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Pck1 Gene Silencing in the Liver Improves Glycemia
Control, Insulin Sensitivity, and Dyslipidemia in db/db

Mice
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OBJECTIVE—Cytosolic phosphoenolpyruvate carboxykinase
(PEPCK-C; encoded by Pckl) catalyzes the first committed step
in gluconeogenesis. Extensive evidence demonstrates a direct
correlation between PEPCK-C activity and glycemia control.
Therefore, we aimed to evaluate the metabolic impact and their
underlying mechanisms of knocking down hepatic PEPCK-C in a
type 2 diabetic model.

RESEARCH DESIGN AND METHODS—PEPCK-C gene tar-
geting was achieved using adenovirus-transduced RNAi. The
study assessed several clinical symptoms of diabetes and insulin
signaling in peripheral tissues, in addition to changes in gene
expression, protein, and metabolites in the liver. Liver bioener-
getics was also evaluated.

RESULTS—Treatment resulted in reduced PEPCK-C mRNA and
protein. After treatment, improved glycemia and insulinemia,
lower triglyceride, and higher total and HDL cholesterol were
measured. Unsterified fatty acid accumulation was observed in
the liver, in the absence of de novo lipogenesis. Despite hepatic
lipidosis, treatment resulted in improved insulin signaling in the
liver, muscle, and adipose tissue. O, consumption measurements
in isolated hepatocytes demonstrated unaltered mitochondrial
function and a consequent increased cellular energy charge. Key
regulatory factors (FOXO1, hepatocyte nuclear factor-4a, and
peroxisome proliferator—activated receptor-y coactivator [PGC]-
la) and enzymes (G6Pase) implicated in gluconeogenesis were
downregulated after treatment. Finally, the levels of Sirtl, a
redox-state sensor that modulates gluconeogenesis through
PGC-1a, were diminished.

CONCLUSIONS—Our observations indicate that silencing
PEPCK-C has direct impact on glycemia control and energy
metabolism and provides new insights into the potential signifi-
cance of the enzyme as a therapeutic target for the treatment of
diabetes. Diabetes 57:2199-2210, 2008
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he liver has a central role in maintaining glucose

and energy homeostasis. Postabsorptive metab-

olism in hepatocytes ensures glucose synthesis

via gluconeogenesis and glycogenolysis to main-
tain blood glucose levels. In diabetic patients, sustained
rates of gluconeogenesis independent of nutrient status
are responsible for increased hepatic glucose output
(HGO) and, therefore, hyperglycemia (1,2).

Phosphoenolpyruvate carboxykinase (PEPCK) cata-
lyzes the first committed step in gluconeogenesis. Gene
transcription from the cytosolic form of PEPCK
(PEPCK-C) is highly regulated by the glucagon/insulin
axis. In diabetes, the lack of insulin (type 1 diabetes) or
resistance to its action (type 2 diabetes) is responsible for
an important upregulation of the enzyme, and this induc-
tion correlates with increased rates of gluconeogenesis in
liver and kidney (3). Also, PEPCK gene modulation in the
liver has resulted in remarkable effects on systemic glu-
cose metabolism in mice. A twofold overexpression of
PEPCK-C results in insulin resistance (4), whereas a
sevenfold overexpression results in hyperglycemia (5).
Moreover, studies by Burgess et al. (6) and She et al. (7,8)
using a liver-specific PEPCK-C knockout mouse have shed
light on the critical role of PEPCK-C in the integration of
energy metabolism through a mechanism that implicates
cataplerosis from mitochondria, as highlighted by hypo-
glycemia and lethality after ablation of PEPCK-C gene in
mice (7-9). Furthermore, a polymorphism in the promoter
for Pckl is associated with the development of type 2
diabetes (10), and dysregulation of gluconeogenesis has
direct implications for glucose homeostasis in humans
(2,11).

