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ABSTRACT We propose an interpretation of the experi-
mental findings of Klinman and coworkers [Cha, Y., Murray,
C. J. & Klinman, J. P. (1989) Science 243, 1325–1330; Grant,
K. L. & Klinman, J. P. (1989) Biochemistry 28, 6597–6605; and
Bahnson, B. J. & Klinman, J. P. (1995) Methods Enzymol. 249,
373–397], who showed that proton transfer reactions that are
catalyzed by bovine serum amine oxidase proceed through
tunneling. We show that two different tunneling models are
consistent with the experiments. In the first model, the proton
tunnels from the ground state. The temperature dependence
of the kinetic isotope effect is caused by a thermally excited
substrate mode that modulates the barrier, as has been
suggested by Borgis and Hynes [Borgis, D. & Hynes, J. T.
(1991) J. Chem. Phys. 94, 3619–3628]. In the second model,
there is both over-the-barrier transfer and tunneling from
excited states. Finally, we propose two experiments that can
distinguish between the possible mechanisms.

The subject of this paper is the study of the anomalous kinetic
isotope effect (KIE) indicative of tunneling that recently has
been observed in certain enzymatic proton transfer reactions
(1–3). To better understand what is unusual in the experiments
of Klinman and coworkers (1–3), we start by giving a brief
overview of the semiclassical theory of KIEs. We then will
proceed to discuss models of ground state proton tunneling in
the presence of an enzyme and a model we have developed that
allows both tunneling from excited states and over-the-barrier
processes. The models imply different structures for the en-
zyme-substrate system, and the paper closes by contrasting
these models and proposing experiments that can distinguish
between them.

Let us assume that the potential energy barrier has height V
and the frequency at the bottom of the reactant well is vL,
where L can be H, D, or T. In the standard approach an
assumption is made that several energy levels are below the top
of the barrier and that the over-the-barrier transfer is described
by classical dynamics. The transition state theory (4) result for
the transfer rate is

k 5
kBÁ

2p

1
Z0

e2bV, [1]

where b 5 1ykBÁ is the inverse temperature and Z0 is the
partition function for an oscillator of frequency vL. If we
describe the motion at the well bottom quantum mechanically,
then 1yZ0 5 2sinh(bvLy2). If bvLy2 ,, 1, one arrives at the
familiar textbook result (5) for the transfer rate, k ; (vLy2p)
exp(2bV). However, a typical oscillating frequency for a
proton-carbon bond in a transfer reaction is 3,000 cm21, so in
the present problem the opposite limit bvLy2 .. 1 is relevant.

In this limit 1yZ0 . exp(bvLy2) and the transition state theory
result for the rate becomes

k 5 ALe2b~V2vLy2!. [2]

Eq. 2 has a simple physical interpretation: the energy required
for over-the-barrier transfer is the barrier height minus the
zero-point energy at the bottom of the reactant well. Note that
in the limit bvLy2 .. 1 the TST result for the Arrhenius
prefactor AL 5 kBÁy2p is isotope independent.

Eq. 2 makes the following prediction for the KIE:
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where L is H or D. Eq. 3 reflects the fact that in the
semiclassical theory the KIE measures the isotope-dependent
part of the activation energy. If the transferred particles are
bound to C atoms the frequency of oscillation for an H atom
is of the order of 3,000 cm21, and Eq. 3 predicts the following
values for the isotope effects at room temperature: kHykT # 27,
kDykT # 2.7. If we take the ratio of the logarithms of the
isotope effects (called the Schaad–Swain exponent) as de-
scribed by Eq. 2 we find that

ln(kHykT)
ln(kDykT)

5
ln(AHyAT) 1 ~vH 2 vT!by2
ln(ADyAT 1 ~vD 2 vT!by2

. [4]

When the Arrhenius prefactor AL is the same for all isotopes,
the logarithms are equal to zero and the Schaad–Swain expo-
nent is equal to 3.26, independent of temperature.

