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Abstract
Water reabsorption in the kidney represents a critical physiological event in the maintenance of body
water homeostasis. This highly regulated process relies largely on vasopressin (VP) action and on
the VP-sensitive water channel that is AQP2 expressed in principal cells of the kidney collecting
duct (CD). Defects in the VP signaling pathway and/or in AQP2 cell surface expression can lead to
an inappropriate reduction in renal water reabsorption and the development of nephrogenic diabetes
insipidus (NDI), a disease characterized by polyuria and polydypsia. This review focuses on the
major regulatory steps that are involved in AQP2 trafficking and function. Specifically, we begin
with a discussion on VP-receptor (V2R)-independent mechanisms of AQP2 trafficking, with special
emphasis on the NO-cGMP signaling pathway, followed by a review of the mechanisms that govern
AQP2 endocytosis and exocytosis. We then discuss emerging data illustrating roles played by the
actin cytoskeleton on AQP2 trafficking, and lastly we consider elements that affect AQP2 protein
expression in cells. Recent advances in each topic are summarized and are presented in the context
of their potential to serve as a basis for the development of novel therapies that may ultimately
improve life quality of NDI patients.

Keywords
vasopressin receptor; AQP2; endocytosis; exocytosis; cGMP

Water homeostasis and urine concentration via water reabsorption in the urinary tubule are
integral functions of the kidney. In normal human subjects, the glomerular system can filter
180 l/day of fluid, of which 90% is reabsorbed back into the circulating system in the proximal
tubule and descending limb of Henle’s loop. The remaining 10% is reabsorbed under the
regulation of vasopressin (VP) at the level of the collecting duct (CD). Nephrogenic diabetes
insipidus (NDI) is a disease characterized by massive water loss (up to 20 l/day) via the kidneys,
and the disease can either be acquired or inherited. Acquired NDI is often observed in patients
suffering from disorders such as hypokalemia, hypercalcemia, ureteral obstruction and
secondary aldosteronism. Additionally, at least 20% of bipolar patients treated with lithium
acquire NDI. In inherited forms of NDI, early symptoms include fever, vomiting, anorexia,
growth retardation and developmental delay, while later in life polyuria, polydypsia and even
mental retardation can ensue in untreated cases. Both acquired and congenital forms of NDI
have been linked to defects in the VP hormone signaling system which, under normal
conditions, increases both apical cell surface expression and whole-cell abundance of the
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aquaporin-2 (AQP2) water channel in CD principal cells. The most severe forms of NDI are
observed in congenital cases, where patients most often harbor mutations in the vasopressin
type-2 receptor (V2R) gene, although a small percentage (10%) bear recessive or autosomal-
dominant mutations in the AQP2 gene (1).

The release of VP, a cyclic nonapeptide hormone secreted by the posterior pituitary gland, is
regulated in the brain in response to serum osmolarity and body volume status. In the presence
of high serum osmolarity or hypovolemia, VP is released into the blood stream where it binds
to V2R expressed on the basolateral surface of CD principal cells. V2R is a G-protein coupled
receptor, and VP binding initiates the V2R signaling cascade, inducing a conformational
change that promotes Gsα dissociation, adenylyl cyclase activation and consequently a rise in
intracellular cAMP. The classical view of AQP2 trafficking, based on the so-called “shuttle
hypothesis” originally proposed to explain water channel trafficking in the toad urinary bladder
(2), postulates that a rise in cAMP concentration and ensuing activation of phosphokinase type
A (PKA) leads to the phosphorylation of AQP2 at S256 located in its C-terminal domain,
promoting exocytosis and cell-surface accumulation of AQP2 (3). In addition to cAMP
elevation, an increase in intracellular Ca2+ concentration and Ca2+ oscillations are also a part
of the VP response (4,5). While it is likely that Ca2+ plays a role in AQP2 plasma membrane
insertion in addition to cAMP, the exact mechanisms and relative contribution of each signal
remain to be elucidated (see Fig. 1). Expression of AQP2 at the apical membrane leads to an
influx of water into the cell driven by the interstitial osmotic gradient generated by urea and
sodium. Water then exits the cell via AQP3 and AQP4 water channels located at the basolateral
side of the cell, allowing its re-entry into the interstitium and the circulatory system.