Despite all evidence, the validation of this enzyme as a
target for liver-specific gene therapy or pharmacological
intervention in diabetes has not been extensively investi-
gated to date. Prior studies in streptozotocin-treated mice
using RNAi-directed downregulation of PEPCK-C in the
liver have shown a direct role for this enzyme in the
regulation of glucose homeostasis in the absence of insulin
(12). Here, we have focused on evaluating the indirect
metabolic impact of knocking down hepatic PEPCK-C in a
model of insulin resistance.

We show that partial silencing of hepatic PEPCK-C in
db/db mice leads to improved glycemia control directly,
through the coordinate inhibition of components of the
gluconeogenic pathway in the liver, and indirectly, by
improving insulinemia and peripheral sensitivity to the
hormone. Our observations indicate that PEPCK-C plays a
key role in the control of hepatic energy metabolism and
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FIG. 1. Adenovirus-mediated shRNA knocks down PEPCK-C specifically in the liver. A dose of 6.67 x 10'° pfu/kg control (Ad-shCT) and
PEPCK-C-directed shRNA (Ad-shPckl) adenovirus was injected in male, 6- to 8-week-old db/db mice. A: PEPCK-C expression analyzed by
quantitative RT-PCR in fed (n = 11) or overnight-fasted (n = 5) animals 14 days after treatment. B-2-microglobulin was used as housekeeping
gene. Data are represented as relative Pckl gene expression compared with control-fed animals (Ad-shCT). Data are means + SE. Student’s ¢ test
was used to discriminate statistical significance. B: PEPCK-C immunohistochemistry was performed in 7-pm cryosections obtained from livers
treated with either control or PEPCK-C-targeted shRNA. Confocal microscopy was used to determine signal distribution throughout the liver
acinus. X100 (right) and X400 image magnification blow up from periportal (PP) and perivenous (PV) zones are shown. Pictures are
representative of three independent experiments. C: PEPCK-C immunodetection in total protein extracts from liver, kidney, and epididymal
WAT. y-Tubulin was used to normalize protein loading. Representative blots from three independent experiments are shown. D: Densitometric
quantification of liver (n = 11), kidney (n = 4), and WAT (n = 4) blots shown in C. B, Ad-shCT; [], Ad-shPckl group. Data are means = SE; **P <

0.01, Student’s t test. (Please see http:/dx.doi.org/10.2337/db07-1087 for a high-quality digital representation of this figure.)

provides a novel therapeutic approach for the treatment of
diabetes.

RESEARCH DESIGN AND METHODS

Experimental animals and adenovirus. Male C57BKS.Cg-+Lepr®/+Lepr®
(db/db) mice were purchased from Harlan Interfarma, maintained in a
constant 12-h light/dark cycle, and fed a standard rodent chow and water ad
libitum. At the beginning of the experiment, animals were 6—8 weeks old. All
animal protocols were approved by the ethics committee at the University of
Barcelona.

Recombinant E1-E3 deficient adenovirus (serotype 5) encoding shRNA
against PEPCK-C (Ad-shPckl) and Phothinus pyralis luciferase (Ad-shCT)
(used as unspecific control sequence) were generated in the Viral Production
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Unit of the Center of Animal Biotechnology and Gene Therapy (UPV-
CBATEG) (Bellaterra, Spain).

