Skip to main content
. Author manuscript; available in PMC: 2009 May 1.
Published in final edited form as: J Health Econ. 2007 Dec 4;27(3):531–543. doi: 10.1016/j.jhealeco.2007.09.009

Table 1.

Simulation Results for Weibull Outcome with Multinomial Endogenous Variables Average Absolute % Bias

Average Effects Based on 1000 replicates of size n=5000
True Model (%bias) Naïve Model (%bias) 2SPS Model (%bias) 2SRI Model (%bias)
E[yxe1 =1] − E[yxe0=1] 16% 205% 28% 16%
E[yxe2 =1] − E[yxe0 =1] 2% 99% 38% 2%
E[yxe1 =1] − E[yxe1 =1] 5% 34% 42% 5%

Based on 1000 replicates of size n=20,000
E[yxe1 =1] − E[yxe0 =1] 2% 205% 2% 2%
E[yxe2 =1] − E[yxe0 =1] 2% 97% 27% 2%
E[yxe2 =1] − E[yxe1 =1] 0% 34% 51% 0%
The value in a particular cell of the table is the average percentage absolute bias, over the 1000 simulated samples, for a particular (estimator-q, average effect-t, sample size-j) combination, and is measured as
(m=1100011000abs(AE(t)qrmAE(t))abs(AE(t)))×100%
where AE(t) denotes the true value of the tth effect, AE(t)qrm is its estimated value obtained by applying the qth method to mth sample of the rth sample size, with
q=true MLE, nai¨ve, 2SPS, 2SRPt=E[yxe1=1]E[yxe0=1],E[yxe2=1]E[yxe0=1],E[yxe2=1]E[yxe1=1]r=5000,20000.
HHS Vulnerability Disclosure