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Histone modifications are major epigenetic factors regulating gene expression. They play important roles in
maintaining stem cell pluripotency and in cancer pathogenesis. Different modifications may combine to form
complex “histone codes.” Recent high-throughput technologies, such as “ChIP-chip” and “ChIP-seq,” have generated
high-resolution maps for many histone modifications on the human genome. Here we use these maps to build a
Bayesian network to infer causal and combinatorial relationships among histone modifications and gene expression.
A pilot network derived by the same method among polycomb group (PcG) genes and H3K27 trimethylation is
accurately supported by current literature. Our unbiased network model among histone modifications is also well
supported by cross-validation results. It not only confirmed already known relationships, such as those of H3K27me3
to gene silencing, H3K4me3 to gene activation and the effect of bivalent modification of both H3K4me3 and
H3K27me3, but also identified many other relationships that may predict new epigenetic interactions important in
epigenetic gene regulation. Our automated inference method, which is potentially applicable to other ChIP-chip or
ChIP-seq data analyses, provides a much-needed guide to deciphering the complex histone codes.

[Supplemental material is available online at www.genome.org.]

Histone methylation is one of the major types of chromatin
modifications that are responsible for epigenetic regulation of
gene expression. Modifications usually occur on the lysine resi-
dues at the N terminus of histones. Although different modifica-
tions are broadly associated with activation or repression of gene
expression, their relationship to one another and their combina-
torial function remain mysteries under intensive investigation
(Berger 2007). Barski et al. (2007) have performed chromatin im-
munoprecipitation (ChIP) followed by high-throughput se-
quencing (ChIP-seq) in human T cells, using antibodies against
20 human histone lysine and arginine methylations, as well as
histone variant H2A.Z, RNA polymerase II (Pol II), and the insu-
lator binding protein CTCF, to map the genomic locations of
these modifications and DNA/chromatin binding factors. This
study not only confirmed the known associations of different
modifications with gene expression, and discovered novel ones,
but also provided an important resource for sorting out the logi-
cal relationships among these modifications. The binding sites
are mapped at the whole genome level with single-nucleosome
resolutions, providing more than enough data points and reso-
lution to infer causal relationships among the modifications. Un-
der such circumstances, robust Bayesian networks can be built to
reveal the causal relationships.

The basic principle of a Bayesian network is to derive de-
pendency among variables through examining the conditional
probability and joint conditional probability distributions of dif-
ferent events. The final result is visualized in a directed acyclic
graph (a graph without loops), where an edge from a source to a
target node indicates that the occurrence of the target node de-
pends on that of the source node (Needham et al. 2006). Under
certain assumptions, edges in a Bayesian network can correspond

to causal relationships. Here we used the WinMine package to
derive statistical inference models (Chickering 2002), because it
contains an improved algorithm to distinguish compelled versus
reversible edges. Compelled edges correspond to causal influ-
ences, whereas reversible edges are not necessarily causal but
might be merely correlated (Chickering 1995). We first tested the
validity of the algorithms by applying them to a smaller-scale
“ChIP-chip” (microarray after ChIP) data set (Boyer et al. 2006)
where the causal relationships among nodes have been clearly
demonstrated. We then applied the algorithms to the larger-scale
“ChIP-seq” (sequencing after ChIP) data for 20 histone methyl-
ations and three other factors (Barski et al. 2007). The Bayesian
network derived agrees with the clustering results among genes
and histone modifications, as well as current literature about
them. Some of the relationships have been tested previously in
mammalian embryonic stem (ES) cells, fruitfly, or other organ-
isms, supporting the validity of our model. Other relationships
inferred from our model have not yet been tested experimentally
and represent potentially new causal and/or combinatorial rela-
tionships. Such relationships provide a blueprint for mapping
the complex “histone code.”

Results

Bayesian network to reconstruct causal relationships
among polycomb complexes

To illustrate how Bayesian network can be used to derive causal
relationships beyond simple correlations, we carried out a proof-
of-concept analysis on a smaller data set of the same type. It has
been found that trimethylation of lysine 27 on histone 3
(H3K27me3) at a gene in stem cells is dependent on polycomb
repressive complex 2 (PRC2) binding. PRC2 comprises of the core
proteins EED, SUZ12, and a methyl transferase EZH2 that directly
catalyze the H3K27me3. Polycomb repressive complex 1 (PRC1)
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can then recognize the H3K27me3 and is recruited to the gene
regulatory region and serves to stabilize H3K27me3 (Sparmann
and van Lohuizen 2006). Based on these findings, we should
expect a dependency of H3K27me3 modification on PRC2 bind-
ing and that PRC1 binding should depend on H3K27me3 modi-
fication. Boyer et al. (2006) have performed ChIP in mouse ES
cells, followed by microarray analysis (ChIP-chip) to determine
the genome-wide H3K27me3 modification sites and the binding
sites of EED, SUZ12, and two PRC1 components RNF2 and
PHC1. We focused on the simple network between EED, SUZ12,
RNF2 binding, and H3K27me3 modification, using a data set
provided by the authors for ∼20,000 genes with binding events
discretized to 1 (binding) and 0 (no binding) values. A simple
Venn diagram reveals the four factors share many targeting genes
(Fig. 1A). Measuring the correlations among the four binding and
modification events demonstrates that these events are tightly
correlated, except for H3K27me3 (pairwise correlations can be
found in Supplemental Table 1). However, none can indicate any
causal relationships or dependency among these events. With
Bayesian network analysis, we found that, as expected, the
H3K27me3 modification is dependent on the binding of both

