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Abstract

The phytochromes (phyA to phyE) are a major plant photoreceptor family that regulate a diversity of developmental
processes in response to light. The N-terminal 651-amino acid domain of phyB (N651), which binds an open tetrapyrrole
chromophore, acts to perceive and transduce regulatory light signals in the cell nucleus. The N651 domain comprises
several subdomains: the N-terminal extension, the Per/Arnt/Sim (PAS)-like subdomain (PLD), the cGMP phosphodiesterase/
adenyl cyclase/FhlA (GAF) subdomain, and the phytochrome (PHY) subdomain. To define functional roles for these
subdomains, we mutagenized an Arabidopsis thaliana line expressing N651 fused in tandem to green fluorescent protein, f3-
glucuronidase, and a nuclear localization signal. A large-scale screen for long hypocotyl mutants identified 14 novel
intragenic missense mutations in the N651 moiety. These new mutations, along with eight previously identified mutations,
were distributed throughout N651, indicating that each subdomain has an important function. In vitro analysis of the
spectral properties of these mutants enabled them to be classified into two principal classes: light-signal perception
mutants (those with defective spectral activity), and signaling mutants (those normal in light perception but defective in
intracellular signal transfer). Most spectral mutants were found in the GAF and PHY subdomains. On the other hand, the
signaling mutants tend to be located in the N-terminal extension and PLD. These observations indicate that the N-terminal
extension and PLD are mainly involved in signal transfer, but that the C-terminal GAF and PHY subdomains are responsible
for light perception. Among the signaling mutants, R110Q, G111D, G112D, and R325K were particularly interesting.
Alignment with the recently described three-dimensional structure of the PAS-GAF domain of a bacterial phytochrome
suggests that these four mutations reside in the vicinity of the phytochrome light-sensing knot.
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PhyA and phyB have different photosensory specificities. PhyA
mediates de-etiolation under continuous FR (cFR), whereas phyB
mediates de-etiolation under continuous R (cR) [5].
Phytochromes, which are soluble proteins, are synthesized in
the Pr form and reside in the cytoplasm in darkness. Upon light

Introduction

To adapt to fluctuating environmental conditions, plants obtain
and interpret information from light. These light sensing processes
utilize at least three classes of photoreceptors [1-3] of which

phytochromes are well characterized with respect to molecular
structure and biological function. Phytochromes are unique
pigments whose function is mediated through photoreversible
conformational changes between two spectrally distinct forms: an
inactive red-light (R)-absorbing form (Pr) and an active far-red-
light (FR)-absorbing form (Pfr). R converts Pr to Pfr, and IR
converts Pfr back to Pr. In addition, Pfr is gradually converted
back to Pr in darkness by a thermally driven process called “dark
reversion”. In Arabidopsis the phytochrome family consists of five
members [4]. Two members of the family, phytochrome A (phyA)
and B (phyB) are the most important in seedling development.
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activation, phytochromes translocate to the nucleus [6-9] where
they regulate gene expression [10-12]. Phytochromes interact with
nuclear basic helix-loop-helix proteins such as PIF3 in a light-
dependent manner [13-15]. These interactions are thought to
induce alterations in the expression of target genes [16,17].
Phytochromes in solution exist as dimers of approximately
120 kD subunits, each of which binds a single open tetrapyrrole
chromophore responsible for the absorption of visible light. Each
phytochrome monomer consists of a chromophore-bearing N-
terminal moiety of about 70 kD and a C-terminal moiety of about
55 kD. The N-terminal moiety is highly conserved among
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Author Summary

Adapting to the light environment, plants have evolved
several photoreceptors, of which the phytochromes are
specialized in perceiving the red and far-red light region of
the spectrum. Although phytochrome was first discovered
in plants, the phytochrome species are present in several
organisms, including bacteria. The mechanisms by which
phytochromes transduce light signals to downstream
components are most well studied in plants. Upon light
activation, phytochromes translocate from the cytoplasm
into nucleus and regulate the gene expression network
through interaction with nuclear transcription factors. The
phytochrome molecule can be divided into two major
domains: the N-terminal moiety, which is responsible for
the light perception, and the C-terminal moiety. Although
the C-terminal moiety was though to be involved in signal
transduction, it has recently been shown that the N-
terminal moiety has a role not only in the light perception,
but also in light signal transfer to the downstream
network. However, no signaling motifs have been found
in the N-terminal moiety. In this study, we analyzed
intragenic mutations derived from a genetic screen and
found a cluster of residues necessary for signal transduc-
tion in a small region neighboring the light-sensing
chromophore moiety on the three-dimensional structure.
This is an important step towards understanding how a
major plant photoreceptor, phytochrome, intramolecularly
processes the light signal to trigger diverse physiological
responses.

members of the phytochrome family. The N-terminal moiety
alone can bind the chromophore and show photoreversible
conformational changes. On the other hand, the C-terminal
moiety is required for dimerization [18] and nuclear localization
[19]. Although the C-terminal moiety had long been presumed to
transduce the signal to downstream components, we have shown
that the N-terminal moiety of phyB alone can transduce the signal
in the nucleus in response to light stimuli [20]. The data indicate
therefore, that the N-terminal moiety has not only a light
perception function but also a signal transferring function.

Although phytochromes were originally discovered in plants,
recent analyses have demonstrated that phytochrome-related
molecules are found in various bacteria [21]. Based on sequence
analysis, four domains are recognized in the N-terminal moiety of
phytochromes: the N-terminal extension, the N-terminal Per/
Arnt/Sim (PAS)-like domain (PLD), the cGMP phosphodiester-
ase/adenyl cyclase/FhlA domain (GAF), and the phytochrome
domain (PHY) [21]. The N-terminal extension is found in higher
plant phytochromes but not in bacteriophytochromes. GAF has
bilin lyase activity and covalently binds the chromophore [22].
PHY stabilizes Pfr [23]. Although the crystal structure of plant
phytochromes has not been determined yet, that of the PAS-GAF
domain of Deinococcus radiodurans bacteriophytochome (DrCBD) has
been determined [24]. Interestingly, an unusual three dimensional
structure, designated the light sensing knot [24], is found between
the PAS and GAF domains in DrCBD.