Polyuria in acquired NDI can be partially reduced by a combination of treatments such as
adequate hydration, low salt and/or low protein diet, diuretics and non-steroidal anti-
inflammatory drugs (6). However, congenital patients often respond poorly to such therapies.
Some studies have focused on rescuing misfolded V2R by developing non-peptidic lipid-
soluble vasopressin ligands that cross the plasma membrane and reach misfolded receptors
trapped in the ER. The ligand acts like a molecular chaperone, helping V2R refold, escape the
ER quality control and reach the plasma membrane where endogenous VP can subsequently
displace the VP analogue and activate the receptor (7). These compounds have shown some
positive effects on patients bearing specific missense mutations or small insertion/deletion V2R
mutations, but are not effective against truncated proteins, and furthermore, they did not
completely alleviate polyuria. A second strategy has employed aminoglycoside antibiotics such
as gentamicin. This class of antibiotics causes read-through of some nonsense V2 mutations
in vitro and in vivo (8), but the beneficial effect of aminoglycosides is unfortunately
overshadowed by its toxicity to the kidneys. Another disadvantage of attempts at rescuing
mutant receptors is that they are often heavily dependent on the nature of the mutation and,
therefore, any such therapy may not be widely applicable. Finally, use of cAMP
phosphodiesterase (PDE) inhibitors such as rolipram has so far been unsuccessful for the
treatment of NDI. While beneficial effects have been observed in mouse models, they have
not been reproduced in human subjects, perhaps reflecting a difference in cAMP PDE
localization (9,10).

The search for more effective therapeutic strategies for both acquired and congenital NDI has,
thus, motivated many advances in our understanding of the V2R signaling cascade that
regulates AQP2 trafficking. In addition, various other physiological factors that modulate
AQP2 cell-surface localization as well as its abundance are now beginning to be uncovered.
In this review, we begin by describing the V2R-independent NO/cGMP pathway and recent
studies that have linked this important signaling cascade to AQP2 shuttling. We then discuss
the use of phosphodiesterase inhibitors such as Viagra as potential therapeutic agents. Next,
we summarize novel developments on the role of endocytosis on AQP2 trafficking and consider

Bouley et al. Page 2

Semin Nephrol. Author manuscript; available in PMC 2009 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



plausible targets for bypassing V2R as well as the possibility of employing statins in NDI
treatment. Finally, we provide a brief overview of other signaling pathways currently being
investigated that regulate AQP2 abundance and that may be explored in the future in the search
for specific targets that can be readily exploited in novel therapeutic strategies in the treatment
of NDI, as well as other forms of water imbalances.

The NO-cGMP signaling pathway
Together with the canonical cAMP-induced pathway, the NO-cGMP signaling pathway has
been shown to play a role in AQP2 trafficking, prompting investigation of this signaling
pathway as a means to develop alternative therapies for treatment of NDI. Nitric oxide is a free
radical resulting from the enzymatic conversion of L-arginine to L-citrulline by one of three
isoforms of nitric oxide synthetase (NOS) expressed in the kidney. NO produced by endothelial
NOS (eNOS), inducible NOS (iNOS) and neuronal NO (nNOS) can diffuse and, therefore, act
in both autocrine and paracrine fashion in the kidney. The classical NO signaling pathway
depends on activation of soluble guanylate cyclase (sGC) located in several segments of the
nephron including the CD, where it is expressed in principal cells. The major effect of an
increase of cyclic guanosine monophosphate (cGMP) concentration is cGMP-dependent
protein kinase (PKG) activation. However, cGMP also affects PKA and p21ras kinase activity
(11,12) and can directly regulate Na-channel and glucose transporter (GLUT4) activity as well
as trafficking of type 1 and 5 water channels (AQP1 and 5) (13–16). All components of the
NO-cGMP signaling pathway are expressed in renal epithelial cells, supporting the notion that
the NO-cGMP signaling pathway plays a key role in principal cell physiology, including fluid
transport in the kidney.