EED and SUZ12, and that RNF2 binding is dependent on
H3K27me3 modification as well as binding of EED and SUZ12
(Fig. 1B). It should be noted that only H3K27me3 has been dem-
onstrated to directly bind PRC1, but an examination of the con-
ditional probability distribution table for the RNF2 node indi-
cates the binding of RNF2 is dependent on all three factors to-
gether and that no single factor or even pair of factors is
predictive of RNF2 binding to the same gene (Fig. 1B). This is a
new insight into the mechanism of PRC1 recruitment. The net-
work structures are unchanged whether we based our analysis on
the 1 kb upstream of and downstream from transcription start
site (TSS), or 8 kb upstream of to 2 kb downstream from TSS.
Furthermore, the relationships among the four factors do not
change if ChIP data for another PRC1 component, PHC1, are
included. Only three new edges connect to PHC1, from
H3K27me3, EED, and RNF2. These suggest the network inferred
is robust when subjected to minor variations. Unfortunately,
when Chickering’s algorithm was applied to find the compelled
edges in the network, none of the edges can be determined as
causal relationships. This could be due to the fact that only a
small number (five) of factors have been examined. If H3K27me3
is dependent on one additional factor that is independent of EED
or SUZ12, all but EED → SUZ12 can be claimed as compelled
edges or causal relationships (Supplemental Fig. 1). This is pos-
sible given that 51% of H3K27me3 signal has no overlap to EED
or SUZ12 (Fig. 1A), and its profile is not highly correlated to those
of the others (Supplemental Table 1).

Having ensured that a Bayesian network detects known and
novel causal relationship on a smaller data set of the same type,
we proceed to build one among all the 20 histone modifica-
tions and three other DNA binding factors. Compared with the
Boyer’s data set, Barski’s data set is generated by direct Illumina
sequencing (formerly Solexa sequencing) rather than microarray
after ChIP. This latest technology (a.k.a. ChIP-seq) has been
shown to have higher precision than ChIP-chip. The 30–50-
nucleotide-(nt) long sequence reads of the ChIP DNA fragments
are mapped onto the genome to determine the number of times
a certain interval of genomic DNA is precipitated and detected.
The output of the ChIP-seq experiments is digital sequence
counts per interval of genomic DNA.

Two major groups of histone modifications relate
to transcription activation and repression

Different histone modifications have been broadly categorized
into either activating or repressing modifications for transcrip-
tion of protein coding genes and are mainly associated with
modifications in promoter regions of the genes (Martin and
Zhang 2005). We also found that the histone modifications seg-
regated into two large clusters, when their ChIP-seq counts
within 1 kb upstream of and downstream from the TSS
(TSS ± 1kb) of genes were analyzed by hierarchical clustering (see
Methods) (Fig. 2A,B). The two clusters apparently correspond to
transcription activating (Group A) and transcription repressing
(Group R) binding/modifications, because (1) Group A contains
binding of Pol II and H2A.Z that indicate active transcription, as
well as known transcription activating modifications, such as
H3K4 mono-, di-, and trimethylations, while Group R contains
well-known transcription repressing modifications, H3K27me3,
H3K9me3, and H3K20me3; and (2) protein-coding genes also
segregate into two major clusters that are of high (Cluster H) and
low (Cluster L) expression levels in T cells (Fig. 2B). Cluster H has

Figure 1. Inferring causal relationships of H3K27 trimethylation and
binding of polycomb complexes. (A) Venn diagram visualizing the tar-
geting genes shared by double, triple, or quadruple combinations among
SUZ12, EED, RNF2, and H3K27me3. (B) Bayesian network inferred
among the four factors. A directed edge denotes the occurrence of the
target node is dependent on that of the source node, or that the occur-
rence of the source node is predictive of the target node. The probability
distributions giving rise to the dependency for each node are given next
to the node. For example, the conditional probability of RNF2 binding
given the occurrence of His3K27me3, EED, and/or SUZ12 is listed below
the RNF2 node.
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high counts for Group A binding/modification and low counts
for Group R, whereas Cluster L is the opposite. If genes are sorted
by their expression levels in T cells, it is obvious that the genes

having low expression level have more repressive marks and
fewer activating marks (Fig. 2C, top), and the other way around
for those having high expression level (Fig. 2C, middle). Other,

Figure 2. Two major groups of genes regulated by histone modifications. (A) Based on the histone modification counts within 1 kb upstream of and
downstream from the transcription start site (TSS), two major groups of modifications can be detected as two major clusters above the heat plot. One
group contains the known transcription activating binding/modifications, such as Pol II, H2A.Z, H3K4 mono-, di-, and trimethylations, while the other
contains the known transcription repressing modifications, such as H3K27me3, H3K9me3, H3K79me3, and H4K20me3. (B) When the expression levels
in T cells are compared, genes in the group with activating modifications (Cluster H) and those in the other group with repressive modifications (Cluster
L) are, respectively, 1.14 and 0.78 times of the average log2 transformed expression levels of all genes measured on the microarray (both
P < 1.62 � 10�12). An asterisk above a bar indicates that the group’s mean value is not significantly different from the average, otherwise the difference
is significant. (C) Genes with measured expression levels are arranged from top to bottom according to increasing expression levels in T cells, as indicated
by the gradient arrow.
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less-well-understood modifications, such as H3K27me1,
H3K9me1, H2BK5me1, and H4K20me1 modifications are in-
cluded in Group A and H3K79me1, H3K79me2, H3K79me3,
H3K20me3, and H4R3me2, etc. in Group R (Fig. 2B), suggesting
that these modifications might be also associated with transcrip-
tion activation and repression, respectively.