Adenovirus was administered by tail vein injection of 6.67 X 10'° plaque-
forming units (pfu)/kg in 200 wl physiological saline. Fed blood glucose and
weight were measured at 8:00 .M. Surgery was performed under isofluorane
anesthesia (Abbot). Tissues were snap-frozen in liquid nitrogen and stored at
—80°C until analysis. Blood was collected by inferior cava puncture.
Peripheral insulin sensitivity. Overnight fasted mice were anesthetized,
and gastrocnemius muscle, epididymal fat, and liver samples were taken at
time 0 and 5 min after a 10-IU/kg insulin bolus was injected via tail vein.
Glucose and insulin tolerance tests. Glucose tolerance was assayed 7 days
after treatment in 32-h-fasted mice after a 1-g/kg glucose bolus intraperitoneal
injection. Insulin tolerance was determined in mice fed ad libitum, after
intraperitoneal injection of 2 IU/kg bovine insulin (Sigma) at day 8 after
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FIG. 2. Knocking down hepatic PEPCK-C in diabetic db/db mice leads
to improved glucose homeostasis. A: Fed glycemia (ll) was assessed 14
days after treatment with saline (CT; n = 5) with adenovirus express-
ing a nonspecific shRNA (Ad-shCT; n = 19) or with a PEPCK-C specific
shRNA (Ad-shPckl; n = 19). Fasting glycemia was measured after a
32-h fast on day 7 after infection ([J]) in the same animals. Data are
means * SE; *P < 0.05, Student’s ¢ test. B: Fed glycemia relative to
glycemia before treatment. Fed glycemia was scored in CT group
(n = 5; O), Ad-shCT (n = 19; @), and Ad-shPckl (n = 19; A) before
treatment and over the duration of the experiment. An additional
experimental group was treated orally with metformin (MET) (n = 5;
A). Metformin was added to drinking water to achieve a daily dose of
400 mg - kg~ ! - day! in view of the daily water consumption. Average
daily water consumption was calculated every day for 1 week before
initialization of experiment. Water consumption and metformin dosage
was recalculated twice a week and corrected, if necessary, to adjust
dosage. Data are means * SE; **P < (.01 Ad-shPck1 vs. Ad-shCT; and
#P < 0.01 MET vs. CT, Student’s ¢ test. C: Seven days after adenoviral
infection, an intraperitoneal glucose tolerance test was performed in
32-h-fasted mice as described in RESEARCH DESIGN AND METHODS, and
glucose was measured at the indicated time points in CT (n = 5),
Ad-shCT (n = 13), and Ad-shPck (n = 12) groups. *P < 0.05
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treatment. Blood glucose was measured at the indicated time points after
challenge.

Glucose production from pyruvate. A 2 g/kg buffered pyruvate (Sigma)
bolus was injected intraperitoneally in 32-h-fasted mice on day 7 after
adenoviral infection. Glucose levels were measured at indicated time points.
RNA extraction and quantitative RT-PCR. Total RNA was extracted using
RNAeasy mini kit (Qiagen). cDNA synthesis from 2 pg RNA was performed
using Ready-To-Go You-Prime First Strand Beads (Amersham Biosciences)
with random hexamers. mRNA levels of selected genes were quantified using
a Low Density Array (Applied Biosystems) in a HT7900 Real-Time RT-PCR
system (Applied Biosystems). Gene expression was normalized with B-2-
microglobulin as a housekeeping gene. Data analysis is based on the AACt
method.

Western blot. Tissue was homogenized in radioimmunoprecipitation assay
buffer supplemented with protease and phosphatase inhibitors and centri-
fuged at 15,0009 for 15 min at 4°C. Western blots were performed with 20-50
g tissue extract. Proteins were separated in 8-12% SDS-PAGE and trans-
ferred to an Immobilon membrane (Millipore). Nuclear extracts were ob-
tained as described previously (13).

Sheep anti-PEPCK-C antiserum (a gift from Dr. Granner, Vanderbilt
University, Nashville, TN) was used at a 1:20,000 dilution; antibodies against
acetyl-CoA carboxylase (ACC) and ACC-P (Ser™) (Upstate) were used at
1:2,000; and antibodies against AMP-dependent kinase (AMPK), AMPK-P
(Thr'"?), AKT, AKT-P (Thr®*%), AKT-P (Ser?”) (Cell Signaling), Sirtl (Upstate),
and sterol regulatory element-binding protein lc (SREBP-lc¢; Santa Cruz
Biotechnology) were used at 1:1,000. Voltage-dependent anion channel
(VDAC) antibody (provided by Dr. Pujol, IDIBELL) was diluted 1:1,000. Fatty
acid synthase (FAS) and protein kinase C € (PKCg) antibodies (Santa Cruz
Biotechnology) were used at 1:500 dilution. FOXO1 (Santa Cruz Biotechnol-
ogy), FOXO1-P (Ser*®®) (Cell Signaling), and peroxisome proliferator-acti-
vated receptor-y coactivator (PGC)-1 (Cell Signaling) were used at 1:250. All
membranes were normalized using monoclonal anti—y-tubulin (Sigma) at
1:10,000. Horseradish peroxidase activity linked to secondary antibody was
detected with ECL substrate (Pierce) in a Fujifilm LAS 3000 Intelligent Dark
Box IV imaging system. Densitometry was performed using Multi Gauge
software.