The effect of NO-cGMP in CD water reabsorption is still controversial. In one study, NO donors
were found to decrease VP-induced water reabsorption as a consequence of reduced osmotic
water permeability and sodium reabsorption while another report failed to observe this
inhibitory effect (17,18). Another study showed that NO antagonizes the effect of VP by
altering cAMP levels (19). In our hands, VP increased the conversion of L-arginine to L-
citrulline. However, increased NOS activity appears to result from an indirect effect and VP
may simply increase substrate availability. Nevertheless, increasing evidence supports the idea
that NO-cGMP is involved in renal water reabsorption. VP increases nNOS and eNOS
expression in water-deprived rats, and eNOS expression is accompanied by a reduction of urine
output, suggesting that it plays a role in water homeostatic mechanisms (20,21). Simultaneous
disruption of all three NOS isoforms led to NDI in mice (22) and a reduction of AQP2 whole-
cell abundance. The mechanism that regulates AQP2 abundance is still elusive, but may be
related to low cAMP intracellular levels detected in knock-out mice due to increased
prostacyclin activity (22). A reduction of basal intracellular cGMP concentration due to the
absence of NOS may lead to decreased levels of functional PKG that may subsequently affect
cAMP-response-element (CRE)-dependent transcription (23). Thus, AQP2 expression, which
is chiefly regulated by VP, may be additionally stimulated by NOS basal activity. This may
partially explain the significant amount of AQP2 expression in Brattleboro rats, which do not
express circulating VP.

Our study provided the first evidence that both sodium nitroprusside (SNP), a NO donor, and
L-arginine, a precursor of NO, are able to shift the localization of AQP2 from the cytoplasm
to the apical side of rat CD principal cells (24). This increase of AQP2 membrane insertion
was cGMP-dependent but cAMP-independent. The role of cGMP in AQP2 trafficking was
confirmed by analysis of the atrial natriuretic peptide receptor, which has intrinsic guanylate
cyclase activity, and by analysis of the effects produced by the cell-permeant dibutyryl cGMP
analogue. Both agents induced translocation of AQP2 to the plasma membrane. In addition,
atrial natriuretic peptide infusion in rat showed a marked increase in AQP2 apical targeting
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(25). The mechanism by which cGMP induces AQP2 trafficking is still unclear. Our study
showed that AQP2 can be phosphorylated by PKG, but we cannot reasonably eliminate the
possibility that PKG phosphorylates PKA, nor can we yet rule out that an increase of cGMP
concentration activates PKA and subsequently induces an accumulation of AQP2 at the plasma
membrane.

Since cGMP increases AQP2 membrane insertion in rat kidney, we investigated the effect of
selective cyclic-3’,5’-nucleotide phosphodiesterase (PDE) inhibitors, which abolish cGMP
catabolism and subsequently increase cGMP concentration, on AQP2 cell surface expression.
Intracellular cAMP and cGMP levels are strongly regulated by one or more members of 11
PDE families that together account for over 60 isoforms. Several isoforms are expressed along
the nephron, such as cAMP sensitive phosphodiesterase (PDE 3 and 4), cGMP sensitive
phosphodiesterase (PDE 5) and cAMP/cGMP selective phosphodiesterase (PDE 1). We used
sildenafil citrate (Viagra), a selective cGMP phosphodiesterase (PDE5) inhibitor as a means
to increase intracellular cGMP concentration. Sildenafil has been successfully used in clinical
treatment of erectile dysfunction. We studied the effect of PDE5 inhibition on AQP2 trafficking
in LLC-PK1 cells expressing c-myc tagged AQP2. Western blot analysis showed that the
presence of sildenafil or 3-isobutyl-1-methylxanthine (IBMX), a non-selective cAMP/cGMP
PDE inhibitor, enhanced AQP2 expression at the plasma membrane (26) (Fig. 2A). We also
observed that both PDE5 inhibitors sildenafil and 4-{(3′,4′-(Methylenedioxy)benzyl)
amino}-6-methoxyquinazoline (MBMQ) modulate endogenous AQP2 trafficking in rat kidney
(24) (Fig. 2B). Sildenafil increased insertion of AQP2 in the apical membrane of principal cells
of outer medullary CD both in vitro and in vivo but did not have an effect on AQP2 localization
in cortical CD, a major site of water reabsorption (26). While our studies suggest that PDE
inhibition may offer a promising approach for X-linked NDI therapy, further studies need to
be performed in order to determine whether prolonged cGMP inhibition, or a combined
therapeutic approach, can improve water reabsorption in patients suffering from NDI who may
express variable amounts of AQP2 in their principal cells.

AQP2 endocytosis and exocytosis
About 10% of congenital NDI cases are associated with AQP2 mutations rather than with
defects of V2R signaling. Interestingly, the majority of these mutations are manifested as
misrouting errors rather than as structural defects that affect the channel’s water permeability.
Therefore, proper plasma membrane insertion/trafficking is integral to proper AQP2
functioning and correct water molecule transport. A reagent that affects this process may
consequently represent a potential target for modulating water absorption. Several studies from
our group have revealed that besides cAMP- and cGMP-stimulated trafficking, AQP2 rapidly
recycles between an intracellular pool and the plasma membrane under baseline (non-
stimulated) conditions. In light of this constitutive pathway, steady-state accumulation of
AQP2 at the plasma membrane may be mediated not only by an increase in exocytosis, as
originally postulated by the shuttle hypothesis, but also by a reduction in endocytosis.