Consistent with Cluster H and L being transcriptionally ac-
tivated and repressed genes, respectively, Cluster H is enriched in
house-keeping genes and T-cell-specific genes, whereas Cluster L
is enriched in tissue-specific genes and pathways for alternative
cell fates (neuron, keratinocyte, muscle, skeletal, and epithelial
cells), as indicated by gene ontology (GO) and KEGG pathway
annotations (Table 1; Supplemental Tables 2, 3). Interestingly,

genes with low expression levels have much more homogeneous
modification profiles and clearer bound or unbound signals com-
pared with highly expressed genes. This is especially evident
when comparing the major subclusters in Clusters H and L (Fig.
2A, Clusters 3,10), or when sorting genes according to expression
levels (Fig. 2C). The implication is that histone methylation
might dominate in transcription repression, whereas transcrip-
tion factors or other mechanisms might be more important to
transcription activation. In agreement with this hypothesis,
highly expressed genes nearly always have high Pol II binding
rather than any particular histone modification, whereas those
with the lowest expression levels are associated with H3K27me3
modification (Fig. 2C). Furthermore, our Bayesian network

Table 1. GO terms and KEGG pathways enriched in Cluster H and L

Term or pathway P-value Fold Term or pathway P-value Fold

Cluster H
GO Mitochondrion 6.24E–71 1.56 Intracellular protein transport 4.31E–16 1.59

RNA binding 8.26E–43 1.55 Nucleolus 1.91E–15 1.68
Cell cycle 5.22E–38 1.56 Ribosome 2.35E–15 1.60
RNA splicing 4.17E–35 1.78 Chromatin modification 1.00E–13 1.64
Ubiquitin cycle 3.23E–33 1.58 Ubiquitin-protein ligase activity 2.67E–12 1.61
Protein transport 3.21E–28 1.56 Protein complex assembly 1.18E–11 1.55
Translation 5.40E–26 1.64 DNA replication 3.05E–11 1.61
Ligase activity 1.64E–24 1.60 Protein transporter activity 3.08E–11 1.63
mRNA processing 6.44E–22 1.66 ER to Golgi vesicle-mediated transport 8.87E–11 1.69
Spliceosome 8.11E–22 1.79 Nuclear pore 4.55E–10 1.74
DNA repair 8.21E–22 1.72 Translation initiation factor activity 6.96E–10 1.76
Cell division 1.16E–20 1.65 Nucleoplasm 8.13E–10 1.65
Structural constituent of ribosome 4.14E–18 1.62 tRNA processing 9.46E–10 1.78
Mitosis 2.90E–16 1.66 Ubiquitin-dependent protein catabolic process 1.08E–09 1.52

KEGG Cell cycle 2.90E–14 1.65 Valine, leucine, and isoleucine degradation 1.31E–06 1.66
T-cell receptor signaling pathway 8.51E–08 1.55 N-Glycan biosynthesis 3.39E–06 1.71
Pyrimidine metabolism 1.93E–07 1.55 DNA polymerase 4.71E–06 1.85
Chronic myeloid leukemia 1.06E–06 1.56

Cluster L
GO G protein–coupled receptor protein

signaling pathway
2.03E–120 2.00 Phosphate transport 2.17E–16 2.12

Receptor activity 1.08E–119 1.74 Synapse 8.00E–15 1.76
Response to stimulus 8.40E–107 2.19 Nervous system development 1.25E–14 1.58
Signal transduction 9.05E–94 1.59 Hormone activity 3.00E–14 2.07
Sensory perception of smell 1.27E–90 2.32 Structural molecule activity 1.77E–13 1.57
Extracellular region 1.87E–88 1.94 Potassium ion transport 2.99E–13 1.78
Olfactory receptor activity 2.32E–84 2.20 Extracellular matrix structural constituent 3.10E–13 2.07
Extracellular space 1.32E–62 1.95 Sugar binding 6.61E–13 1.74
Integral to plasma membrane 1.17E–55 1.59 Potassium ion binding 1.65E–12 1.86
Calcium ion binding 1.35E–44 1.58 Serine-type endopeptidase activity 1.53E–11 1.85
Proteinaceous extracellular matrix 4.72E–43 2.11 Growth factor activity 3.98E–11 1.74
Rhodopsin-like receptor activity 8.38E–39 1.98 Chemokine activity 6.34E–11 2.23
Cell adhesion 2.76E–36 1.70 Keratinization 6.86E–11 2.36
Ion transport 1.34E–32 1.69 Neuropeptide signaling pathway 1.49E–10 1.88
Multicellular organismal development 8.43E–31 1.50 G protein–coupled receptor activity 1.65E–10 1.90
Cell–cell signaling 1.20E–29 1.85 Digestion 2.67E–10 2.15
Voltage-gated ion channel activity 3.40E–22 2.02 Chemotaxis 6.25E–10 1.77
Synaptic transmission 7.86E–22 1.92 Oxygen binding 1.12E–09 2.29
Homophilic cell adhesion 2.92E–21 2.03 Epidermis development 1.28E–09 1.93
Intermediate filament 5.58E–19 2.08 Peptidase activity 1.30E–09 1.65
Ion channel activity 4.37E–18 1.87 GPI anchor binding 1.31E–09 1.74
Cell junction 5.64E–18 1.67 Inflammatory response 1.34E–09 1.56
Visual perception 1.65E–17 1.79 Post-synaptic membrane 4.14E–09 2.03

KEGG Neuroactive ligand-receptor interaction 3.19E–52 1.97 Metabolism of xenobiotics by cytochrome P450 5.40E–07 1.76
Cell communication 9.40E–23 2.02 ECM-receptor interaction 5.54E–07 1.68
Complement and coagulation cascades 3.09E–09 1.88 Maturity onset diabetes of the young 7.02E–06 2.13
Taste transduction 4.40E–07 1.88

Only annotations that are enriched >1.5-fold over the average and with P < 10E–8 for GO or P < 10E–5 for KEGG are listed here. Full lists and more details
are provided in Supplemental Tables 2 and 3.
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model reveals that H3K4me3 and other activating modifications
influence gene expression indirectly through Pol II, whereas the
H3K27me3 modification directly suppresses gene expression in
addition to inhibiting Pol II binding (see below).