The assumption implicit in TST that the particle is trans-
ferred to the product well by classical over-the-barrier motion
is not completely correct because there always will be some
degree of tunneling, which will be larger for lighter isotopes.
If we plot lnk vs. b 5 1ykBÁ, when there is only over-the-
barrier transfer then lnk decreases linearly with increasing b.
When tunneling is turned on, the additional transfer mecha-
nism increases the rate and lnk starts to curve upward. The
Arrhenius prefactor is the projection at b 5 0 of a tangent to
the lnk curve. When tunneling is present the Arrhenius
prefactor AL is smaller than the classical prediction. Because
H tunnels more easily than D, we expect that AH , AD. An
empirical rule (3) is that there is H tunneling if AHyAT , 0.6
and D tunneling if ADyAT , 0.9. We also note that in an
alternative model where the activation energy is equal to the
barrier height plus a term dG that refers to some reorganiza-
tion of the protein, the latter term is isotope independent and
only the energies required to reach the top of the barrier
survive in kHykT, therefore such a theory makes similar
predictions as the simple semiclassical model.
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Experimental Evidence for Tunneling in Bovine Serum
Amine Oxidase (BSAO)

The first series of experiments that showed hydrogen tunneling
in enzymatic catalytic reactions was presented in ref. 1. The
enzyme that was studied was yeast alcohol dehydrogenase.
Later, evidence for tunneling was presented (2) for another
system, namely the BSAO reaction. An overview of these
experiments has been presented in ref. 3.

In this paper we shall be concerned with the BSAO system
where the secondary isotope effect is very small and the
theoretical analysis simpler. The evidence for tunneling can be
summarized in the following facts: (i) The KIEs are much
larger than the ones predicted by the semiclassical theory. In
particular, for the BSAO system kHykT was as large as 50 and
kDykT as large as 3.2 at room temperature. (ii) The Arrhenius
prefactors were found to be inconsistent with purely activated
transfer, in particular AHyAT ; 0.12 and ADyAT ; 0.51.

We should clarify a possible source of confusion regarding
the Schaad–Swain exponent. It often is mentioned that the
‘‘semiclassical prediction’’ for the Schaad–Swain exponent is
equal to 3.26. However, this value is obtained from Eq. 4 only
when AH 5 AD 5 AT 5 1. If, on the other hand, we use the
values for AHyAT and ADyAT that were mentioned above, we
find that the semiclassical theory predicts a Schaad–Swain
exponent equal to 3.5. Therefore, the value 3.2 that was
determined experimentally does not agree with the semiclas-
sical prediction.

Modern Theory of Dissipative Tunneling

Tunneling from the Ground State. Suppose that the poten-
tial barrier has the shape of a symmetric double well and a
particle that is initially in the reactant well tunnels through to
the product well. Because of time-reversal symmetry the
particle will execute coherent oscillations between the two
wells, and there will be no progress of the reaction. To have
localization in the product well, the time-reversal symmetry
must be broken by an inelastic collision. It is the interaction
with the environment that makes possible a reaction that
proceeds through tunneling. Because the dynamics of the bath
depends on temperature, the rate of the reaction is always
temperature dependent, even when the reaction proceeds
through tunneling. Below we give a very brief description of
various limits. An excellent review of the modern theory of
tunneling in chemical systems can be found in ref. 6. The
theory of dissipative tunneling (7, 8) has been extensively used
in the study of enzymatic electron transfer (some examples
chosen randomly are refs. 9–11).

High temperature. When the environment is crystalline we
can perform a canonical transformation that maps the bath to
a set of independent normal oscillations. In condensed matter
physics the ‘‘small polaron’’ problem describes hopping of a
charge that is coupled to crystal vibrations. If we assume
Markovian hopping, then in the nonadiabatic limit (12) one
can use Fermi’s golden rule to obtain a transfer rate that has
the following form (13):

k 5 D2 e2bf(Á,c,bath), [5]

where D is the tunneling matrix element between the initial and
final states and f is a function of the temperature Á, the
coupling strength c of the particle to the environment and of
parameters of the bath. Eq. 5 shows that the transfer rate has
Arrhenius form even when the transfer proceeds exclusively
through tunneling. The origin of the coupling between the
proton (or electron) and the environment is electrostatic, and
because H, D and T have the same charge we expect that the
coupling strength c is isotope independent. This means that the

function f in Eq. 5 is isotope independent, and the golden rule
result Eq. 5 predicts an isotope effect equal to

kH

kT
5 SDH

DT
D 2

, [6]

which is independent of temperature. For the BSAO system,
this prediction is refuted by the experiments of Grant and
Klinman (2).