The clathrin-mediated pathway is one of the major routes of endocytosis in eukaryotic cells,
and is characterized by the selective internalization of proteins from the cell surface. An
elaborate series of protein-protein interactions imparts selectivity on this highly dynamic
process that involves the rapid assembly or disassembly of transient protein complexes. Both
ATPases and GTPases modulate assembly of these complexes (27,28), requiring multiple
interactions between clathrin, dynamin, hsc70, the adaptor proteins AP2 and AP180, Esp15,
and many other accessory proteins such as auxillin, endophilin and amphiphysin (28). The
presence of molecules later identified as AQP2 in clathrin-coated pits was first observed over
twenty years ago (29). More recently, endocytosis blockade achieved by transfecting a
dominant-negative dynamin mutant into cultured cells was found to induce dramatic membrane
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accumulation of AQP2 (Fig. 3; (30)). Members of the heat-shock protein family (hsc70 and
hsp70) were found to directly interact with AQP2 and regulate its trafficking. Immunogold
EM showed that hsc70 co-localized with AQP2 in the plasma membrane. In addition, inhibition
of endogenous hsc70 activity using a dominant-negative hsc70 mutant also caused dramatic
membrane accumulation of AQP2 in cells (Fig. 3; (31)). This suggests that hsc70 is likely to
be involved in AQP2 endocytosis, although it cannot be ruled that other biological functions
are associated with the interaction of hsc/hsp70 and AQP2. A recent observation suggests that
myelin and lymphocyte-associated protein (MAL) is involved in regulated AQP2 trafficking
by physically interacting with AQP2. It increases AQP2 plasma membrane expression by
attenuating its internalization (32).

An interesting aspect of AQP2 endocytosis is that AQP2 constitutive recycling is independent
of S256 phosphorylation. AQP2-S256D mutants are localized in the plasma membrane in the
absence of VP stimulation (33) while AQP2-S256A mutant expression is restricted to
intracellular compartments (34). However, a cholesterol-depleting agent that inhibits
endocytosis caused a large accumulation of AQP2 at the plasma membrane both in cell cultures
(35) and in isolated perfused rat kidney (36). Even AQP2-S256A mutants rapidly accumulated
at the cell surface under these conditions, indicating that AQP2 dephosphorylated at S256 can
also accumulate at the plasma membrane. Other observations additionally indicate that S256
phosphorylation alone is not sufficient to induce translocation of AQP2 to the cell surface. In
Brattleboro rats, which display decreased levels of AQP2 abundance due to the lack of
circulating VP, AQP2 is mostly expressed in intracellular pools despite the fact that a
significant amount of AQP2 is phosphorylated at S256. VP treatment increased AQP2 cell
surface expression but did not appear to increase its phosphorylation (37).

While it was initially assumed that an increase of AQP2 exocytosis arises from AQP2
phosphorylation at S256, most assays to date measured only AQP2 cell surface accumulation
rather than bona fide exocytosis. We have, however, recently demonstrated that a burst of
AQP2 exocytosis occurs during the first 15–20 minutes of VP stimulation (Fig. 4). This
observation was made using a novel fluorescence based assay that relies on expression of
secreted soluble YFP (ssYFP) that passively labels biosynthetic/post-Golgi vesicles. This assay
provides an indirect but quantitative means to measure AQP2 exocytosis. In addition, a recent
study has shown that VP stimulation increases AQP2 expression at the cell surface by inducing
its accumulation in “endocytosis-resistant” membrane domains (38), indicating that while VP
enhances AQP2 exocytosis, it significantly reduces AQP2 endocytosis. Increased expression
of water channels at the cell surface through altered exocytotic and endocytotic activity was
already suggested by mathematical modeling over a decade ago prior to the molecular
identification of aquaporins (39).