Notably, two gene subclusters within Cluster H, Clusters 1
and 6, have lower than average expression levels. They both con-
tain H3K27me3 modifications in addition to transcription acti-
vating modifications, suggesting that transcription repression
function of H3K27me3 is dominant over the activating modifi-
cations (also see below). In ES cells, bivalent modifications (i.e.,
both transcription activating and transcription repressing) have
been proposed to hold genes in a temporary silent state, “poised”
for rapid activation upon removal of H3K27me3 (Berger 2007). In
T cells, bivalent modifications are associated with genes with
very diverse functions, including thromboxane receptor activity,
ephrin receptor signaling, Rho protein signaling, and so on
(Supplemental Tables 2, 3, Cluster 1, no enriched function an-
notations were found in Cluster 6). It is not clear whether these
functions are poised for activation in T cells. In contrast to Clus-
ters 1 and 6, subcluster 8 within Cluster L not only lacks the
major transcription activating modifications (except H3K27me1,
H3K4me1, H2BK5me1 and H4K20me1) but also the repressive
modifications H3K27me3, H3K79me3, H3K9me3, and
H4K20me3. Subcluster 8 has average expression level (Fig. 2B),
and low, but not the lowest, level of Pol II binding (Fig. 2A). This
subcluster may correspond to background or default transcrip-
tion, and so not enriched for many function categories (Supple-
mental Tables 2, 3).

Bayesian network to infer causal relationships among histone
modifications and gene expression

The binary division of the modifications does not imply that a
single modification is sufficient to cause transcription activation
or repression or that any of the modifications are necessary for
gene expression regulation. Accumulating evidence suggests that
the regulation of gene expression by histone modifications is not
as simple as an on-off switch, but involves complex combinato-
rial effects, some times referred to as the “histone code” (Berger
2007). However, only the relationships of few modifications and
how they affect gene expression have been solved so far. Here, we
try to build a more comprehensive and unbiased model by in-
ferring the causal relationships among various histone modifica-
tions, chromatin binding events and gene expression in a “gene-
centric” Bayesian network, where high, medium, or low binding
of a protein or occurrence of a modification (revealed by each
ChIP) to each gene’s regulatory region is treated as an observable
event.

To derive such a model, we first summed up the sequence
counts within 1 kb upstream of and downstream from each
gene’s TSS (TSS ± 1kb) so that one gene has one count for a single
histone modification or binding factor. We then discretized the
sequence counts for each of the 17,757 genes to three levels, low,
medium, and high, by an unsupervised learning method, the
k-means clustering algorithm (see Methods) (Fig. 3A; Supplemen-
tal Table 4). To incorporate the gene expression data, only the
12,078 genes that have both expression measurements and ChIP
data are used to infer Bayesian networks. To extract the relation-
ships to gene expression, an additional node “gene expression”
was introduced, where each gene’s expression level is discretized
into low, medium and high based on its expression level in the T
cells (see Methods) (Fig. 3A; Table 2). Alternatively, we also dis-

cretized a gene expression value relative to the gene’s overall
expression distribution among 79 human tissues (see Methods)
(Su et al. 2004). Although the two different discretization meth-
ods give rise to very different classification of gene expressions
(Table 2; Supplemental Table 5), the Bayesian network models
generated are exactly the same. Removing one to six modifica-
tions or factors weakly associated with gene expression also does
not perturb the rest of the network (data not shown). Both of the
above results support the robustness of the model in addition to
the cross-validation results (see below). We also explored other k
values in k-means clustering for data discretization. At k = 5, the
k-means algorithm can no longer generate clustering result for
H3K79me2 ChIP data set. At k = 3, the network is the most
robust and performs the best according to the cross-validation
(see below) results compared with k = 2 or 4 levels (Supplemental
Fig. 2). We therefore presented the Bayesian network based on
the k = 3 results.

To ensure the robustness of the Bayesian network generated,
we randomly partitioned the genes into 10 nonoverlapping
groups. We then used each nine-group combination among the
10 groups (i.e., leave one group out) to train a Bayesian network
(Fig. 3A). In order to generate testable predictions for causal re-
lationships, all the reversible edges were removed from each in-
ferred network, and only the compelled edges were kept. The
Bayesian networks generated by each of the nine-group combi-
nations were then compared with the common network agreed
by N combinations, where N is an integer from 1 to 10. As there
is no positive training data set, the overlap to the common net-
work serves as a surrogate for robustness measurement. We de-
fine the accuracy as the percentage of edges identified in each
network that are also found in the common network, and the
coverage as the percentage of edges in the common network that
are identified by a particular network model. We performed ran-
dom grouping 100 times and repeated the cross-validation de-
scribed above on each trial of 10 random groups to derive average
and standard deviation of cross-validation accuracy and coverage
(Fig. 3A,B). We found that the boundary around TSS can affect
the robustness of the network models. When the models’ cover-
age is plotted against their accuracy, it is clear that the models
derived from TSS ± 1kb regions has the highest area under the
curve (AUC) over those derived from TSS ± 600bp or TSS ± 2kb
regions (Fig. 3B). We therefore adopted the overlapping network
closest to the upper right corner of the coverage ∼ accuracy plot.
This is the common network agreed by seven of the 10 models
derived from sequence counts within TSS ± 1kb (Fig. 3B). Among
the 100 trials of obtaining best 10-fold cross-validated common
network, 32 compelled edges are common to all 100 trials, which
in total inferred 37 compelled edges. These 32 inferred causal
relationships connect 22 out of the 24 binding/modification
events examined by ChIP (Fig. 3C). In contrast, if the ChIP se-
quence counts were permuted among different genes, each net-
work model contained on average only three reversible edges and
no compelled edge (Fig. 3D), indicating the large network size
and the overlap among the different models could not be due to
random chance (empirical P < 0.001) (see Methods).