Tunneling in solutions is different than in crystalline envi-
ronments because the solvent dynamics are very slow and
anharmonicities are important. The standard theory that
describes nonadiabatic tunneling in solution is the Marcus–
Levich–Dogonadze model (14), which is closely related to the
small-polaron model. This model assumes that the potential
energy surface can be modeled by a double well and that
tunneling proceeds from the ground state. The coupling to the
solvent environment modulates the asymmetry of the double
well potential. The probability for tunneling is largest when the
potential is almost symmetric, i.e., when the tunneling splitting
is maximum. In the Marcus model a single coordinate p is used
to describe the configuration of the solvent coordinates. Let’s
call p‡ the configuration that symmetrizes the double well.
When p reaches the value p‡, the proton tunnels instanta-
neously. For this idea to make sense, the dynamics of the
charged environment must be slow compared with the tun-
neling time. After the proton has tunneled, subsequent motion
of the polar groups asymmetrizes the potential and traps the
proton in the product well. The solvent atoms are described by
classical dynamics, and the reaction barrier is related to the
reorganization energy Er of the medium. The reaction rate is
given by

k , e2b~Er1«!2y4Er, [7]

where « is the exothermicity of the reaction. Similarly to the
crystalline case Eq. 5, the rate has an Arrhenius form, and the
activation energy is independent of the height of the potential
barrier along the reaction coordinate (the barrier height enters
the pre-Arrhenius factor). When Er is almost equal to 2«
(‘‘inverted region’’) the rate behaves as if the reaction were
barrierless.

Low temperature. This is the limit when very few environ-
ment modes are excited, so that the analysis of the previous
section is not valid. In this case the rate is proportional to a
power of temperature, k ; Án (where n 5 2 for Markovian
hopping) and a plot of k vs. 1yÁ shows an almost flat plateau.
This situation can arise at very low temperatures and has been
observed, for example, in enzymatic electron transfer (10).
However, this case is never relevant to the experiments of
Klinman and coworkers (1–3), which were done at room
temperature. We shall return to this point in the Discussion, in
connection with recent experiments for the lipoxygenase re-
action.

Tunneling from Excited States. Now we turn our attention
to the ‘‘above crossover’’ case where part of the transfer is over
the barrier and part takes place via tunneling from the excited
states. Wigner (15) was the first to calculate a quantum
correction to the TST result. A more sophisticated calculation
was performed by Wolynes who made a parabolic approxima-
tion for the barrier and found the following result for the rate
(4, 16, 17):

k 5 J
v0

2p

l0

vb
e2bV. [8]

The factor l0yvb is the classical (Grote–Hynes) correction (4,
18) to the TST result caused by interaction with the environ-
ment. It was first calculated by Kramers (4) and is always
smaller than 1. The quantum enhancement factor J is equal to
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J 5 P
n51

` v0
2 1 n2V2 1 nVĝ~nV!

2vb
2 1 n2V2 1 nVĝ~nV!

. [9]

Here V 5 2p\kBÁ, v0 is the frequency at the bottom of the
reactant well, vb is the frequency at the top of the barrier, and
ĝ is the Laplace transform of the friction function. We
emphasize that the quantum enhancement factor J need not
be small.

Rate Promoting Vibrations. For tunneling in condensed
phases we have to distinguish among several regimes where the
rate has different qualitative behavior. First, we have to
distinguish between a low-temperature regime where tunnel-
ing takes place mostly from the ground state and a high-Á
regime where tunneling takes place from excited states. As we
already have emphasized, in the low-Á regime the rate has an
Arrhenius form with the activation energy related to an
environment reorganization energy. For this picture to be
valid, most of the environment modes have to be excited, which
defines an upper-Á regime within the low-Á region. In a
lower-Á regime within the low-Á region (at temperatures
much smaller than the Debye temperature), most of the bath
modes are frozen and the rate becomes proportional to Á2.