It is well known that protein phosphorylation and dephosphorylation markedly affect the
biological activity of proteins. As discussed above regarding the S256 residue, AQP2
phosphorylation plays an important role in AQP2 trafficking/membrane accumulation.
Analysis of potential AQP2 phosphorylation sites in addition to S256 suggests the presence of
putative sites for at least four kinases, namely PKG, PKC, casein kinase II and Golgi casein
kinase in addition to PKA. The potential role of these phosphorylation sites is currently under
investigation by our group as well as others (33,34,37,40–42). AQP2 targeting to the apical
membrane may be achieved by manipulating its phosphorylation state, and pharmacological
inhibition of phosphatase activity by okadeic acid is sufficient to increase expression of AQP2
at the plasma membrane of cultured cells (43). The events governing AQP2 phosphorylation
and dephosphorylation will undoubtedly lead to the discovery of potential targets for the
development of therapeutic reagents.
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Potential role of statins in AQP2 trafficking
By reducing cholesterol-containing atherogenic lipoproteins (44) 3-hydroxy-3-methylglutaryl
coenzyme A reductase inhibitors (statins) dramatically improve cardiovascular outcome.
Studies performed on cell cultures of proximal tubular cells have provided evidence that statins
reduce receptor-mediated endocytosis (RME) and that this is a consequence of statin-induced
impaired prenylation and, therefore, membrane association, of one or more GTP-binding
proteins that play a key role in RME (45,46). By reducing protein uptake, statins may even
exert a renoprotective effect as suggested by animal models of kidney disease (47) and by a
meta-analysis of randomized trials (48). Various observations point to the possibility that
statins might be used as a means to increase AQP2 cell surface expression: 1) RME is a clathrin-
mediated process which requires the participation of several GTP-binding proteins, such as
Rho, Rac, and Rab. Consistent with this, prenylation of the GTP-binding protein Rap1A was
found to be reduced by statins in cultured proximal cells (45). An effect similar to that induced
by statins on RME in proximal cells may also occur in CD cells that could affect AQP2
endocytosis. In this respect, statins may increase AQP2 cell surface expression by reducing its
endocytosis. 2) Low doses of statins were found to increase eNOS phosphorylation and
activation in endothelial cells via increased Akt activation (49,50), while high doses of statins
were found to increase eNOS protein synthesis, through an increase of eNOS mRNA stability
(51). Statins may consequently increase AQP2 cell surface expression by enhancing eNOS
activity (see above). 3) High doses of statins were found to decrease Rho activity (50), a key
player of actin reorganization that affects AQP2 trafficking, as discussed below. This effect
may be attributed to inhibition of the geranylgeranylation and membrane localization of RhoA
and by alterations in RhoA-dependent cell-signaling pathways, such as flk-1/KDR and Akt
(52). Based on these observations, our laboratory is currently evaluating the role of statins in
AQP2 trafficking with a view to developing potential novel therapies for the treatment of NDI.

Rearrangement of cytoskeletal components and regulation of small G-
proteins

Actin polymerization and depolymerization is a dynamic and tightly regulated process that
plays an important role in protein trafficking. Actin reorganization is controlled by the Rho
family of small GTP binding proteins. This includes members of the RhoA-G, Cdc42 and Rac1
family that are activated after GDP is exchanged with GTP. The nucleotide exchange process
is controlled by various proteins such as GTPase activating protein (GAP), GEFs and GDI.
Depolymerization of the actin network results in an increase of AQP2 expression at the cell
surface while blockade of VP-induced AQP2 translocation in response to Rho activation was
shown to be associated with increased actin polymerization (53–55). Thus, modulation of the
actin cytoskeleton might represent a therapeutic approach for NDI, despite the omnipresence
of Rho that makes this protein difficult to specifically target in CD principal cells. At the very
least, a better understanding of the mechanisms that regulate cytoskeletal reorganization and
AQP2 trafficking will undoubtedly help identify therapeutic targets whose modified activities
may provide the basis for future therapies.

A shift of the equilibrium between V2R and prostaglandin E2 (PGE2) receptor stimulation
affects the polymerization state of the actin cytoskeleton and consequently affects AQP2
trafficking to the plasma membrane. An increase of cAMP concentration following V2R
activation results in Rho inhibition (56) and the subsequent depolymerization of the actin
cytoskeleton. PGE2, on the other hand, counteracts the VP-induced increase of osmotic water
permeability in the renal CD. When PGE2 binds to the EP3 receptor, adenylate cyclase is
inactivated resulting in an increase of actin polymerization via Rho activation. PGE2 may also
counteract the intrinsic actin reorganization capability of AQP2 bearing vesicles, as suggested

Bouley et al. Page 6

Semin Nephrol. Author manuscript; available in PMC 2009 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



by a recent observation that shows that AQP2 can interact directly with actin and SPA-1, a
specific Rap GAP (57).