PKCe activity was estimated as the ratio of membrane to cytosol PKCe
signal. To separate membrane and cytosolic fractions, liver homogenates were
centrifuged at 800g for 10 min, and supernatants were further centrifuged at
100,000g for 45 min. Enrichment was assessed after blotting the membranes
with antibodies (1:1,000) against cytosolic (pyruvate kinase [L-PK]; gift from
Dr. Bartrons, University of Barcelona) and membrane-associated (epithelial
growth factor receptor [EGFR], gift from Dr. Rosa, University of Barcelona)
proteins.

Histology and immunofluorescence. A portion of the third hepatic lobule
was fixed for at least 24 h in 4% paraformaldehyde, equilibrated in 30%
saccharose, embedded in Tissue-Tek OCT compound (Sakura), and stored at
—80°C until 7-pwm-thick cryosections were obtained. Oil-red lipid staining and
PEPCK-C immunostaining were previously described (12).

Blood and liver biochemical analysis. Blood glucose was measured using a
Glucocard Memory 2 apparatus (Menarini) by tail clipping. Serum metabolites
were measured in the Veterinarian Clinical Biochemistry Service, Veterinary
Hospital, Universitat Autonoma de Barcelona (Barcelona, Spain). Serum
insulin was determined using Ultrasensitive Mouse Insulin ELISA (Mercodia).
HDL cholesterol was quantified using a Reflotron system (Roche Diagnostics).

Hepatic glycogen was measured essentially as previously described (9).
Hepatic triglycerides and fatty acid content were quantified using a TAG kit
(Sigma) and NEFA kit (Wako), respectively, in 3 mol/l KOH, 65% ethanol
extracts, based on the method of Salmon and Flatt for liver saponification.
Hepatic short chain acyl-CoAs (acetyl-CoA, malonyl-CoA, propionyl-CoA, and
succinyl-CoA) were analyzed by high-performance liquid chromatography
(HPLC) as described previously (14) in the Research Support Services from
the University of Barcelona. Nucleotides (ATP/ADP/AMP) were determined in
neutralized 10% perchloric acid extracts by HPLC.

High-resolution respirometry. O, consumption was measured using a
high-resolution Oxygraph respirometer (Oroboros, Innsbrook, Austria) in
isolated hepatocytes. Briefly, liver was preperfused with calcium-free Hanks’
balanced salt solution (HBSS) buffer (Sigma) at 37°C before perfusion with
Ca**-containing HBSS and 3.5 mg/ml Liberase Blendzyme (Roche). Hepato-
cytes were cleared by repeated centrifugation at 50g for 5 min, and viability