However, proton transfer presents an additional complica-
tion because of the large proton mass. In particular, the
tunneling splitting D is very sensitive to the donor-acceptor
distance Q:

D , e2aQ. [10]

For a quartic double well, Eq. 10 is exact (6) with D
;exp[2(4=2y3) V1/2m1/2Q]. For electron transfer a typical
value for a is 0.5 2 1 Å21. However, for proton transfer a ;
25 2 35 Å21 (19). This means that small variations of the
donor-acceptor distance can affect the rate. Therefore, an
intramolecular vibration that affects the potential barrier
shape may strongly influence the reaction rate.

This effect always must be taken into account in hydrogen
atom or proton transfer. Ref. 6 emphasizes this mode-
specificity of proton tunneling. For a different point of view of
mode-specificity in biological reactions see ref. 20. In enzy-
matic reactions, a substrate oscillation that modulates the
barrier can be such a rate promoting vibration. Let’s assume
that we are in the upper region of the low-Á regime (i.e., where
the Marcus theory is valid). We have to distinguish between
two cases: first, if the temperature is such that there is only a
small probability that the rate promoting vibration is excited,
then tunneling from the ground state proceeds unassisted;
second, if this probability of excitation is large, then the ‘‘rate
promoting’’ vibration enhances tunneling. Next, we shall con-
sider how the dissipative tunneling theories discussed in this
section have to be modified to incorporate the effect of a ‘‘rate
promoting’’ vibration, so that they are appropriate for the
study of proton tunneling.

Proton Tunneling from the Ground State

Proton Tunneling in Solution. In this section we shall give
a brief overview of a model for proton transfer that has been
developed by Borgis and Hynes (ref. 19 and references therein)
in the last few years. Their main focus is proton transfer in
polar solvents, but they also have sketched (21) how it can be
applied to enzymatic proton transfer. It is a Marcus-like model
that includes a reaction-promoting vibration in the sense we
discussed above. The main ideas of this model are:

(i) The proton is strongly coupled to charged groups at the
active site through electrostatic coupling [this feature also has
been stressed in many numerical simulations by Warshel (22)].

(ii) Intramolecular substrate oscillations change the donor-
acceptor distance and the potential energy surface.

Voth (23) recently has performed numerical calculations
where special care was taken for the proper description of the
solvent polarizability, and they also found that intramolecular
vibrations enhance the rate.

It should be noted that the effect of the ‘‘reaction promot-
ing’’ substrate mode has the same physical content as the
familiar ‘‘corner-cutting.’’ However, the movement of the
reaction coordinate along the corner-cutting trajectory has to
be fast compared with the motion of all the other degrees of
freedom, because otherwise the potential energy landscape
would change while the reaction coordinate is midway in the
corner-cutting trajectory. On the other hand, the Borgis–
Hynes theory (19) uses a microscopic description of the
additional degree of freedom (substrate oscillation mode) and
can treat the cases where the substrate mode is either faster or
slower than the tunneling coordinate.

We shall now make the above ideas more quantitative. Let’s
assume that the equilibrium donor-acceptor distance is Q0 with
the corresponding tunneling splitting being D0. When the
transfer distance decreases by dQ, the tunneling splitting
increases to the value

D 5 D0eadQ. [11]

There is an energy scale associated with the substrate mode
(we have set \ 5 1 throughout the paper):

Esub 5
a2

2MQ
, [12]

where MQ is the reduced mass of the normal mode. Borgis and
Hynes (19) found the following result for the reaction rate
when the substrate mode is thermally excited (V is the
frequency of the substrate mode that modulates the barrier
height and dGp

‡ is the activation energy of Marcus’ theory):

k , D0
2 e2bdGp‡ e4EsubybV2 [13]

There are several important consequences:
(i) The activation energy is not related to the barrier height

but to dGp
‡ plus an energy associated with the substrate mode.

The barrier height is hidden in D0. When a 5 0 we recover the
familiar Marcus–Levich–Dogonadze results.

(ii) When the substrate mode is activated the rate does not
have an Arrhenius form, but instead is of the form exp(2A1b
1 A2yb).