To visualize the modes or signs of action (i.e., activation or
suppression) among modifications and gene expressions, the
edges in the network are colored according to the level of corre-
lations between the two nodes linked by the edge, and the nodes
are colored by their correlation to gene expression (see Methods)
(Fig. 3C). Pearson correlation coefficient (PCC) between the two
vectors of sequence counts for the 17,757 genes identified by the
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two ChIPs (nodes) is used to measure the correlation between a
pair of ChIPs. PCC between a vector of ChIP sequence counts for
the 12,078 genes (only the genes that have expression measure-
ments) and another vector of gene expression values of the genes
is used to measure the correlation between a ChIP and gene ex-
pression. If we consider the anti-correlation between the two
modifications together with the conditional dependency as an
inhibitory effect, and correlation plus conditional dependency as
activating effect, H3K27me3 is predicted to be the strongest and
the only direct inhibitory factor causal to gene expression,

whereas H3K4me3 has the strongest activating effect but indi-
rectly through Pol II (Fig. 3C).

The network is hierarchical with approximately four levels.
As expected, the gene expression node is at the bottom of the
hierarchy with one direct activating effect from Pol II and one
direct suppressing effect from H3K27me3 (Fig. 3C). H4K20me3, a
hallmark of heterochromatin (Schotta et al. 2004; Talasz et al.
2005), a transcription repressing modification (H3K27me3), and
three transcription activating modifications (H3K4me1,
H3K4me2, and H3K9me1) are at the top of the hierarchy.

Figure 3. (Continued on next page)
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A chain of three nodes negatively associated with gene
expression, H3K9me3 → H3K9me2 → H3K79me2, is down-
stream of H3K27me3 and H4K20me3 (Fig. 3C). Three other
nodes, H3K27me2, H4R3me2, and H3K36me3, are also nega-
tively correlated with gene expression, with H4R3me2
dependent on H3K27me2 and H3K4me3, and H3K36me3
on H3K4me3 only (Fig. 3C). The rest of the nodes, including
all the monomethylations, H3K4me3, Pol II, H2A.Z, and
CTCF, are all directly or indirectly associated and positively
correlated with gene expression. Among them, a chain of
causal relationships formed among four monomethylations,
H3K4me1 → H2BK5me1 → H3K36me1 → H3K79me1, seems to
be significantly longer than expected (P = 0.044 assuming normal
distribution) (see Methods) (Fig. 3C). The biological meaning of
this observation is currently unknown.

The modifications or binding events, such as H2A.Z and
CTCF binding at the bottom of the cascade, are not predicted to
be causal to gene expression (Fig. 3C).

Existing experimental support for the inferred relationships

Since epigenetic modifications reflect the gene expression status
in a particular tissue and state, the same gene is likely to be
modified differently in distinct tissues or conditions. Even the
methyltransferase or demethylase complexes catalyzing the
modifications might be different. However, the relationship of
each modification to gene expression status, and the relation-
ships among various modifications present in T cells might re-
flect their interaction patterns in general toward forming the

Figure 3. Causal relationships among histone modifications and gene expression. (A) Flowchart of a Bayesian network construction using sequence
counts within TSS ± 1kb. See text for details. (B) The coverage and accuracy of models derived from sequence counts within TSS ± 600bp, TSS � 1kb,
and TSS � 2kb. For each N (an integer from one to 10) nine out of 10 group combinations, the models’ accuracy and coverage are calculated generating
a curve for each sequence range used to construct the models. We performed random grouping 100 times, and hence, the coverage and accuracy at
each N is the average of 100 trials. The vertical and horizontal bars on the curve denote the standard deviations of accuracy and coverage at each point.
(C) The common Bayesian network (see text for details) consisted of only compelled edges agreed by all 100 trials. The model is based on the sequence
counts in TSS � 1kb. The edge colors indicate the correlations (measured by Pearson correlation coefficient [PCC]) among the various modification/
binding factors; nodes are colored by their correlation to gene expression. Colors are scaled as shown in the color legend. The edge directions have the
same meanings as in Fig. 1B. (D) The causal relationships in the Bayesian network model are not expected by shuffled sequence counts among genes
for each ChIP. Comparing to that of the real data, when the sequence counts are shuffled among genes, each Bayesian network contains zero compelled
edge. Each point on a curve represents the average results of 100 tests or 100 simulations, with the vertical bars on the curve denoting the standard
deviations at each point.
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histone code and therefore might be the same or similar in dif-
ferent tissues or under different conditions.