Ad-shPckl vs. Ad-shCT; **P < 0.01; and *##P < 0.001 Ad-shPckl vs. CT,
Student’s t test. A two-way ANOVA did not detect significant differ-
ences between the CT and Ad-shCT groups but demonstrated statisti-
cally significant changes when comparing the Ad-shPckl versus CT
(1P < 0.001) and versus Ad-shCT (P < 0.05) treatment groups. Data
are means * SE.
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FIG. 3. Improved insulin sensitivity in hepatic PEPCK-C-silenced animals. A: Plasma insulin levels was assessed in fed mice 14 days after infection
(Ad-shCT, n = 5; Ad-shPckl, n = 4; **P < 0.01, Student’s t test) or in 32-h-fasted mice 7 days after infection (Ad-shCT, n = 13; Ad-shPck, n =
12; #*P < 0.05, Student’s ¢ test). B, Ad-shCT; [, Ad-shPckl group. B: For IPITT, a 2-IU/kg insulin bolus was injected into awake fed mice. Blood
glucose levels were determined at the indicated time points after insulin bolus (CT, O, n = 5; Ad-shCT, ®, n = 8; Ad-shPckl, A, n = 9). Data are
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(>80%) was assessed by trypan blue exclusion. The respiration medium
consisted of F-12 Coon’s modification supplemented with 20 mmol/l HEPES,
20 mmol/l lactate, 2 mmol/l pyruvate, 2 mmol/l glutamine, and 1 mmol/1
octanoate conjugated with 0.5% BSA. Medium was equilibrated with air at
37°C and stirred at 750 rpm until a stable signal was obtained for calibration
at air saturation. At least 10° hepatocytes per milliliter were used for
measurements. The titration protocol, which was completed within 50-60
min, was recorded at 2-s intervals using a computer-driven data acquisition
system (Datlab; Oroboros).

Statistical analysis. Results are expressed as the means * SE. Statistical
analysis was always performed by one-way or two-way ANOVA and two-tailed
Student’s ¢ test. A P < 0.05 was considered significant.
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RESULTS

Liver-specific PEPCK-C gene silencing. A previously
validated shRNA sequence against PEPCK-C (12) was
engineered into an adenovirus vector (Ad-shPckl) and
tested for relative silencing efficiency compared with a
control sequence (Ad-shCT). Treatment with Ad-shPck1
achieved a 42 and 25% reduction in Pckl gene expression
in fed and fasted livers, respectively (Fig. 1A4). Interest-
ingly, the net amount of RNA silenced was similar inde-
pendent of nutritional status. Densitometric quantification
of Western blots confirmed a similar amount of hepatic
PEPCK-C protein reduction on treatment (100 = 15.1 vs.
46.1 £ 6.8 relative units; n = 11, P < 0.01) (Fig. 1C and D).
Because PEPCK-C is also present in kidney and adipose
tissue, we assessed the tissue specificity of silencing. No
changes in PEPCK-C protein content were observed either
in kidney or epididymal adipose tissue (Fig. 1C and D).
Finally, immunohistochemical analysis of PEPCK-C dem-
onstrates a nonhomogeneous reduction of PEPCK-C im-
munoreactivity that is more evident in pericentral than
periportal hepatocytes (Fig. 1B).
Whole-body glucose homeostasis and insulin sensitiv-
ity. To investigate the consequences of PEPCK-C silencing
on glycemia control, key metabolic parameters were mea-
sured. Fed blood glucose was significantly reduced in
Ad-shPckl1 animals (271 = 23 mg/dl) compared with both
saline-treated (409 *+ 48 mg/dl) and Ad-shCT-treated
(370 £ 38 mg/dl) groups, although no significant changes
were found in fasted animals (Fig. 2A). Interestingly,
PEPCK-C silencing and oral metformin treatment demon-
strated similar variations in fed glycemia (Fig. 2B).
Systemic glucose clearance, assessed using a glucose
tolerance test, was improved after Ad-shPckl treatment,
as demonstrated by a reduction in the area under the curve
of ~40 and 20% compared with saline-treated and Ad-shCT
groups, respectively (Fig. 2C). Also, fed and fasting insu-
linemia were significantly reduced after treatment with
Ad-shPck1 (Fig. 3A). Accordingly, an intraperitoneal insu-
lin tolerance test showed that PEPCK-C-silenced animals
have higher sensitivity to insulin (Fig. 3B). Furthermore,
Ad-shPck1-treated animals scored significantly lower
(2.38 £ 0.01, n = 14 vs. 2.74 £ 0.07, P < 0.01, » = 5 and
vs. 263 = 0.01, P < 0.05, n = 14; Ad-shPckl1 vs. saline
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means *= SE, *P < 0.05 (CT vs. Ad-shPckl) and P = 0.09 (Ad-shCT vs.
Ad-shPckl1), Student’s t test. Insulin signaling in liver (C and F),
muscle (D and G), and epididymal fat depots (E and H) was assessed in
overnight fasted mice 1 week after infection by means of an intrave-
nous insulin bolus (10 IU/kg) as described in RESEARCH DESIGN AND
METHODS. The level of AKT phosphorylation (at both Ser*”® and Thr?°®
residues) and the total AKT protein content were detected by Western
blot (C-E). Representative blots of two independent experiments are
shown. Additionally, bands were quantified by densitometry (F-H). %,
saline-injected animals (CT); B, Ad-shCT group; [], Ad-shPckl group.
Bars represent the AKT-P-to-AKT ratio related to control (CT) group
in the basal state. Data are means + SE of 4-6 animals per group. *P <
0.05 and **P < 0.01, Student’s t test.
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treated and vs. Ad-shCT, respectively) when their degree
of insulin resistance was assessed from the QUICKI index
(15).

