006). The haplotypes for these individuals have
been inferred using a combination of trio and population infor-
mation. The increased error-rate for YRI is due to lower levels of
LD in the Yoruban population. Switch error rates for haplotypes
inferred without trio information are typically much higher
(0.054 for CEU individuals). An advantage of inferring haplo-
types using sequence data is that the error rates are expected to be
independent of the ancestry of the individual. Moreover, since
the switch errors are distributed independent of LD, the error rate
could be reduced further by incorporating LD information from
population data in the haplotype assembly.

Discussion

With the rapid development of new sequencing technologies
(Bentley 2006) comes the promise of individualized sequencing,
wherein the complete genomic sequence of individuals will be
available. In the past few years, next-generation sequencing tech-
nologies have drastically reduced the cost of sequencing com-
plete genomes (for a comparison of three next-generation se-
quencing methods, see Mardis 2008). Many individual genomes
have been sequenced (Levy et al. 2007; Wheeler et al. 2008), and
hundreds of human individuals are proposed to be sequenced in
the future (Kaiser 2008). As shown by Levy et al. (2007), whole-
genome Sanger sequencing in the presence of paired ends allows
one to reconstruct accurate and long haplotypes. In general, hap-
lotype assembly is feasible when the sequenced fragments are
long enough to cover multiple variants and the sequence cover-
age is high enough to overcome base-calling error. Most of the
next-generation sequencing technologies have the ability to gen-
erate paired-end sequences which is crucial for haplotype assem-
bly. Although the read lengths are typically shorter than those

Figure 8. Mismatch rate and the “adjusted mismatch rate” (error rate)
of the HuRef haplotypes estimated by comparison with the CEU HapMap
haplotypes. The error rate is plotted as a function of r2, i.e., computed for
all pairs of adjacent SNPs with r2 greater than a certain value.

Figure 9. Comparison of haplotypes assembled using sequence data with the preferred HapMap
phasing for each pair of adjacent SNPs inferred from the HapMap haplotypes. For three pairs of
adjacent SNPs, the phase of the sequence-based haplotypes mismatches the preferred HapMap phas-
ing (indicated by crosses). The first pair shows strong linkage disequilibrium (r2 = 0.95), and therefore,
the mismatch is more likely to represent a switch error in the sequence-based haplotypes. For the
second pair of SNPs, the sequence-based haplotypes are correct and the mismatch is due to low LD
between the SNP pair. For the third pair, LD is again low and the mismatch is due to a switch error in
the sequence-based haplotypes.
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for Sanger sequencing, continued enhancements in technology
are improving the read lengths; e.g., 454 Life Sciences (Roche)
read lengths have increased from 100 bp to over 400 bp (Schuster
2008). In the future, third-generation technologies could deliver
reads several thousand base pairs long (Korlach et al. 2008; von
Bubnoff 2008).

Haplotype assembly from sequenced reads of an individual
genome has several advantages over haplotypes obtained by
computationally phasing SNP genotypes from a population.
First, the accuracy of the phasing is not limited by regions of low
LD, and it is possible to recover very long haplotypes spanning
several hundred kilobases. Second, it is possible to assemble
“complete” haplotypes linking alleles at all variants such as SNPs,
insertion/deletions, etc., that are heterozygous in the individual.
Third, the accuracy of haplotypes inferred from genotype data
depends a great deal on the knowledge of ancestry of the indi-
vidual, while haplotype assembly from sequence data does not
require knowledge of the population of origin of the individual.
It is important to note that these two approaches for inferring
haplotypes are complementary to each other. As individual ge-
nomes are sequenced, population data could be combined with
sequence data to obtain longer and more accurate haplotypes for
an individual. LD from population data could be used to deter-
mine the phase between variants that are not linked by se-
quenced reads, while sequence data could be used to infer hap-
lotypes across regions of low LD. The highly accurate haplotypes
generated by the HapMap project for the CEU and YRI samples
could prove especially useful for improving the quality of hap-
lotypes assembled using individual sequencing.

In this article, we have described a MCMC algorithm for
haplotype assembly that samples haplotypes given a list of all
heterozygous variants and a set of sequenced reads mapped to a
genome assembly. Our emphasis has been on describing how a
particular choice of moves for the Markov chain enables it to
sample the haplotype space more efficiently than a naive Markov
chain. We have shown that haplotypes reconstructed using
HASH are much more consistent with the sequenced reads than
haplotypes inferred using a greedy heuristic. Comparison of the
HuRef haplotypes to the HapMap haplotype data suggests that
the error rate of haplotype reconstruction using HASH is low
(∼1.1%) and independent of the local recombination rate. In-
stead, simulations show that the error rate depends upon the
sequencing error and depth of coverage. As technologies im-
prove, the cost and error rates will improve further, increasing
the power and accuracy of haplotype assembly.

There are several aspects of our approach to haplotype as-
sembly that could be investigated further. In our approach, we
assume that a list of variants generated from the sequenced reads
is available. Detection of SNPs and variant sites from sequencing
data is a challenging problem in itself, and one can possibly
integrate the variant detection phase with the estimation of hap-
lotypes. This approach has recently been adopted (Kim et al.
2007) and can have certain advantages for genomes whose vari-
ant sites are not well characterized. Our framework considers
only heterozygous variants for haplotype assembly. In Levy et al.
(2007), a variant was called as heterozygous if at least 20% of the
reads (minimum of two reads) supported the minor allele. This
stringent criteria results in miscalling of heterozygous sites as
homozygous. It is possible to add the alleles for such sites to the
two haplotypes assembled using the remaining sites. An alterna-
tive approach would be to use all variants for the estimation of
haplotypes. Our model for haplotype likelihood considers each

variant call independently. One can incorporate more complex
error models where all the variant calls for a read are erroneous,
e.g., as a result of the read being incorrectly mapped, or some of
the variant sites do not represent real polymorphic variants, e.g.,
paralogous SNPs. The HASH framework is independent of the
likelihood model and can be easily adapted for such models.

Finally, we note that there are some novel aspects of our
MCMC algorithm, HASH. We have shown, both empirically and
theoretically, that a simple Markov chain with local moves, i.e.,
a chain in which all transitions are between haplotypes that dif-
fer in a single column, is unable to sample the haplotype space
efficiently. We have proposed a Markov chain with nonlocal
moves that allows transition between haplotypes that differ in
multiple columns. The transition matrix of this Markov chain is
determined by min-cut computations on an associated graph de-
rived from the sequenced reads. Moreover, the Markov chain
architecture is dynamically updated periodically, to escape local
minima.
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