(iii) The parameter a (and hence Esub) depends on the mass
of the tunneling particle. The reason is that the substrate
vibration affects the potential energy surface. If the substrate
mode is thermally activated this will lead to a temperature-
dependent isotope effect. This corrects the shortcoming of the
golden rule calculation that was discussed after Eq. 6.

Another work that has attempted to model the proton
transfer by taking into account thermal fluctuations is ref. 24.
It is a step in the correct direction, but we think that this work
contains some drawbacks. First, Bruno and Bialek assumed
without proof that the asymmetry fluctuations of the barrier
can be adiabatically decoupled from the tunneling motion.
Second, they described the tunneling motion of the proton by
using a fluctuating potential barrier, assuming that the fluc-
tuations are so slow that use of classical dynamics is justified.
However, a typical intramolecular substrate mode (20) has a
frequency 100–500 cm21 while at room temperature kBÁ ;
220 cm21, and the fluctuations of the barrier have to be treated
quantum mechanically. As a result, the temperature depen-
dence that they obtained for the rate does not agree either with
Eq. 13 or with the prediction of the model we shall now
describe.

Proton Tunneling in Crystals. Suarez and Silbey (25) stud-
ied hydrogen tunneling in solids by using a model similar to the
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Borgis–Hynes model, with the important difference that the
environment had not only slow dynamics (as in the solvent
environment of the Borgis–Hynes papers), but also fast modes.

The environment is characterized by its spectral density
J(v). If Ci is the coupling of the particle to the normal mode
with frequency v4 and mass mi, then

J~v! 5
p

2 O
i

Ci
2

mivi
d~v 2 vi!. [14]

If the frequency spectrum of the bath has a high-frequency
cutoff vc, the spectral density can be rewritten as

J~v! 5 gvne2vyvc. [15]

If the coupling constants Ci are independent of the frequency
vi (Markovian case), then for small v it is J(v) ; v. This
spectral density is called ohmic and corresponds to the case
where there are no memory effects. The function ĝ that enters
the Wolynes’ quantum correction factor Eq. 9 is the Laplace
transform of a friction function associated with the spectral
density Eq. 15. If vc is finite, the friction has memory. As vc3
`, the friction becomes ohmic and ĝ 5 gym0.

Suarez and Silbey (24) assumed that the barrier is high so
that only the lowest doublet can be occupied, and they
examined various limits by making a perturbation expansion in
D (this is the nonadiabatic limit in the sense of ref. 12). We
show their results when vc , kBÁ, where vc is some cutoff
frequency for the bath modes, i.e., the temperature is high
enough that most bath modes are excited, which is the situation
in the experiments we are discussing that were performed at
room temperature. The ‘‘local’’ vibration that modulates the
barrier height has frequency V, coordinate Q and mass MQ.
When the local vibration is excited, they found that the rate is
equal to

k , D0
2 exp H4Esub

bV2 2
b~Etot 1 2« 2 4fgybV!2

4Etot
J [16]

where Etot 5 Esub 1 EQ 1 Er and EQ 5 2Q0
2 f 2yMQV2 ( f is the

coupling of the Q mode to the reaction coordinate), Er is the
reorganization energy, and « is the bias of the potential. Some
variables in the last equation were defined in the discussion of
the Borgis–Hynes model. In particular, a was defined in Eq. 11,
Esub is the same as in Eq. 12, and Q0 is the equilibrium transfer
distance. For a symmetric potential the result of Eq. 16 reduces
to D0

2exp{2bEry4 1 4EsubybV2}, which is identical to the
Borgis–Hynes result in Eq. 13.

In the next section we shall examine what these results can
tell us about enzymatic proton transfer.

Proton Tunneling in BSAO. In enzymatic reactions the
proton is strongly coupled to polar groups at the active site,
which participate in the motion of many collective motions of
the protein. We can get some insight on the spectra of the
normal modes of proteins (which are not the only protein
motions) from numerical studies that have been performed for
some enzymes (26). At room temperature most of the normal
modes are excited, therefore we can use the result in Eq. 16.

The physical picture we propose assumes that the proton is
tunneling while coupled to the protein normal mode oscilla-
tions caused by the electrostatic coupling to the polar groups
at the active site. A comparison of the model ohmic spectral
density in Eq. 15 with a realistic calculation of the spectral
density for a protein system can be seen in figure 4 of ref. 11.