To identify regions of the protein important for signal
transduction by phytochromes, several deletion derivatives have
been examined for their biological activities [23,25-29]. Accord-
ing to those studies, a phyB derivative that lacks the N-terminal
103 amino acid extension exhibits reduced but significant
biological activity [29]. Similarly, the PHY subdomain is
dispensable for the signaling activity [23]. Hence, the core region
of phyB responsible for signal transduction activity can be
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narrowed down to the region composed of PLD and GAF.
However, critical amino acid residues necessary for signaling have
not been identified.

Mutational analyses have been adopted for the study of the
phytochrome signal transduction mechanism. Several amino acid
substitutions within phytochrome molecules have been identified
that reduce the biological activity of the molecule without affecting
either the amount of protein accumulation or the photochemical
properties of the protein. Although this kind of mutational analysis
led to identification of the Quail-box, which resides in the C-
terminal moiety [30], it has been later shown that some of the
mutations in this region impair the subcellular dynamics of
phytochromes [8,20]. On the other hand, as the N-terminal
moiety retains dual functions (a light perception and a signal
transferring function) the amino acid substitutions, which reduce
the biological activity, within the N-terminal moiety may be
expected to fall into two classes: (1) one consisting of those that are
defective in photoperception and/or the maintenance of the active
Pfr form, and (2) the other containing those that are normal in
photoperception and the maintenance of active Pfr form, but
defective in regulatory activity.

Of the above two classes, the latter class of mutations is thought
to directly disrupt the signal transfer to components downstream of
phyB. Although altogether 8 mutations have been reported within
the N-terminal moiety of phyB [23,31-34], none have been fully
investigated. This may be because the signal transferring function
of N-terminal moiety had not been established until the recent
evidence that our engineered N-terminal moiety of phyB can
complement the phyB mutation [20]. In addition, the number of
mutations reported within the N-terminal moiety is too few and
the distribution throughout the N-terminal moiety is too disperse
to indicate regions important for signal transduction of phyB
(Figure 1A, Table 1).

Here, to first identify the critical amino acid residues necessary
for signal transfer, we performed a large scale genetic screen for
long hypocotyl mutants under dim cR. In this screen, we
mutagenized Arabidopsis thaliana expressing the engineered N-
terminal moiety of phyB in order to focus on this moiety. Our data
identify two classes of residues with functionally distinct roles,
respectively, in photosensory perception and signal propagation to
downstream targets.

Results

Identification of New Missense Mutations within the N-
Terminal Moiety of phyB

The N-terminal 651 amino acid fragment of phyB (N651), fused
in tandem to green fluorescent protein (GFP), B-glucuronidase and
a nuclear localization signal (NLS) (N651G-GUS-NLS), is fully
functional in all phyB responses examined, and exhibits hyper-
sensitivity to cR for various phyB responses [20] except for root
greening under red light [35]. To identify amino acid residues that
are important for N651 function, an Arabidopsis line expressing
N651G-GUS-NLS in the phyB mutant background was mutagen-
ized with ethyl methanesulfonate (EMS), and the M2 seedlings
were screened for the long hypocotyl phenotype under weak cR
(0.05 pmol m ™2 sec™!).

At least 1,000,000 M2 seedlings derived from 200,000 M1
plants were subjected to screening. Putative mutant lines were
examined further in the M3 generation. GFP fluorescence was
severely reduced in more than 90% of these lines. The lines in
which GFP fluorescence was not reduced were further examined
with respect to the hypocotyl phenotype under cFR. We selected
69 lines that showed the long hypocotyl phenotype only under cR.
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Figure 1. Hypocotyl Phenotypes of N651-GUS-NLS Mutants Carrying Missense Mutations. (A) Locations of missense mutations found in
the present (plain) and previous (italic) studies. For details, see Table 1. PLD, GAF and PHY were delimited as amino acid residues 103-219, 252-433
and 444-623, respectively, according to a sequence-based domain database, Pfam version 20.0 (http://www.sanger.ac.uk/Software/Pfam). The N-
terminal extension was defined as amino acid residues 1-102. The closed triangle represents the chromophore binding site. (B) Hypocotyl lengths of
mutants grown under different light conditions. For the hypocotyl measurement, plants were grown under weak cR (0.05 pmol m~2 sec” ") (shaded,
upper panel), strong cR (5.5 umol m 2sec ) (open, upper panel), cFR (10 umol m~2 sec” ") (shaded, lower panel) or in darkness (closed, lower
panel). The mean=SE (n=25) is shown. (C) Immunoblot detection of the N651G-GUS-NLS proteins. For detection, 50 ug of total protein was loaded
in each lane, blotted onto nitrocellulose membrane after SDS-PAGE, and probed with an anti-GFP monoclonal antibody (SIGMA) (upper panel). To
confirm protein loading amount, the same samples were subjected to Coomassie Brilliant Blue (CBB) staining (lower panel).
doi:10.1371/journal.pgen.1000158.g001
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These 69 lines were crossed with the phyB mutant. Subsequent
segregation analysis in the F2 generation revealed that 19 of them
were linked to the N651G-GUS-NLS gene, indicating that they
were intragenic mutants. Sequence analysis of these 19 lines
revealed an amino acid substitution within the N65/ moiety in
cach line. These 19 lines yielded 14 distinct substitutions
representing, therefore, 14 different variants of the N65/ gene
(Figure 1A, Table 1). None of these mutations has been reported
previously [30-34]. We confirmed that no mutations were found
in the GFP-GUS-NLS moiety in these lines. GFP fluorescence was
observed exclusively in the nucleus in each line (data not shown),
verifying their expected constitutive nuclear localization.