PGE2 is abundantly expressed in the kidney. It derives from arachidonic acid via
cyclooxygenase (58) and prostaglandin E synthetase (PGES) activities. Two cyclooxygenase
isoforms, COX-1 and COX-2, are expressed in the kidney. Interestingly, COX-2 expression,
which is known to be induced by physiological stress, is increased in NDI patients (59,60).
The development of selective COX inhibitors has raised several expectations. For example,
rofecoxib (a COX-2 inhibitor) in combination with hydrochlorothiazide and a low salt formula
reduced urine volume in a 1 month-old male infant (61). However, COX-2 inhibitors should
be used with extreme caution because of the high risk of developing myocardial infarction
(62). The adverse effects associated with this family of inhibitors suggest that more research
should focus on the downstream effectors of the COX/PGE2 signaling pathway.

Three isomers of prostaglandin synthetase (PGES) have been recently described. Interestingly,
the mPGE1 isoform is inducible and its expression is tightly related to COX-2 expression.
mPGE1 is expressed in the CD and is increased in type 2 diabetes. The role of mPGES in NDI
has not been fully investigated but the recent availability of selective mPGE1 inhibitors will
allow us to investigate in-depth their potential therapeutic benefits (63). Several efforts have
been made to develop PGE receptor antagonists. Three of four PGE receptor subtypes
(prostaglandin E2 receptor type 1, 3 and 4) are expressed in different regions of the kidney.
EP1 and EP4 are expressed in the glomerulus, whereas EP3 is undetectable in this region.
However, two EP3 isoforms are expressed in the CD (64). Some inhibitors of the PGE receptor
have been developed that show interesting effects. An EP1 selective antagonist has been shown
to prevent the progression of nephropathy in streptozotocin-induced diabetic rats (65). In that
study, Makino et al. showed that aspirin, a non selective COX inhibitor has more beneficial
effects on urine volume than a COX-selective antagonist (65). This result indicates that
selective PGE receptor antagonism may represent an efficient means of controlling water
excretion and that every effort should be made to develop other PGE receptor inhibitors that
target other PGE receptor isoforms such as EP3.

Other alternative mechanisms have recently been reported to regulate AQP2 trafficking that
may provide potential targets for future NDI therapies. Both bradykinin and Epac have been
shown to increase AQP2 membrane expression. Bradykinin binds to the B2 receptor and leads
to Rho activation, subsequently attenuating AQP2 trafficking by stabilizing polymerized actin
(66). Bradykinin binds two receptor subtypes, B1 and B2. B2 is constitutively expressed in the
renal CD whereas B1 expression is inducible. Both receptors share similar signaling pathways
(67). However, little information is available on the role that the B1 receptor plays in NDI
pathophysiology. The B1 receptor is associated with the progression of insulin-dependent
diabetes and has a protective role in renal ischemia. The development of selective antagonists
may help us to better understand its possible link to NDI. AQP2 trafficking is additionally
affected by cAMP-activation of the exchange protein (Epac) (68). Epac can be activated
selectively and directly by a cAMP analogue (8-pCPT-2′-O-Me-cAMP). We speculate that
activated Epac exchanges bound GDP with GTP in both Rap1 and Rap2 proteins, which play
a role in cytoskeletal rearrangement.

Mechanisms that regulate AQP2 whole cell abundance
In addition to controlled AQP2 expression at the cell surface, an increase of AQP2 whole cell
abundance represents an attractive approach for NDI therapy. Indeed, down-regulated AQP2
cell surface expression occurring in acquired NDI and in some cases of congenital NDI reflects
down-regulated AQP2 abundance, which in some patients may limit the efficacy of strategies
aimed simply at targeting pre-synthesized AQP2 to the cell surface. While reduced AQP2
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abundance is associated with reduced V2R activity in some cases of NDI, such as
hypercalcemia (69), other conditions of NDI appear to arise from VP-independent mechanisms.
Recent evidence has shown that lithium-induced NDI is associated with an adenylyl cyclase-
independent decrease of AQP2 mRNA expression, possibly resulting from decreased AQP2
transcription (70). In ureteral obstruction, VP-independent down-regulation of AQP2
abundance and cell surface expression was found to arise from increased cyclooxygenase-2
activity and PGE2 synthesis (71). VP-independent mechanisms that increase AQP2 abundance
may, thus, prove to be extremely valuable for designing new therapeutic strategies to treat NDI,
as illustrated below.