Ohm et al. (2007) have observed that cancer stem cells pos-
sess two additional repressive modifications, H3K9me2 and
H3K9me3, besides the H3K27me3 seen in normal ES cells and
proposed that these might lead to heritable gene suppression in
tumor cells. In agreement with their observation, we found that
H3K27me3, together with H4K20me3, a modification involved
in DNA repair (Sanders et al. 2004), is predicted to be causal to
H3K9me3, which may in turn lead to H3K9me2 (Fig. 3C). It is
therefore interesting to test if H4K20me3 formation during DNA
repair synergizes with H3K27me3 to create H3K9me3 and
H3K9me2 and facilitate the transition from normal to cancer
stem cells. Current literature already points to such a possibility:
In Tetrahymena, H3K27me3 has been demonstrated to regulate
H3K9 methylations (Liu et al. 2007); H4K20 methylation has
been suggested to further stabilize polycomb complex binding in
addition to H3K27me3 (Schwartz and Pirrotta 2007).

Consistent with the many results with polycomb gene mu-
tations (Schuettengruber et al. 2007; Schwartz and Pirrotta 2007),
H3K4me3 and H3K27me3 assume central roles in the network,
with the highest out degrees (number of edges pointing away
from the node) (Fig. 3C). H3K4me3 is known as a strong tran-
scription activating modification (Bernstein et al. 2002; Kim et al.
2005; Barski et al. 2007; Berger 2007) that may serve as a
“memory” mark to reinforce future histone modifications and
transcription on the marked genes (Ng et al. 2003; Martin and
Zhang 2005). Our model puts H3K4me3 downstream of
H3K4me1 and H3K4me2, suggesting a directional equilibrium
among mono-, di-, and trimethyl H3K4. It is also downstream of
H3K9me1 and upstream of CTCF, H2A.Z, Pol II, H3K36me3, and
H4R3me2. The causal effect of the trxG complex (responsible for
catalyzing H3K4me3) to Pol II binding has been demonstrated by
direct genetic experiments (Schuettengruber et al. 2007; Schwartz
and Pirrotta 2007). For example, in polytene chromosomes of
fruitflies mutant for the trxG gene kis, the level of elongating Pol
II decreases dramatically (Srinivasan et al. 2005). Mutations in
the mouse trx counterpart Mll1 affect Pol II binding level and
distribution on the Hoxa9 gene promoter (Milne et al. 2005)

Our model also predicts that H3K4me3 might inhibit the
formation of H3K36me3 and H4R3me2 (Fig. 3C). The inhibi-
tion of H3K36me3 by H3K4me3 is supported by various
experimental results. H3K4me3 and H3K36me3 seem to have
mutually exclusive localizations, H3K4me3 peaking at the 5�

end of genes, H3K36me3 at the 3� end, and tail gradually into
each other’s territory (Li et al. 2007). H3K4me3 is known to
recruit either a transcription activating complex, which leads

to recruitment of the SAGA complex, transcription initia-
tion, and elongation, or transcription repression complexes such
as Sin3-Hdac1 and JMJD2A (Berger 2007). JMJD2A is a demeth-
ylase for H3K36me3 (Huang et al. 2006; Tsukada et al. 2006;
Berger 2007). Thus, the inferred causal effect of H3K4me3 to
H3K36me3 might correspond to the biochemical relationships of
H3K4me3 → JMJD2A → H3K36me3.

H3K27me3 strongly suppresses expression (Boyer et al.
2006; Lee et al. 2006; Roh et al. 2006). Our model predicts that,
in addition to being inhibitory to Pol II and gene expression,
H3K27me3 also inhibits H2BK5me1. In ES cells, developmental
genes or genes involved in cell differentiation are bivalently
modified with both H3K4me3 and H3K27me3 (Szutorisz et al.
2005; Bernstein et al. 2006). This bivalent modification is be-
lieved to repress the expression of developmental genes in ES
cells but makes them poised for rapid activation upon removal of
H3K27me3 (Berger 2007). Our model supports this postulate
through the epistatic relationship of the two modifications:
H3K27me3 clearly has a dominant role over H3K4me3 by inhib-
iting both Pol II and its ultimate target gene expression (Fig. 3C),
thus the end result of the bivalent modification is repression
instead of activation. Mechanistically, the inhibition of Pol II
and gene expression by H3K27me3 might be due to a reduced
DNA accessibility, caused by the polycomb complexes (Fitzgerald
and Bender 2001), or a block to RNA synthesis by Pol II (Dellino
et al. 2004). It is still controversial about which of the two mecha-
nisms is correct, because the former lacks strong in vivo evidence
and the latter has only been shown on genes that are prebound
by Pol II or “pre-set” genes (Schwartz and Pirrotta 2007). Our
model indicates that both of these mechanisms might be at work in
vivo. In our model the H3K27me3 → Pol II relationship is consis-
tent with the first mechanism, where Pol II binding is prohibited by
H3K27me3. The second scenario of gene expression inhibition by
H3K27me3 in the presence of prebound Pol II may correspond to
the direct H3K27me3 → gene expression relationship in our model.
In ES cells, the bivalently modified genes probably need the latter
mechanism to achieve a dominant “off” state, while maintaining
an open chromatin structure (Bernstein et al. 2007).

Consistent with the histone codes hypothesis, many modi-
fications are predicted to be the result of combinatorial upstream
modification events. For example, Pol II binding is predicted to
be the combinatorial result of H3K4me3 and H3K27me3 modi-
fications (Fig. 3C). This is supported by the antagonistic effects
between the trxG and PcG complexes (which catalyze H3K4me3
and H3K27me3, respectively) on Pol II binding and transcription
activity (Schuettengruber et al. 2007; Schwartz and Pirrotta
2007). The detailed joint conditional probabilities for each node
can be found in Supplemental Table 6.