The hypocotyl lengths of these lines compared to the phyB null
mutant and the parental N651G-GUS-NLS 4-1 and N651G-
GUS-NLS 3-8 lines, under two intensities of cR, are shown in
Figure 1B. As we described previously [20,23], the lower of these
two intensities of cR (0.05 umol m™? sec™ ") is already saturating
for inhibition of hypocotyl elongation in these parental N651G-
GUS-NLS lines, so that no difference in hypocotyl length between
the two intensities was observed for these two lines. Each of the
mutant lines, on the other hand, exhibited a long hypocotyl
phenotype, to varying degrees compared to the N651G-GUS-NLS
lines, with some displaying cR-intensity responsiveness, and others
not. The hypocotyls of D64N, R110Q, GI111D, P309L, and
S370F lines were almost as long as those of the piyB mutant under
both intensities, indicating severe or complete loss of phyB activity.

@ PLoS Genetics | www.plosgenetics.org

Table 1. Summary of the phyB Mutations.
Mutation Domain Hypocotyl Phenotype?® Spectral Deficiency Reference
Chromophore Difference
Incorporation Spectrum Dark Reversion
D64N N° ++H+ - - - this work
R110Q PLD ++ - - - this work
G111D PLD ++ - - — this work
G112D PLD + - - - this work
G118R PLD nd® ++ nd nd [31,32]
S134G PLD nd IHE nd nd [32]
P149L PLD + - - - this work
1208T PLD nd = - - [32]
H283T GAF nd - - + [34]1
G284E GAF ++ a4 4 nd this work
P304L GAF ++ - - — this work
P309L GAF ++ + + nd this work
R313K GAF + - - + this work
R322Q GAF + - + ++ this work
c327Y GAF nd - - + [31]
R352K GAF ++ - - - this work
S370F GAF +++ ++ nd this work
A372T GAF nd - 9 e [31]
V4011 GAF ++ - - + this work
G564A PHY nd = = + [23,33]
S584F PHY ++ - + ++ this work
A587T PHY nd = = + [31]
2Long hypocotyl phenotype under cR (0.05 umol m~2 sec™ ).
PN-terminal extension.
°nd, not determined.
doi:10.1371/journal.pgen.1000158.t001

The remaining nine variants showed an intermediate hypocotyl-
length phenotype between the phyB parent and the N651G-GUS-
NLS transgenic rescue lines. Of these, six (G248E, P304L, R313K,
R322Q), V401L and S584F) showed a greater or lesser degree of
reduced responsiveness to the lower compared to the higher cR
intensity, whereas the remaining three (G112D, P149L and
R352K) did not show such a difference in hypocotyl responsive-
ness to the cR intensity. We confirmed that the long hypocotyl
phenotype was observed neither under cFR nor in darkness
(Figure 1B).

Immunoblot blot analysis of light grown seedlings showed that
the mutant-variant lines contain levels of the phyB fusion-protein
similar to or higher than the parental N651G-GUS-NLS 4-1 line,
in most cases (Figure 1C). Although the levels were reduced in
some lines, they were still higher than that in another N651G-
GUS-NLS line, 3-8 (Figure 1C), in which the full response to cR
was observed (Figure 1B). Concordant results were obtained from
measuring GUS activity in these lines (data not shown). These data
indicate that the reduced responsiveness to cR is due to reduced
intrinsic activity of the mutant phyB rather than reduced levels of
expression.

Effects of Missense Mutations on Chromophore

Incorporation
In addition to the 14 mutations described above, 8 missense
mutations within the N651 moiety that reduce the function of
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phyB have been reported previously [23,31-34]. These 22
missense mutations in the N-terminal moiety of phyB are detailed
in Figure 1A and Table 1. The spectral characteristics had been
examined for only two of these mutations [23,36] prompting us to
examine the entire cohort for spectral integrity. Spectrally active
phyB derivatives were reconstituted i vitro using phycocyanobillin
(PCB) as the chromophore [37]. Wild type and mutated N651
fragments fused to intein and chitin binding domain (CBD) were
expressed in E. coli and subjected to chromophore incorporation
analysis [23]. The crude extracts from FE.coli were mixed with
phycocyanobilin (PCB) and examined by the Zn blot assay
(Figure 2). The results showed that 17 mutants displayed normal
PCB incorporation. Of the remaining 5 mutants, PCB incorpo-
ration was not detected in G118R and S134G, was reduced in
G284E and P309L, and was markedly reduced in S370F.

Effects of Missense Mutations on Pr-Pfr Difference

Spectra

We examined whether the mutations affected the spectral
properties of N651. Twenty mutants that allowed chromophore
incorporation (Table 1) were tested for the Pr-Pfr difference
spectrum (Figure 3). The spectrum for the wild type N651
fragment exhibited an absorption maximum around 650 nm and
minimum around 710 nm as previously described [23]. Of these
20 mutants, 14 mutants exhibited normal difference spectra. The
remaining 6 mutants, G284E, P309L, R322Q), S370F, A372'1 and
S584F, exhibited abnormal difference spectra. The G284E and
P309L mutants exhibited a bleached spectrum in which the trough
in the far-red region was much shallower compared with the peak
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Figure 2. Chromophore Ligation to Mutant N651 Fragments.
Results of zinc-blot (upper panels) and immunoblot (lower panels)
analyses are shown. Crude extracts from Escherichia coli expressing the
mutant N651 fragments were incubated with 5 uM PCB and separated
by SDS-PAGE [23,37]. Immunoblot detection was performed using
antiserum against chitin binding domain (New England Biolabs).
doi:10.1371/journal.pgen.1000158.9g002
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in the red region. The S584F mutant exhibited a similar defect but
to a lesser extent. In addition, a substantial blue-shift of the
difference spectrum minimum was observed in this mutant. In
R322Q and A372T, a red-shift of the difference spectrum
maximum was observed. Conversely, a blue-shift of the difference
spectrum maximum was observed in S370F.