In the kidney, the expression of AQP2 is restricted to the renal collecting system (72,73) and
is modulated by both VP and factors that act independently of VP. Several regulatory motifs
that induce AQP2 transcriptional activity have been identified in the AQP2 promoter. The most
well documented of these are AP1 and CRE sites that respectively bind cAMP-induced c-fos
and the phosphorylated adenosine CRE binding protein (CREB) (74–76). In this respect,
pCREB plays a dual role in regulating AQP2 by inducing its accumulation at the cell surface
and by enhancing AQP2 transcription. AQP2 abundance increases with interstitial tonicity and
recent findings have shown that this upregulation arises from increased transcription of the
AQP2 gene. The tonicity-responsive enhancer binding protein (TonEBP) has been shown to
play a key role in this event, most likely by binding to at least one TonE element present in the
AQP2 promoter (77). Of particular interest to the present review, the stimulatory effect of
TonEBP on AQP2 transcription was found to occur independently of VP (77). Moreover, a
stimulatory effect of NFATc, a transcription factor that belongs to the same family as TonEBP,
on AQP2 transcription was demonstrated in cultured renal cells together with cross-talk
occurring between TonEBP and calcineurin-NFATc pathways that further enhances AQP2
transcription (78). Inhibition of TonEBP activity by calcineurin inhibitors, including
cyclosporine A and its derivatives, has been shown to reduce AQP2 expression (78).
Consequently, environmental signals that increase intracellular calcium, and calcineurin
activation in particular, provide attractive targets for the promotion of AQP2 expression at the
cell surface resulting from increased AQP2 whole cell abundance.

Several pieces of evidence have demonstrated that in addition to transcriptional regulation,
AQP2 abundance is also modulated by post-transcriptional processing. AQP2 degradation is
dependent on both lysosomal and proteasomal activity (79). Observations made from both in
vitro and animal studies indicate that AQP2 protein degradation is inversely associated with
changes in V2R activity (80). Moreover, both dihydrotachysterol-treated and fasted animals
displayed a VP-independent decrease of AQP2 protein but not mRNA abundance indicating
that AQP2 protein degradation is regulated by both VP and factors acting independently of VP
(81,82). In addition to controlled AQP2 protein degradation, enhanced translation of AQP2
mRNA may represent another means of increasing AQP2 whole cell abundance. In vitro studies
revealed a feedback mechanism that is dependent on transcriptional activity, that acts
independently of AQP2 degradation and that involves rapid synthesis of regulatory protein(s)
that continuously reduce AQP2 mRNA translation (83). Aldosterone may enhance AQP2
protein abundance by alleviating such negative control on AQP2 mRNA translation (83).
Further dissection of molecular elements involved in AQP2 degradation and mRNA translation
may uncover potential targets delimiting therapies based on controlled AQP2 degradation/
mRNA translation that would ultimately increase the expression of AQP2 at the cell surface.

Summary
Recent advances in our understanding of the cell biology of AQP2 recycling and the signaling
pathways that lead to the membrane accumulation of AQP2 in principal cells have opened up
several possible strategies for inducing this process in the absence of conventional vasopressin
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signaling via its G-protein coupled receptor, the V2R, which is defective in X-linked NDI.
Furthermore, these strategies may also apply to other types of NDI, including some of the
acquired forms. Superimposed on the need to stimulate AQP2 membrane trafficking is the
requirement that sufficient AQP2 be expressed in principal cells of NDI patients to achieve
effective therapy. We, therefore, also discuss some mechanisms that regulate AQP2 expression
levels in target cells. Depending on the nature of the defect leading to NDI, it is likely that a
combination of approaches, directed by the basic research endeavors that are ongoing in many
labs, will be required to achieve a positive clinical outcome.
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Figure 1. Schematic representation of AQP2 trafficking in principal cells
This model shows the interactions between the components of some of the major pathways
that affect AQP2, and summarizes most of the points outlined in this review. The canonical
V2R signaling pathway is depicted, with VP stimulation of V2R leading to the phosphorylation
of AQP2 by PKA and subsequently altering the balance between exocytosis and endocytosis,
leading to AQP2 accumulation at the apical plasma membrane. Also shown are the NO-cGMP
pathway and the PGE2 receptor EP3 that can also positively and negatively modulate AQP2
trafficking respectively, as well as factors that affect AQP2 abundance and the elements and
transcription factors that mediate this regulation. (activator protein-1 element (AP1), adenylate
cyclase (AC), aquaporin-2 (AQP2), cAMP response element (CRE), CRE binding protein
(CREB), cyclooxygenase (COX), G-protein i α subunit (Giα), G-protein s α subunit (Gsα),
guanylate cyclase (GC), heat-shock protein of 70kDa (hsp70), myelin and lymphocyte-
associated protein (MAL), nitric oxide (NO), nitric oxide synthase (NOS), nuclear factor of
activated T-cells c (NFATc), phosphodiesterase (PDE), prostaglandin E2 (PGE2),
prostaglandin receptor (EP3), protein kinase G (PKG), protein kinse A (PKA), Rho family
small GTPase (Rho), tonicity response element (TonE), TonE binding protein (TonEBP),
vasopressin (VP), vasopressin receptor type-2 (V2R))