Although some nodes, such as the insulator CTCF
(Meneghini et al. 2003) and anti-silencer H2A.Z binding, are
strongly correlated with gene expression, our model inferred that
CTCF and H2A.Z are influenced by H3K4me3 synergistically with
Pol II or H3K4me2 and that they do not directly influence gene
expression (Fig. 3C). This is consistent with the fact that both are
enriched at the insulator sites that limit the spread of gene acti-
vation (Bruce et al. 2005; Barski et al. 2007).

In summary, the causal relationships among histone modi-
fications revealed by our Bayesian network model indicate that
various histone modifications form a hierarchical cascade, and in
combination regulate gene expression. The causal relationships
in many cases reflect sequential events during dynamic chroma-
tin remodeling and gene regulation. As expected, H3K4me3 and

Table 2. Boundaries used to define low, medium and high gene
expression levels

Within T cell Cross tissue

Gene expression Boundary Gene count Gene counta

Low 0.55–21.4 3228 9293
Medium 21.45–121.8 5599 2883
High �121.85 3251 673

Within T-cell levels are based on all genes’ expression levels in T cells, and
the cross-tissue expression levels are based on a gene’s expression level in
T cells compared with those in other tissues.
aCross-tissue expression level boundaries for each gene are listed in
Supplemental Table 5.
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H3K27me3 are the strongest transcription activating and repress-
ing modifications.

Discussion

Although many other modifications are strongly correlated or
anti-correlated with gene expression, they are not directly causal
to gene expression regulation and correlate more weakly to gene
expressions than H3K4me3 and H3K27me3 do. The other modi-
fications might stabilize these major two modifications (as most
are dependent on the two modification “hubs”), be by-products
of transcription, or be required for other processes, such epige-
netic inheritance and higher-order organization of chromo-
somes.

Due to the strict requirement of acyclic structure in the
Bayesian networks, bidirectional interactions are bound to be
missed in at least one direction. For example, there is evidence
that initial Pol II binding to a TSS can recruit the trxG complex
(Ng et al. 2003; Martin and Zhang 2005), which then keeps the
chromatin structure in a transcription active mode to allow for
more Pol II binding to occur (Schuettengruber et al. 2007). In our
model, we only identified the H3K3me3 → Pol II direction, prob-
ably because this direction can be detected at higher frequency
than the initial Pol II binding step. Similarly the initial Pol II
binding is also able to recruit a demethylase to H3K27me3 (Smith
et al. 2008). The positive feedback loops formed by the bidirec-
tional interactions might reinforce a signal of transcription ac-
tion or repression and thus create “memory” on the genes.

The new relationships predicted by our model may also be
very important for solving the histone code. For example, a rarely
studied modification, H2BK5me1, is predicted to have a central
role in relaying information from H3K27me3 and H3K4me1 to
H3K36me1, H3R2me2, and H4K20me1 (Fig. 3C). It should be
noted that even the direct causal relationships predicted in the
Bayesian network model may not correspond to direct biochemi-
cal interactions. They are instead more likely to correspond to
epistatic genetic relationships. Genetic mutant evidence is there-
fore important in validating the predicted relationships.

Although the accuracy of the model can only be experimen-
tally validated after a significant number of the inferred causal
relationships have been tested, individual or a small number of
the relationships can be independently subjected to experimen-
tal examination. To facilitate experimental testing, we expanded
the network model with known methyltransferases and demeth-
ylases that potentially govern the state of methylation on a spe-
cific histone site (Supplemental Fig. 3; Supplemental Table 7).
This provides a mapping between the model and possible ways of
perturbing the network and testing the model. For example,
knowing that trxG genes create H3K4me3 and JARID1B and C
destroy it, one might perturb H3K4me3 by knocking out/down
either its methyltransferase (trxG genes) or demethylase
(JARID1B and C) and then examine the binding of Pol II to the
promoter of genes. According to the model, we would expect that
down-regulating trxG proteins will decrease Pol II binding,
whereas down-regulating JARID1B and C will increase Pol II
binding on genes that have H3K4me3 at their promoter regions,
such as the HOX genes. These results have already been demon-
strated in kis mutant Drosophila melanogaster and in Mll1 mutant
mouse cell lines (Milne et al. 2005; Srinivasan et al. 2005). Other
inferred causal interactions can be tested similarly, when specific
methyltransferase and demethylase have been found. To test a

predicted synergistic effect, such as H4K20me3 and H3K27me3
together lead to H3K9me3, one can examine if H3K9me3 is
formed at the promoter regions of genes that normally have only
H3K27me3 when H4K20me3 is increased by overexpression of its
methyltransferase WHSC1 (also known as MMSET) (Marango et
al. 2008). However, knocking down/out an H4K20me3 demeth-
ylase might be more convincing, when such an enzyme is iden-
tified. It should also be noted that tissue and state specificities of
the modification enzymes and redundancies among them may
complicate the experimental results.

Since some of the relationships we found in T cells are the
same as those regulating stem cell pluripotency and differentia-
tion as well as cancer pathogenesis, the model we inferred from
T cells may also provide clues for gene regulation mechanisms in
these processes.

From the methodology perspective, our pipeline of integrat-
ing various ChIP and gene expression data to infer causal rela-
tionships among chromatin-associated factors/modifications
and gene expression adds a powerful and much-needed tool for
analyzing the ever-increasing ChIP-chip and ChIP-seq data.