Effects of Missense Mutations on Dark Reversion Rates

The Pfr form of phytochrome is thermally unstable, and it
spontaneously converts back to Pr in darkness by a process called
‘dark reversion’. This dark reversion is an important process to
regulate the level of Pfr in vivo. Hence, we compared the dark
reversion rates in the wild type and the N651 mutants (Figure 4A).
Those mutants that were severely deficient in chromophore
incorporation (G118R, S134G, G284E, P309L and S370F) were
excluded from this analysis. As has been reported previously, the
wild type N651 exhibited a relatively slow dark reversion rate, with
more than 80% remaining as Pfr 1 hr after a pulse of R (pR). Eight
out of the 17 mutants exhibited similar dark reversion rates to that
in wild type N651 (Figure 4A, Table 1). The other 9 mutants, to
various extents, exhibited an increase in the dark reversion rate.
Three mutants in particular, S584F, R322Q) and A372T,
exhibited a very fast dark reversion rate with only 40% remaining
as Pfr 1 hr after pR.

The hypocotyl response to intermittent pR depends very much
on the stability of Pfr in darkness [23]. Hence, we examined how
the mutant plants responded to cR and pR (Figure 4B). This was
done only in the 14 mutants that were obtained in the present
study (Table 1). As expected, S584F and R322Q), in which the
dark reversion rates were very fast in vitro (Figure 4A), exhibited
reduced responses to pR. Similar differences were observed in
R313K and V401, both of which exhibited relatively fast dark
reversion rates. In addition, we observed smaller but significant
differences in G284E, P304L and P309L. Of these, the dark
reversion rate was not measured in G284E and P309L because
severe reduction in chromophore incorporation (Figure 2) and
bleached difference spectra (Iigure 3) were observed. Exception-
ally, P304L did not exhibit any significant phenotype with respect
to spectral properties i vitro.

Regulatory Activity of Full-length phyB Mutant Variants
Mutations D64N, R110Q, G111D, G112D, P149L, 1208T,
P304L and R352K reduced the biological activity of N651G-
GUS-NLS without affecting the spectral properties i vitro
(Table 1). Especially interesting are R110Q, G111D, G112D
and R352K because alignment of the Arabidopsis phyB sequence
with that of DrCBD (Figure 5) suggested that these residues would
reside in the vicinity of the light sensing knot (for detail, see
discussion). Hence, we examined the biological activities of the
full-length phyB carrying these mutations in transgenic Arabidopsts.
The mutated full-length phyB-GFP fusion proteins (PBG)
carrying R110Q, G111D, G112D or R352K were expressed in
the phyB mutant background under the control of the cauliflower
mosaic virus 35S promoter. Immunoblot analysis revealed that the
expression levels were comparable to or higher than those in
PBG18 (Figure 6A). The long hypocotyl phenotype under cR was
observed in PBG(R110Q), PBG(G111D) and PBG(R352K)
mutants (Figure 6A). Exceptionally, the phenotype was less clear
in PBG(G112D). This was probably due to the residual activity in
this mutant. Indeed, the phenotype was weaker in the original
N651(G112D)G-GUS-NLS mutant than the other 3 mutants
(Figure 1B). It is not clear why these mutations showed weaker
phenotypes in PBG background, compared to N651G-GUS-NLS
background (Figure 1B). This was probably because of the fact that
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Figure 3. Pr-Pfr Difference Spectra of Mutant N651 Fragments. The mutated holoproteins were prepared as for Figure 2 and subjected to
spectrophotometry. Blue and red lines indicate 650 and 700 nm, respectively.

doi:10.1371/journal.pgen.1000158.9g003

PBG line has a higher expression level than N651G-GUS-NLS
line[20]. However, it is possible that the C-terminal moiety may
acquire regulatory activity in conjunction with the photoactive N-
terminal moiety, despite the observation that the C-terminal
moiety alone does not show any apparent biological activity
[20,29].

Based on recent reports that early and late phases of phyB-
regulated seedling deetiolation may involve different modes of
regulation [38—40], we examined the effect of the R110Q, G111D
and R352K mutations in the full-length PBG molecule on the cR-
induced expression of three early-response genes, FELF{
(At2g40080), SAUR-LIKE (At4g38840) and AMYLASE (At4g17090),
shown previously, in time-course experiments, to be robustly
phyB-dependent [11,12,41]. Twelve hr of cR exposure was
selected for this experiment because the differential in expression
between wild-type and phyB-null-mutant seedlings was found to be

@ PLoS Genetics | www.plosgenetics.org 6

maximal at that time-point [11], providing maximal sensitivity for
detecting reductions in cR sensitivity in our phyB-mutant variants.
Although a small number of other genes had been reported to
exhibit differences in expression at 1 hr of cR between the wild-
type and phyB-null mutant by microarray analysis [12], none of
these were found to display sufficiently robust differences at 1 hr
cR by gPCR in our present analysis to permit reliable assessment
of the effects of the point mutants identified here. Our data show
that all three selected genes exhibit a similar pattern. Whereas the
wild-type PBG sequence fully rescues the reduced cR-induced
expression of the phyB mutant, all three mutant phyB variants fail
to a greater or lesser extent to reinstate full induction of expression
(Figure 6B). This pattern parallels the behavior of these variants in
failing to complement the long-hypocotyl phenotype of the phyB
mutant (Figure 6A), indicating a loss of phyB function in both early
and late phases of the seedling deetiolation process.
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Each value represents the mean of three independent measurements. (B) Hypocotyl responses in mutant lines to intermittent pR at 4 hr intervals.
Plants were grown under intermittent pR (55.2 umol m ™2 sec” for 5 min) (open) or under cR (2.3 umol m ™2 sec” ") (shaded) for 5 days. Data are the