Next, we directly evaluated insulin signaling in vivo

measuring insulin-stimulated AKT phosphorylation in
liver, muscle, and epididymal adipose tissue (white adi-
pose tissue [WAT]). AKT phosphorylation at Ser*”® and
Thr®*® was enhanced in Ad-shPckI—treated animals after
insulin treatment, in marked contrast to reduced signaling
by insulin in saline-treated and Ad-shCT-treated groups
(Fig. 3C-H). These data demonstrate improved peripheral
insulin sensitivity after partial hepatic PEPCK-C knock-
down in the db/db mouse model.
Gluconeogenesis and HGO. HGO, determined by the
flux from pyruvate to glucose in vivo, was reduced in
Ad-shPck1-treated animals (Fig. 4A). Moreover, liver gly-
cogen was significantly reduced in Ad-shPckl-treated
animals on fasting (Table 1), consistent with decreased
hepatic glucose production capacity

Glucose-6-phosphatase catalyzes the last step in the

gluconeogenic and glycogenolysis pathways, and is, there-
fore, responsible for regulating HGO. The mRNA of this
enzyme (encoded by G6pc) was significantly reduced at
levels comparable with those observed for PEPCK-C (en-
coded by Pckl). Glucose-6-phosphatase and PEPCK-C are
regulated by transcription factors like hepatocyte nuclear
factor-4a (HNF-4a) (encoded by Hnf4a) and FOXOI,
which are co-activated by PGC-1a (encoded by Ppargcl ).
PGC-1a mRNA was slightly reduced in PEPCK-C-silenced
animals (Fig. 4B), although PGC-la protein in nuclear
extracts was constant (Fig. 4C and D). HNF-4« is down-
regulated, albeit nonsignificantly, in treated animals. In
addition, FOXO1 phosphorylation at Ser®®® increased in
liver of Ad-shPcki-treated animals (Fig. 4F and F). These
data suggest that insulin signaling through AKT-dependent
FOXO1 phosphorylation contributes to the observed re-
duction in steady-state mRNA levels for gluconeogenic
genes such as G6pc and Pckl.
Lipid homeostasis. To investigate the effects of liver-
specific PEPCK-C knockdown on lipid metabolism, sev-
eral blood and liver parameters were analyzed. Serum
triglycerides were pronouncedly reduced both in fed and
fasted animals after PEPCK-C silencing in the liver, ac-
companied by decreased serum free fatty acids (FFAs)
and increased B-hydroxybutyrate. Furthermore, a net in-
crease in total serum cholesterol with a concomitant
increase in HDL cholesterol was found (Table 1).