Bouley et al. Page 14

Semin Nephrol. Author manuscript; available in PMC 2009 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Western blot detection of AQP2 in plasma membrane-enriched fractions from LLC-PK1
cells expressing c-myc-tagged AQP2 (A). Indirect immunofluorescence microscopy of tissue slices
showing AQP2 redistribution in the inner stripe (outer medulla) of collecting duct principal cells
in response to PDE V inhibition (B)
In panel A, cells were incubated 45 min in the presence of the selective PDE5 inhibitor
(sildenafil) or with the non-selective PDE inhibitor (IBMX) at a 0.1, 1 or 10 fold higher dose
than that corresponding to the EC50 of either chemical agent. A plasma membrane fraction was
isolated from the cells and probed with anti-AQP2 antibodies. The same plot was reprobed
with an anti-pan-actin monoclonal antibody as a loading control. Both sildenafil and IBMX
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induce the appearance of AQP2 in the plasma membrane fraction of the cells in a does-
dependent manner.
In panel B kidney slices from a Sprague-Dawley rat were incubated for 10 min with (Deamino-
Cys1, D-arg8)VP (DDAVP, 10 nM) or 45 min with sildenafil (0.5 µM) before fixation by
immersion, sectioning and immunostaining for AQP2. Panel (A) shows a diffuse intracellular
distribution of AQP2 in a control medullary collecting duct, whereas apical membrane
accumulation (arrows) is induced in tissues treated with DDAVP (B) or sildenafil (C). Bar =
25 µm
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Figure 3. AQP2 membrane accumulation can be induced by inhibiting endocytosis
Control LLC-PK1 cells expressing AQP2 displayed baseline perinuclear AQP2 staining (A),
whereas cells exposed to vasopressin (VP) showed strong AQP2 expression at the plasma
membrane (B). Endocytosis was blocked in LLC-PK1 cells by methyl-β-cyclodextrin (mβCD)
treatment (C), expressing a dominant interfering dynamin mutant (dynamin 2 DK44A) (D) or
an ATPase deficient hsc70 mutant (T204V) (E). All three approaches to reduce endocytosis
resulted in a dramatic increase of AQP2 expression at the plasma membrane. Immunostaining
was performed using an anti-c-myc antibody to detect the c-myc tag of AQP2 in stably
transfected LLC-PK1 cells. Bar = 20 µm.
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Figure 4. VP/FK treatment increases exocytosis in AQP2-expressing cells, but not in control cells
LLC-PK1 cells expressing AQP2 were transfected with a vector encoding a soluble, secreted
form of yellow fluorescence protein, YFP (kindly provided by Jennifer Lippincott-Schwartz,
NIH). The amount of ssYFP produced in LLC-ssYFP (which express YFP but not AQP2) and
LLC-AQP2-ssYFP cells (which express AQP2 and YFP) and secreted in the extracellular
medium after 15 min was measured by fluorimetry, and is similar between both cell lines under
baseline conditions (bars 1 and 3 from left to right). When VP/FK is applied, AQP2-expressing
cells show a large increase in ssYFP secretion within the first 15 min of stimulation, as
compared to control cells (bars 2 and 4, respectively). These results are consistent with a large
burst of exocytosis of AQP2-containing vesicles in response to VP/FK stimulation. Values
were calculated as the relative increase from the 0 min baseline control and are expressed in
relative fluorescence units (RFU). Each bar represents the average of 5 independent
experiments performed in triplicate.
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