mean=*SE (n=25).
doi:10.1371/journal.pgen.1000158.g004

Subcellular Localization of Full-length phyB Mutant
Variants

We confirmed that the intracellular localization of PBG was not
affected by these mutations (Figure 7). The wild-type PBG as well
as its mutated derivatives were detected not only in the cytoplasm
but also in the nucleus in most of the cells in the etiolated seedlings.
After 2 min irradiation with white light, early PBG speckles [42]
were observed in the nuclear region in all derivatives. After 24 hr
treatment with cR, nuclear accumulation and formation of late
nuclear speckles were observed in all of the lines. The normal
dynamics of these mutant PBG derivatives as regards subcellular
localization indicates that these mutants are normal in photo-
perception. We also found that PBG formed both early and late
speckles even on the phpdphyB double mutant background
(Figure 7). Hence, formation of both early and late speckles was
independent of the phyA function.

Discussion

Isolation and Classification of the Mutants
We recently demonstrated that phyB lacking a C-terminal
moiety is still capable of robustly transducing a light signal to
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regulate normal seedling development [20]. Those results
prompted us to elucidate the structural basis of this observation.
Hence, we screened for long hypocotyl mutants to identify
missense mutations that reduced the biological activity of phyB
within the N-terminal domain of phyB. Prior to the present work,
several missense mutations had been identified in phyA and phyB
[23,30-34,43]. Of these, 8 mutations reside in the N-terminal
moiety of phyB (Table 1), but the consequences of these residue
substitutions to the molecular functions of the photoreceptor had
only been examined for two of these. In the present study we
identified 14 additional missense mutations and examined them in
detail for functional relevance.

To identify as many novel mutations as possible, we modified
the screening procedure, compared to previous studies. First, to
focus on the N-terminal moiety of phyB, we used the N651G-
GUS-NLS line as a parental line for mutagenesis. Second, the
seedlings were grown under dim cR, which allowed us to detect
smaller reductions in activity. Combined with a large scale
screening of at least 1,000,000 M2 seedlings derived from 200,000
M1 plants, we successfully identified 14 novel missense mutations
within the N-terminal moiety of phyB (Figure 1A and Table 1). It
remains unclear why the present set of mutants did not overlap
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Figure 5. Alignment of Arabidopsis and Bacterial Phytochrome Sequences. The PLD-GAF region of phytochrome sequences are aligned.
PHYB, Arabidopsis thaliana phyB; PHYA, Arabidopsis thaliana phyA; CPH1, Synechosystis PCC6803 Cph1; DrCBD, Deinococcus radiodurans BphP. Arrows
and short bars on top of the sequences represent B-strands and a-helices, respectively. Blue and green lines at the bottom indicate PLD and GAF,
respectively. Domains were delimited as for Figure 1A. A broken red line indicates the loop extended from GAF, which forms the light sensing knot
together with the N-terminal end of PLD (broken blue). In the knot structure, the B1’, 2’ and B3’ strands (red arrows) form a small B-sheet. Amino
acid residues at which mutations were found are indicated in red. The cysteine residues that bind the chromophore are indicated by green
background. Amino acid residues that are in direct contact with the chromophore in DrCBD are indicated in green. The three dimensional structure is

based on [24].
doi:10.1371/journal.pgen.1000158.g005

with the known ones. This might be because the N651G-GUS-
NLS line rather than the full-length phyB line was used in the
present study.

The 14 mutations found in the present study, together with the
8 previously described mutations [23,31-34] were characterized
with respect to their spectral properties i vitro, resulting in the
identification of two principal classes of defects. One consists of the
spectral mutants, which are defective in chromophore incorpora-
tion, photoconversion and/or stability of Pfr. The other comprises
signaling mutants, which are normal in spectral properties but
defective in biological activity. 14 mutations out of the total of 22
were classified as spectral mutants and the remaining 8 as signaling
mutants.
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As the loss of spectral integrity directly affects the amount or overall
structure of the active Pfr form of the photoreceptor, the reduced
biological activity of the spectral mutants is simply explained by the
low amount of or aberrant Pfr form. These mutants are, therefore,
defective in normal light signal perception. It is well established that
mutation at the chromophore attachment site (G357S of phyB),
preventing chromophore ligation, shows loss of biological activity
[29], and the N-terminal 450 amino acid-fragment of phyB which
exhibits an aberrant Pfr form and fast dark reversion has reduced
biological activity [23]. Of the fourteen mutants newly studied here,
seven (G284E, P309L, R313K, R322Q), S370F, V401L and S584F)
are photoperception mutants. Of these, two (P309L and S370F)
display essentially complete loss of photosensory activity in vivo
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under cR (5.5 umol m~ 2 sec” ") or in darkness for 5 days. Data are the
mean=SE (n=25). For the immunoblot detection of PBG proteins,
50 ug of total protein was loaded in each lane and PBG proteins were
detected with a mouse monoclonal anti-phyB antibody (middle panel).
To comfirm protein loading amount, the same samples were subjected
to Coomassie Brilliant Blue (CBB) staining (lower panel). (B) Real-time
PCR using RNA from 4-day-old seedlings grown in the dark (DO0), kept in
the dark for an additional 12 hr (D12) or exposed to cR for 12 hr (R12).
Data are shown for ELF4 (upper), SAUR-LIKE (middle) and AMYLASE
(lower). Cycle threshold values were used to calculate fold-induction
with Ler dark values set to 1. Values from three biological replicates are
plotted with SE.

doi:10.1371/journal.pgen.1000158.g006

(Figure 1B), consistent with the absence or severe loss of chromophore
ligation capacity (Figure 2), whereas the remainder display reduced
photosensory activity, consistent with varying degrees of spectral
aberration (Figures 3 and 4).