This physical picture has some similarities to the ‘‘confor-
mon’’ model that was proposed 25 years ago by Volkenshtein
(27) for electron transfer, where the electron was coupled to
slow protein movements. In the late 1970s Dogonadze et al.
(28) criticized this view, claiming that conformation fluctua-
tions could not be modeled as slow collective oscillations, and

examined in a more precise manner how thermally driven
protein conformation fluctuations influence the reaction rate.
That idea was applied to enzymatic proton transfer in ref. 29.
However, that work predicts for the HyD isotope effect an
Arrhenius form with activation energy proportional to the
reduction dvH of the vibrational frequency of the hydrogen.
This quantity (if it is nonzero) is obviously small. However, the
experiments of Grant and Klinman (2) show for the HyD
isotope effect a difference of activation energies equal to 9.7
kcalymol (40 kJymol, 3,390 cm21). The coupling to protein
conformation fluctuations may have an effect on the reaction
rate, even though it cancels out when we measure the ratio
kHykT. Because we are interested in the isotope-dependent
part of the rate we ignore this effect.

In the next section we shall examine the case where there is
both over-the-barrier transfer and tunneling from excited
states. In this section we assume that the tunneling proceeds
from the ground state.

By using Eq. 16 and neglecting the small terms we find that
the isotope effect is

ln
kH

kT
, lnSDH

DT
D 2

2
1
b

aT
2 2 aH

2

MQV2 . [17]

It is very important that the term exp(22g) in Eq. 16, which
strongly affects the reaction rate, canceled out because it is
isotope independent. The simple result in Eq. 17 is the
prediction of this model for the isotope effect. D is the
tunneling splitting, MQ and V are the mass and frequency
associated with the substrate mode that modulates the barrier,
and a quantifies the modulation of the barrier according to Eq.
11. We can make the following predictions based on this model
and check against the experimental results:

(i) The isotope effect can be fitted by an expression (hyper-
bola) of the form

ln
kL

kT
5 A1

LyT 2
A2

LyT

b
, [18]

where L stands for H or D.
(ii) The coefficients A1, A2 in Eq. 18 are equal to:

A1
LyT 5 lnSDL

DT
D 2

,
A2

HyT

A2
DyT 5

aT
2 2 aH

2

aT
2 2 aD

2 . [19]

(iii) It is possible to estimate the effective mass of the substrate
normal mode that modulates the barrier:

MQ 5
aT

2 2 aL
2

2V2A2
LyT . [20]

We face a problem because most of the required quantities are
unknown. However, we can use as an approximation for the
potential surface the quartic double well and the correspond-
ing tunneling splittings. Then our model predicts an isotope
effect that can be fitted by a function of the form of Eq. 18 with
the following values: A1

HyT 5 9.2, A1
DyT 5 4.0, A2

HyTyA2
DyT 5 2.

We need more information to calculate the effective mass
MQ. We have mentioned that for proton transfer aH ; 30 ˚A21

and that for the quartic double well the coefficient a depends
on the mass of the tunneling particle as aL ; mL

1y2. For the
substrate mode to affect the rate it must be thermally excited
at room temperature (where kBÁ 5 220 cm21), so to make an
order of magnitude estimate we chose V 5 150 cm21 and
obtained the following value for the effective mass: MQ ; 5.3 3
108 (a.u.)2yA2

HyT.
In Fig. 1 we have fitted the results of Grant and Klinman (2)

by using two hyperbolas of the form in Eq. 18 and making the
following choice for the parameters: A1

HyT 5 8.3, A2
HyT 5 5,050

a.u., A1
DyT 5 2.6, A2

DyT 5 1,580 a.u. These parameters lead to:
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A2
HyTyA2

DyT ; 3, MQ ; 105,000 a.u. ; 60 mH. These values are
certainly consistent with the predictions of our model that were
based on the simple quartic double well potential. The value
for the effective mass of the substrate mode MQ ; 60 mH is
realistic, because the mode involves motion of several heavy
atoms.

In this section we have shown that the model of proton
transfer via tunneling from its ground state while coupled to
protein collective modes is consistent with the experimental
findings. We now will study the case of tunneling from excited
states.