Lipid accumulation in the liver is a characteristic of the
diabetes phenotype in db/db mice. Oil-red staining demon-
strated both micro- and macrovesicular lipid droplets in
Ad-shCT-treated livers, which are more profuse in Ad-
shPck1 group, especially in periportal compared with
perivenous hepatocytes (Fig. bA). Consistently, we ob-
served a moderate increase in hepatic triacylglycerol
(TAG) and a 3.5-fold increase in liver fatty acid content
after PEPCK-C silencing (Fig. 5B). Meanwhile, the level of
FAS mRNA was unaltered, whereas SREBP1-c and liver X
receptor-a decreased ~25% (Fig. 5C). Correspondingly,
the precursor (p125) and active form (p68) of SREBP1-c
were reduced, whereas FAS protein content was un-
changed (Fig. 5D and E). Moreover, mRNA and protein
levels from glycolytic and lipogenic enzymes, such as
glucokinase (Gck), 1-PK, or malic enzyme (Modl), were
unaltered or significantly reduced (Fig. 5C-E). ChREBP,
which plays an important role in regulating glycolytic
(1-PK) and lipogenic (ACC and FAS) genes, was unaltered
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(Fig. 5C-FE), which supports the absence of de novo
lipogenesis in livers of Ad-shPckl-treated mice.

Malonyl-CoA is an important contributor to the oppos-
ing regulation of fatty acid B-oxidation and fatty acid
synthesis through its dual function as allosteric inhibitor
of CPT-1 and FAS substrate (16). Although a significant
increase of malonyl-CoA content in liver was found (Table
2), ACC, the enzyme responsible for its synthesis, was not
stimulated because the ratio of ACC-P to ACC was un-
changed in the liver of PEPCK-C-silenced mice (Fig. 5F).
These data further support the view that PEPCK-C silenc-
ing in the liver of db/db mice does not induce net de novo
lipogenesis.

Interestingly, despite liver lipidosis (Fig. 5A and B),

hepatic and peripheral insulin signaling was improved in
PEPCK-C-silenced animals (Fig. 3). PKCe plays a critical
role in mediating fat-induced hepatic insulin resistance
(17). No activation of PKCe was observed after partial
PEPCK-C knockdown in db/db livers (Fig. 5G and H),
suggesting that lipid accumulation is dissociated from
insulin resistance induction in our model.
Modulation of energy metabolism. Because impairment
of the tricarboxylic acid (TCA) cycle and mitochondrial
function are hallmarks of liver-specific PEPCK-C knockout
mice (6,8,9), we evaluated several parameters of mito-
chondrial function, including B-oxidation. The rate-limit-
ing step in B-oxidation is the transport of acyl-CoA into the
mitochondria catalyzed by the CPT-1 shuttle, whose
mRNA content was slightly reduced (Fig. 6B). Consis-
tently, the mRNA for PGC-1a, a key player in the regula-
tion of both B-oxidation and gluconeogenic pathways, was
lowered after treatment (Fig. 4B). In contrast, a slight
increase in serum ketones in both fed and fasted animals
(Table 1), together with unchanged levels of HMG-CoA
synthase mRNA (Fig. 6B) and a significant increase in
propionyl-CoA, an odd chain B-oxidation intermediate
(Table 2), suggests that B-oxidation was not markedly
affected.