By contrast, the remaining seven of the fourteen mutants
studied here (D64N, R110Q, G111D, G112D, P149L, P304L and
R352K) retain spectral integrity (Figures 2,3 and 4), indicating that
they are normal in light signal perception, but defective in signal
transfer to downstream components of the phyB transduction
chain. The retention of normal spectral properties by these mutant
molecules is a strong indication that they retain the broad
structural integrity of the N-terminal moiety, because of the well-
established evidence that deletion of any of the major subdomains
causes aberrant spectral properties and altered biological activity
[44]. In addition, of the four signaling mutants examined here in
the context of the full-length phyB protein, all showed nuclear
localization and normal intranuclear dynamics upon light
activation (Figure 7). This result strongly indicates that these
mutations specifically disturb the signal transferring function
without reducing other functions of phyB.

It is notable that of the nine phyB-variant lines showing an
intermediate phenotype (intermediate hypocotyl length between
the phyB and the N651G-GUS-NLS transgenic rescue lines), six
(G248E, P304L, R313K, R322Q, V401L and S584F) show some
degree of reduced responsiveness to the lower compared to the
higher intensity. With the exception of P304L, these are all
photoperception mutants, compromised in their spectral activity,
consistent with the prediction that they will have reduced
photosensory sensitivity. The remaining three (G112D, P149L
and R352K) do not show such a difference in hypocotyl
responsiveness to the cR intensity. This is also not unexpected,
because these are signal-transfer mutants. These exhibit normal
photoperception, but reduced regulatory activity in inhibiting
hypocotyl elongation. This behavior is consistent with the
prediction that these mutants will retain the same equal sensitivity
as the parent N651G-GUS-NLS molecule to the two cR
intensities, but have reduced capacity to transduce the perceived
light signal (this second step being independent of the intensity of
the signal at saturation).

Overall Distribution Pattern of the Mutations in the N-
terminal Moiety

All 22 mutations were mapped within the phyB amino acid
sequence (Figure 1A). These mutations were more or less evenly
distributed throughout the N651 moiety, suggesting that all
subdomains are important for the normal function of N65I.
However, the different types of mutations distributed differently.
The spectral mutations are distributed mainly in the GAF and PHY
subdomains (Table 1). By contrast, the signaling mutations tend to
cluster in both the N-terminal extension and PLD. This observation
thus defines the roles of the subdomains in the N-terminal moiety:
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Figure 7. Subcellular Localization of Mutant Forms of PBG. Confocal microscopic observation of GFP fluorescence in transgenic Arabidopsis
seedlings. Hypocotyl epidermal cells of 3-day-old seedlings were observed. Dark-grown seedlings (upper), those treated with cW for 2 min (middle)
and those treated with cR for 24 hr (lower) are shown. The bar indicates 10 um.

doi:10.1371/journal.pgen.1000158.9007

GAF and PHY are apparently responsible for light-signal input
(photoperception and/or maintenance of the Pfr form), whereas the
N-terminal extension and PLD are mainly involved in signal
transduction by phyB. This conclusion is consistent with the fact
that GAF forms the chromophore pocket [24] and PHY stabilizes
phyB in the Pfr form [23]. Similarly, it has been shown that deletion
of the N-terminal extension reduces the biological activity of phyB
[29]. Although the importance of PLD to the signal transfer function
of phytochrome has not been reported, many PAS domains are
known to be involved in protein-protein interactions [45], implying
that PLD may be directly involved in the interaction with
downstream signaling components such as PIF3 [13-15].

Recently, the three dimensional structure of the bacterial phy
DrCBD has been determined [24]. The data show that the PAS
domain of DrCBD exhibits a typical PAS fold while the GAF
domain constitutes the chromophore-binding pocket in which the
phytochromobilin chromophore is buried. Especially interesting is
an unusual three dimensional structure, the proposed “light
sensing knot”, found between the PAS and GAF domains.
Alignment of the phyB sequence with that of DrCBD allowed us
to predict the positions of the mutated residues in the three
dimensional model (Figure 5). The chromophore is surrounded by
a B-sheet consisting of $6-11 strands and two a-helices (6 and 7)
in the DrCBD chromophore pocket [24]. All of the mutations in
the GAF domains except R352K were predicted to be within this
region (Figure 5). These amino acid residues are highly conserved
among diverse phytochromes. Of the PLD mutations, R110Q,
G111D and G112D were predicted to be within or in the vicinity
of the B1’-strand, which is one of the partners for B3’ in formation
of the knot [24]. G118R, S134G, P149L and 1208T were located
between B1’ and B1, at the end of B2, between a1 and 02, and at
the end of B4, respectively (Figure 5). These amino acid residues
mutated in PLD are, for the most part, not highly conserved
among phytochromes, with the exception of G118 and S134,
which reduce the chromophore incorporation.

Light-Signal Perception Mutants

We employed an i vitro reconstitution system [37] to examine
the spectral properties of mutant N651 derivatives. Zn-blot
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analysis effectively identified mutants that were deficient in
chromophore incorporation (Figure 2). Chromophore incorpora-
tion was severely impaired in the G118R, S134G and S370F
mutants. In addition, reduced chromophore incorporation was
observed in G284E and P309L, both of which also exhibited
abnormal difference spectra (Figure 3). In another subclass of
mutants, which included R322Q, A372T and S584F, chromo-
phore incorporation was normal but the difference spectrum was
altered (Figure 3).

Alignment of the phyB sequence with that of DrCBD allowed us
to predict the positions of the mutated residues in the three
dimensional model (Figure 5). In the following description, amino
acid residues in DrCBD are shown in parentheses. As expected,
many of the chromophore incorporation and difference spectrum
mutations mapped to the vicinity of the chromophore. Indeed,
close interactions of S370(S272) and A372(S274) with the
chromophore in DrCBD has been reported [24] (Figure 5). In
addition, G284(G184), P309(P209) and R322(R222) are situated
in the vicinity of the chromophore.