Proton Tunneling from Excited States in the BSAO System

We return to Wolynes’ theory in Eqs. 8 and 9, which includes
both over-the-barrier transfer and tunneling from excited
states. The quantum correction factor J enhances the rate.
The question is whether it can fit the experimental results for
BSAO. To do such a comparison we need to know the
frequency at the top of the barrier vb and the friction
coefficient g. However, these parameters are unknown for
BSAO.

In Table 1 we show the predictions of Wolynes’ theory for
the KIE in BSAO with the following choice of parameters:
barrier height V 5 .010 a.u. (6.3 kcalymol), vHC 5 3,000 cm21,
vb 5 1,000 cm21, vc 5 1,000 cm21, gymHvb 5 1.0. For these
parameters, the crossover temperature is equal to 2100°C.
Comparison with Fig. 1 shows that the predicted KIEs agree
very well with the experimental results. Also shown in Table
1 are the quantum enhancement coefficients J, which are very
large, an indication that even a modest increase in the loga-
rithm of the KIE compared with the semiclassical value is
caused by massive tunneling.

As we saw in the previous section, an excited substrate mode
can substantially enhance the reaction rate for ground state
tunneling. This raises the question of how such a mode affects
the results of Wolynes’ theory.

Our starting point is a proton in a double well coupled to a
bath with spectral density as given by Eqs. 14 and 15. This
problem has attracted a lot of attention recently (30, 31). When
the barrier of the double well is high, the parabolic approxi-
mation for the barrier is valid, and Wolynes’ theory (in the
absence of a rate-promoting vibration) gives accurate results
(30). We assume that the reaction coordinate s is coupled to
a harmonic mode Q. If the coupling is antisymmetric (e.g.,
bilinear csQ) the effect of the Q mode is always to suppress the
rate through a Frank–Condon factor (6). If the coupling is
symmetric (e.g., cs2Q), the Q oscillation is not reorganized
after the transition to the product state and does not contribute
to the Frank–Condon factor. In that case, the rate promoting
Q vibration enhances the rate. This situation was studied for
ground state tunneling by using a short-time expansion for the
propagation kernel (32).

We have approached the problem in a different way, without
making the short-time approximation. First, we note that the
equilibrium point of the Q mode depends on the reaction
coordinate s. We have shown by using an evolution operator
resummation technique developed in our group (31) that the
problem of a particle in a double well coupled symmetrically
through cs2Q to an oscillator Q with quantum number n, mass
M, and frequency V, can be reduced to an equivalent one-
dimensional problem with the following effective propagator:

F1 2 2i sin VtS ^n 1 1ufun&

V
1

^n 2 1ufun&

V
DGe2iHst

1
^n 1 1ufun&

V
e2i@Hs1~cs22cs0

2!Qn11,n#t

1
^n 2 1ufun&

V
e2i@Hs1~cs22cs0

2!Qn21,n#t [21]

where 7s0 are the positions of the reactantyproduct well, a 5
=MV and Ql,m is the matrix element of Q between the
eigenstates l, m of the harmonic oscillator and f 5 cs2Q. The
rate then can be calculated by averaging the results over the
states n of the Q mode. The proof of Eq. 21 is lengthy and will
be presented elsewhere along with numerical calculations by
using a method developed by one of us (31) for the study of
problems with either high or moderately high barriers. In the
latter case the parabolic approximation is not appropriate, and
Wolynes’ theory is not accurate.

The coupling constant c in Eq. 21 is unknown, but a simple
numerical calculation for a quartic double well (assuming MQ

; 105 a.u. and V ; 0.001 a.u. as in the previous section) shows
that when the barrier height is reduced by 20%, the frequency
vb at the top of the barrier is reduced by 5%. A few numerical
tests with Eq. 8 and by using the barrier parameters that were
used for the results of Table 1 can convince one that the rate
is strongly enhanced because of the reduction of the barrier
height (isotope-independent mechanism), but the KIE is
hardly affected by a 5% reduction of vb (isotope-dependent
mechanism). Therefore, when tunneling takes place from
excited states, the Q mode enhances the rate by an isotope
independent factor (at least for the kind of barrier that was
needed to fit Klinman’s experiments) and the KIEs shown in
Table 1 that were calculated by using the simple Wolynes
theory, are valid even when a rate-promoting substrate oscil-
lation is excited. Therefore, the experimental results for the
KIE in BSAO are consistent with tunneling from excited
states, whether the substrate mode is excited or not.