Methods

Data sets
The PcG and H3K27me3 ChIP-chip data were obtained from
Boyer et al. (2006). The 20 histone modification and three other
factor binding ChIP-seq data were obtained from Barski et al.
(2007). RefSeq version 35 downloaded on March 10, 2005 was
used to determine the genomic coordinate of the sequences in
the ChIP-seq data. Gene expression data containing the expres-
sion intensity of ∼15,000 genes in 79 human tissues measured by
DNA microarray was obtained from Su et al. (2004). GO annota-
tions were downloaded from ftp://ftp.ncbi.nlm.nih.gov/gene/
DATA/ on September 1, 2007. KEGG pathway annotations were
obtained from ftp://ftp.genome.jp/pub/kegg/xml/organisms/
hsa/ on April 25, 2007.

Bayesian network inference
We used the WinMine package (http://research.microsoft.com/
∼dmax/winmine/tooldoc.htm) to calculate joint conditional
probability and build the preliminary potential Bayesian net-
works. Bayesian network structure is searched by the following
algorithms (Heckerman et al. 1995): First define a function
S(xi|�i) where xi represents the current node and �i represents all
the parental nodes of �i. The function is a custom-defined evalu-
ation function that is only related to the current node and its
parental nodes. It can take many forms. The most basic utilizes
conditional probability: When searching for structures in an acy-
clic direct graph, a weight is defined for edge xi to xj as w(xi,xj) =
logS(xi|xj) � logS(xi|�), where � is a node set containing no
edges. Because the weights w(xi,xj) and w(xj,xi) are different, the
directionality of an edge can thus be determined; that is, the one
maximizing ∑n

i=1w(�i|�i) will be adopted. Thus for a certain net-
work structure, the sum of the total weight of all its edges can be
calculated as ∑n

i=1s(�i|�i) = ∑n
i=1w(�i|�i) � ∑n

i=1s(�i|�). Because
∑n

i=1s(�i|�) is a constant, searching for the best network structure
maximizes the value for ∑n

i=1w(�i|�i). However, this is a NP-hard
problem that can be only approximated by a heuristic search
method. It uses a greedy algorithm to search the maximal value
for ∑n

i=1w(�i|�i). The algorithm starts with an initial state corre-
sponding to a network model containing no edge. It does not
require an input order of the nodes for searching, and the net-
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work generated is not dependent on the order of nodes on the
input list. As for all greedy algorithms, the maximal value might
be trapped at a local maximum. We then implemented an algo-
rithm of compelled edge identification as previously described
(Chickering 1995) to find causal relationships.

GO term and KEGG pathway enrichment
GO terms were first filtered as described previously (Xia et al.
2006). Then, GO term and KEGG pathway enrichment was de-
termined by Fisher exact test followed by Benjamini-Hochberg
correction (Benjamini and Hochberg 1995) for multiple hypoth-
esis testing on all the GO terms tested in each gene set.

Allocating sequence counts to gene regulatory regions
Barski et al. (2007) have provided the ChIP results as sequence
counts per 200 bp or 400 bp (only for Pol II and H2A.Z) intervals.
Counts in 400-bp intervals were first equally divided into two
contiguous 200-bp intervals. Only when more than half of an
interval is within a certain regulatory region, e.g., TSS ± 1kb, we
allocate the sequence counts in the interval to the regulatory
region. Sequence counts in all the intervals thus determined are
then summed up for each gene.

Clustering genes using histone modification profiles
We first filtered for genes that have nonzero counts for at least
three ChIPs, then used a hierarchical clustering algorithm imple-
mented in Cluster 3.0 (Eisen et al. 1998) to group the histone
modifications and genes. Sequence counts within TSS ± 1kb for
each gene were first adjusted by log transformation, median cen-
tering genes, normalizing genes, median centering samples, and
normalizing samples. Then, hierarchical uncentered correlation
and centroid linkage were used for clustering in both gene and
sample dimensions or only for the samples if genes are sorted by
their expression levels. The clustering results were visualized in
JavaTreeView 1.0.12 (Saldanha 2004).

Discretization of ChIP signal intensities and gene expression
values
Using k-means clustering algorithm implemented in Cluster 3.0
with k = 3 and 100 repeats, a ChIP signal intensity on each gene
was categorized into low, medium, or high based on the se-
quence counts for the ChIP within the regulatory regions of
17,757 genes. The T-cell expression levels of 12,849 genes that
have been measured on DNA microarray are similarly discretized
based on either genes expression intensity within T cells or across
tissues. When the input gene expression levels for each gene
among 79 tissues are used for k-means clustering (tissue-wise
comparison), the discretization considers tissue-specific expres-
sion for the same gene, which usually has the same promoter in
different tissues. When the T-cell expression levels of all genes are
used as the input gene expression levels (gene-wise comparison),
the discretization compares genes of different promoters and as-
sumes a more general role of histone modification in gene ex-
pression regulation. Discretization using other k values (from 2,
4, and 5) was similarly performed.

Randomizing sequence counts among genes for a ChIP
To examine if the Bayesian network derived can be expected
randomly, we randomly assigned the low, medium, and high
discretized values for each ChIP among the 12,078 genes, keep-
ing the same value distribution as the original ChIP data. We
generated 100 such randomized data sets. For each data set, we
generated Bayesian networks exactly the same way as for the real

data. The overlaps of networks generated by 10 different nine out
of 10 group combinations were also examined. The results of the
100 simulations were compared to the network generated using
the real data.

Generating random networks to evaluate the significance
of a path length
One thousand networks of the same in and out degree distribu-
tions as the one shown in Figure 3C were randomly constructed
using an algorithm described by Milo et al. (2002). Then the
longest single directional chains of mono-, di-, and trimethyl-
ations were searched in each network to determine the P values
of obtaining a chain of mono-, di-, and trimethylations as long as
or longer than those found in the real model.
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