It remains unclear why mutations in GI118(G39)R and
S134(S55)G severely disturbed chromophore incorporation. These
residues reside in PLLD. In the three dimensional model, these
residues are spatially separated from the chromophore pocket in
DrCBD [24] (Figure 5). However, there are reports that indicate
the involvement of PLD in chromophore incorporation. The N-
terminal 225 amino acid deletion abolishes chromophore
incorporation in Arabidopsis phyA[46]. The I80 residue of pea
phyA, which corresponds to I114(I35) of Arabidopsis phyB, is
critical for chromophore binding [47]. Insight into the means by
which these residues in PLD contribute to chromophore binding
awaits elucidation of the three dimensional structure of higher
plant phytochrome.

Pfr Stability Mutants

The dark reversion rate, which reflects the stability of Pfr in
darkness, is an important process regulating the level of Pfr i vivo.
Mutants defective in Pfr stability are thus compromised in normal
light-signal perception. Indeed, a faster dark reversion rate has
been shown to reduce the physiological activity of phyB [23]. We
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observed faster dark reversion in 9 of 17 mutants examined
(Figure 4A, Table 1). It is known that PHY stabilizes Pfr
[22,23,48]. Concordantly, each of the three PHY mutants
(G564A, S584F, A587T) produced higher dark reversion rates.

The other mutants that exhibited faster dark reversion (H283T,
R313K, R322Q, C327Y, A372T, V401I) were found to be
mutations in GAF. This is not surprising because GAF constitutes
the chromophore binding pocket [24]. In the DrCBD three
dimensional structure, A372(S274) directly interacts with the C-
ring of the chromophore molecule. In addition, R322(R222) and
V401(A288) reside in the chromophore pocket. H283(1'183),
R313(R213) and C327(T227) are a little more distant but still in
the vicinity of the chromophore pocket.

Signaling Mutants

Including I208T identified in a previous study [32], eight mutants
that exhibited reduced biological activity with no effect on spectral
activity are defined as signaling mutants (Table 1). One mutation
(D64N) was found in the N-terminal extension consistent with the
reports that, although no structural information is yet available, the
N-terminal extension is important for the signal transduction
activity of phyB [29]. Two mutations, P304L and R352K, were
found in GAF. R352 is particularly interesting because it is
presumed to reside in the vicinity of both the chromophore and the
light sensing knot (see below). The reason why P304L reduced the
signaling activity is less clear. However, P304(P204) is next to
Y303(1203), which interacts with ring D of the chromophore in
DrCBD [24] suggesting that P304(P204) might affect signaling
activity through an interaction with the ring D.

The other 5 signaling mutants were found in PLD, suggesting
that this domain is important for the signal transduction activity.
Particularly interesting are the three successive mutations, R110Q),
G111D and G112D. Interestingly, R110(I31), G111(P32) and
G112(G33) partly overlap with the B1’ strand which, together with
the B2 and B3’ strands in DrCBD, participates in the formation of
the light sensing knot [24] (Figure 5). Hence, the present data are
consistent with the idea that the light sensing knot plays a critical
role in phytochrome signal transduction. Two additional mutants,
P149L and 12087, were found in PLD. The 1208(V118) residue is
at the end of the B4 strands and faces the knot in the DrCBD
structure [24]. The P149(R70) reside is in the loop connecting the
al and o2 helices and faces the knot as well.

The R352(R254) residue forms salt bridges through its two
amines with the carbonyl oxygen of the ring B propionate of the
chromophore in DrCBD [24]. Since one of these amines is missing
in the R352K mutant, the mutation would be expected to weaken
the interaction between ring B and the polypeptide moiety.
Because of the tight connection with the chromophore, the R352K
mutant might be expected to have negatively affected photochem-
ical properties. Indeed, the substitution to E of R318 in pea phyA,
and that to K of R254 in cphl, which correspond to R352 of
Arabidopsis phyB, altered their photochemical property [49,50].
Nevertheless, abnormal spectral properties of R352K were less
clear in the N-terminal moiety of phyB (Figures 2—4). This may be
because of the different phytochrome species involved. Further-
more, PBG(R352K) accumulated in the nucleus and formed
speckles in a light-dependent manner (Figure 7), which strongly
indicates that PBG(R352K) was spectrally active i vio.

One surprising feature of R352(R254) is its proximity to the
light sensing knot. In the DrCBD structure, R352(R254) is on the
B3’ strand, which is a component of the knot (Figure 5). The three
successive R110(I31), G111(P32) and G112(G33) residues are
partly included in B1’, which is one of the partners for B3’ in
formation of the knot [24]. Considering the possible tight

@ PLoS Genetics | www.plosgenetics.org

1

Signaling Mutations in Phytochrome B

connection of R352(R254) with the chromophore, these four
amino acid residues may constitute a route to relay the
conformational changes in the chromophore to the surface of
the molecule. It should be noted here that the model presented
here is based on the DrCBD structure. Unfortunately, the
homology is not particularly high between higher plant phyB
and DrCBD within PLD (Figure 5). Consequently, the three
dimensional structure of phyB may be different from that of
DrCBD. To answer the question definitively, the three dimensional
structure of phyB needs to be determined.

It is notable, that the disruption of the signal transfer capacity of
the phyB molecule by mutations in the light-sensing knot region
have parallel deleterious effects on both early and late phases of
seedling deetiolation regulated by phyB. This suggests that these
amino acids have a central role in the primary signaling function
of the photoreceptor molecule.