FIG. 1. Isotope effects for the BSAO reaction. The upper curve
refers to the HyT effect and the bottom curve to the DyT effect. The
bars indicate the experimental results of Grant and Klinman (2). The
solid lines are not straight lines. They are the fittings we performed
with the hyperbolas of Eq. 18.

Table 1. Values for the KIE for BSAO as calculated by Wolynes’
theory (16) and the corresponding quantum enhancement factors

Á(°C) ln(kHykT) JH ln(kDykT) JD

0 4.0 501 1.26 45
10 3.8 363 1.20 36
20 3.6 270 1.15 30
30 3.4 206 1.10 25
40 3.3 160 1.05 21
50 3.2 127 1.01 19
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Discussion

The experiments of Klinman and coworkers (1–3) on BSAO
cannot be explained by a purely over-the-barrier mechanism
for two reasons: the KIE is much larger than predicted by the
semiclassical theory Eq. 2 and the ratios of the pre-Arrhenius
factors ALyAT are smaller than the values expected from an
over-the-barrier transfer. In this paper we have shown that two
different tunneling mechanisms are consistent with the exper-
iments.

First, if the potential is such that the system is below the
crossover temperature and can be considered as a two-level
system, the transfer takes place through tunneling from the
ground state as described by the Borgis–HynesySuarez–Silbey
models. The temperature dependence of the KIE is caused (in
this model) by the excited substrate oscillation. In fact, if
tunneling from the ground state is the transfer mechanism,
whether the KIE is Á-dependent or not indicates whether the
reaction promoting substrate vibration is excited or not.

Second, if the system is above the crossover temperature, the
reaction proceeds through transfer from excited states com-
bined with over-the-barrier transfer, as described by Wolynes’
above-crossover theory. By using some reasonable values for
vb,v0 we fitted the enhanced KIE that was observed in
experiments. Then, we showed that when a reaction promoting
substrate vibration is excited, the values of the KIE calculated
by the simple Wolynes above-crossover theory do not change.
Of course, only a realistic calculation of the potential energy
surface that determines the relevant frequencies can give full
credibility to this mechanism.

Nevertheless, if the experiment for BSAO is repeated at
lower temperatures, these two mechanisms and a simple linear
Arrhenius fitting to Fig. 1 give different predictions for the
rates as can be seen in Table 2. In Table 2, the first column
(HynesySilbey) corresponds to the case when the crossover
temperature is higher than 280° C, whereas the second column
(Wolynes) corresponds to the case when it is lower. Therefore,
an experiment at low temperatures can distinguish among the
different possible mechanisms. In addition, the KIE in the
tunneling from ground state model is independent of the
friction, whereas in the tunneling from excited states it is not.
Changing the rigidity of the enzyme and repeating the mea-
surements for the KIEs also can distinguish between the two
mechanisms.

Finally, we shall use the conclusions reached in this paper to
make some comments on recent results by the Klinman group,
which found massive H tunneling in the lipoxygenase reaction
(33). Compared with the BSAO results that were discussed in
this paper, the intriguing result for the lipoxygenase reaction
is that the ratio of the pre-Arrhenius factors AHyAD has an
enormous value ;50, which is a consequence of the fact that
the rates are almost temperature independent. As we saw in
the section on dissipative tunneling, this may happen in two
cases. First, in the ‘‘deep’’ tunneling regime, when the bath
modes are frozen and the rate becomes proportional to Á2.
However, the experiment was performed at room tempera-

ture, so this mechanism is ruled out. Second, in the ‘‘inverted
region’’ of Marcus’ theory, when the activation energy (Er 1
«)2y4Er is very small because it happens to be Er . 2«. At
room temperature, this is the only possibility to have a
‘‘barrierless’’ transition. Because this is a case of tunneling
from the ground state we also can infer that in this experiment
the substrate mode is not excited, because the observed KIE
was almost temperature independent.
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