Materials and Methods

Plant Materials, Growth Conditions for Seedlings, and
Growth Measurements

The Arabidopsis thaliana mutant, phyB-5, is a null allele on the
Landsberg erecta background [34]. The PBG [9] and N651G-
GUS-NLS (originally NG-GUS-NLS) [20] lines on the phyB-5
background and the PBG18 line on the phyA-201phyB-5 double
mutant background [23] have been described elsewhere.

Seeds were surface-sterilized and sown on 0.6% agar plates
containing Murashige-Skoog (MS) medium with or without 2%
(w/v) sucrose. The plates were kept in the dark at 4°C for 72 hr
and then irradiated with continuous white light (cW) for 3 hr at
22°C to induce germination. The plates were then placed under
various light conditions, as specified in the figure legends. The light
sources were as described previously [23]. For hypocotyl length
measurements, the seedlings were grown on MS agar plates
without sucrose for 5 days at 22°C and then pressed gently onto
the surface of agar medium before photographs were taken.
Hypocotyl length was determined by the NIH image software
(Bethesda, ND). For immunoblot analysis, the seedlings were
grown on MS agar plates with 2% (w/v) sucrose for 1 week at
22°C in ¢W (45 pumol m™? sec™ ).

EMS Mutagenesis and Screening

Seeds of the N651G-GUS-NLS expressing Arabidopsis line, 4-1,
were mutagenized with 0.3% EMS. Approximately 600 seeds were
sown directly onto soil in individual pots. Growth in each pot,
which consisted of about 300 plants, was considered an M1 family.
From each M1 family, M2 seeds were collected. One to two
thousand M2 seeds were then subjected to screening. Seedlings
were screened visually for tall phenotype after 5 days under weak
¢R (0.05 pmol m ™2 sec™"). M3 seedlings were then examined for
hypocotyl lengths in weak ¢R and cFR (10 umol m 2 sec™ ).
Lines that were taller only in cR were backcrossed to the phyB
mutant. The long hypocotyl phenotype was examined in both F1
and I'2 generations to determine if the mutation was linked to the
N651G-GUS-NLS locus. The light sources employed have been
described elsewhere [23].

Sequence Analysis of Mutants

Crude plant DNA was prepared from the M3 plants. The N657
fragment of N651G-GUS-NLS was amplified using PCR primers
complementary to the cauliflower mosaic virus 35S promoter and
GFP regions. Purified PCR products were sequenced using
BigDyeTerminator V3.1 Cycle Sequencing Kit (Applied Biosys-
tems).
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Immunochemical Experiments

Protein extraction, SDS-polyacrylamide gel electrophoresis,
protein blotting, and immunodetection were performed as de-
scribed [9]. Antibodies used were a monoclonal anti-phyB mBA1
antibody [51], an anti-GFP monoclonal antibody (SIGMA) and
antiserum against chitin binding domain (New England Biolabs).

Escherichia coli Expression and Reconstitution

For N651 protein expression, the N651 fragment was cloned
into the pTYB2 vector containing Intein/CBD (New England
Biolabs) [23]. Mutations were introduced into N651 using the
QuikChange Site-Directed Mutagenesis Kit (Stratagene). Esche-
richia coli transformation and expression of wild type and mutant
N651-Intein/CBD fusion proteins were performed as previously
described [23]. Intact holoproteins were reconstructed using PCB
as a chromophore [37]. The resultant holoproteins were subjected
to spectral analyses.

Spectrophotometric Assays

The Zn blot, difference spectra, and dark reversion analyses were
essentially as described previously [23]. For Zn blot analysis, extracts
containing equal amounts of N651-Intein/CBD protein were loaded
onto the gel. To ensure equal sample loading, immunodetection of
Intein/CBD fusion proteins was performed in advance.

Plasmid Construction and Plant Transformation

To generate mutant PBG constructs, mutations were introduced
into PBG using the QuikChange Site-Directed Mutagenesis Kit
(Stratagene). Mutant PBGs were inserted between the cauliflower
mosaic virus 35S promoter and the Nos terminator of pPZP211/
35S-nosT, which is itself derived from pPZP211 [52]. The phyB-5
mutant was used as the host for transformation by the
Agrobacterium-mediated floral dip method [53]. Transformed plants
were selected on MS medium containing 25 pg mL™" kanamycin
and 166 ug mL~' claforan (Hoechst) and by microscopic
observation of GFP fluorescence.

Gene Expression Analysis
RNA isolation, cDNA synthesis and the real-time PCR were
performed essentially as described [38]. The specific primer
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sequences were as follows: ELF4-F, 5'-CGACAATCACCAATC-
GAGAATG-3', ELF4-R, 5-AATGTTTCCGTTGAGTTCTT-
GAATC-3', SAUR-likeF, 5-TTCTTCACTGCAAGGGATT-
GTG-3" SAUR-lke-R, 5'-AAAGGCAGAGGAAGAGTTTGGA-3'
AMIYTASEF, 5'-AAAGCACGGTCTCAAACTCC-3', and AM1-
LASE-R, 5'-CACAGAATCACATCCCAAGG-3'. The gene PP24
(At1g13320), which is expressed at similar level in darkness or red light
(data not shown), was used as a normalization control [54]. Each
PCR was repeated three times. Gene expression data were
represented relative to the average value for the wild type grown in
darkness in each experiment, after normalization to the control. The
experiment was performed with three independent biological
replicates.

Analysis of Subcellular Localization in Transgenic
Arabidopsis Seedlings

Seedlings were grown on MS agar plates without sucrose for 3
days at 22°C in darkness. Seedlings were set on the stage of a
confocal laser microscope (Olympus) and nuclei were located
under green safe light by conventional microscopic observation.
Seedlings were scanned once to observe GIFP fluorescence [9] and
then irradiated with the microscope white lamp for 2 min. After
irradiation, the seedlings were scanned again. For long-term
irradiation, seedlings were treated with cR of 44 pmol m~? sec”
for 24 hr.
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