The mitochondrial respiration rate, determined in freshly
isolated hepatocytes in the presence of octanoate, was
unaffected by treatment with Ad-shPcki1. Moreover, the
maximum mitochondrial respiration capacity (uncoupler
carbonyl cyanide p-trifluoromethoxyphenyl-hydrazone
[FCCP)) (Fig. 6A4) and the content of the inner mitochon-
drial membrane ADP transporter VDAC (Fig. 6C), a marker
of the amount of respiratory chains and hence mitochon-
drial content, were unchanged, suggesting that partial
PEPCK-C knockdown does not impair the TCA cycle and
does not negatively affect mitochondrial biogenesis or
limit mitochondrial oxidative capacity in excess of medi-
um-chain fatty acid substrate. Consistently, no accumula-
tion of TCA intermediates, like acetyl-CoA and succinyl-
CoA, was observed (Table 2). Additionally, the expression
profile of cytosolic (decreased) and mitochondrial (unal-
tered) superoxide dismutases (SODs) is compatible with
increased peroxisomal oxidation activity (18) (Fig. 6D).
The ratios estimated from respirometry data (respiratory
control ratio [RCR], uncoupling control ratio [UCR], and
phosphorylation RCR [RCRP]) were unaltered after Ad-
shPck1 treatment (Fig. 6A). In agreement with UCR index,
the level of expression from the gene encoding the uncou-
pling protein two (Ucp?2) was unchanged, suggesting that
mitochondrial respiration was not uncoupled (Fig. 6B).

It is widely accepted that gluconeogenesis is dependent
on fatty acid oxidation as an energy source. An imbalance
between these two pathways would, theoretically, alter
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FIG. 4. Coordinated downregulation of gluconeogenic genes and decreased hepatic glucose production capacity after hepatic PEPCK-C silencing.
A: HGO was evaluated in vivo by assaying the glucose production from pyruvate as described in RESEARCH DESIGN AND METHODS. Hepatic
PEPCK-C-silenced group reflected a significant reduction in glucose production capacity after a pyruvate bolus injection. Two-way ANOVA was
used to discriminate treatment efficiency. Data are means + SE. Ad-shCT, O, n = 9; Ad-shPckl,n = 9, A; *P < 0.05. B: Expression of significant
genes involved in gluconeogenesis (G6pc, Hnf-4a, and Ppargcla) was examined 2 weeks after treatment with Ad-shCT (n = 10; B) or Ad-shPckl1
(n = 11;[]) in fed animals. Gene expression was quantified using quantitative RT-PCR in an Applied Biosystems 7900HT Micro Fluidic Card. Data
analysis was performed using the AACt method and 3-2-microglobulin as housekeeping gene. Each value represents the mean relative amount of
mRNA with respect to that in the control experimental treatment. Student’s ¢ test was used to determine statistical differences between
treatments. *P < 0.05, Student’s t test. C: Western blot immunodetection of PCG-1a in hepatic nuclear extracts obtained from fed mice 14 days
after treatment. Representative blots are shown. D: Densitomentric quantification of PGC-1a protein content in blots shown in C are represented
as PGC-1a content relative to y-tubulin, which was used to normalize protein charge. Data are means * SE, n = 6. E: Phosphorylation level of
FOXO1 at the Ser?*® residue was analyzed by Western blot in total homogenates of livers from fed mice 14 days after treatment. Total FOXO1
content was used to normalize phosphorylation level. F: Densitometric quantification of blots represented in E. Phosphorylation level is
represented as FOXO1-to—phospho-FOXO01 Ser?®® ratio relative to control group. M, Ad-shCT; [ ], Ad-shPckl group. n = 10, *P < 0.05, Student’s
t test.

DISCUSSION

The natural tropism of adenovirus for the liver was used to
obtain efficient, organ-specific delivery of a shRNA-
producing expression vector against PEPCK-C. Infection
of db/db mice with adenovirus-directed shRNA allowed
inhibition of PEPCK-C specifically in the liver, with unal-
tered levels in kidney and WAT, where PEPCK-C has
important roles in gluconeogenesis from glutamine and
glyceroneogenesis, respectively (3).

Inmunostaining experiments show a PEPCK-C gradient
across the porto-central axis of the liver acinus (21).
Silencing efficiency was higher in the perivenous portion
of the acinus (Fig. 1C), where PEPCK-C levels are lower.

cellular energy charge (CEC), unless a corresponding
energy producing or consuming pathway compensates for
such disequilibrium. Our data show an apparent reduction
in gluconeogenesis while B-oxidation is maintained. Con-
sistently, CEC was greatly increased because of a 25%
reduction of AMP and a 50% increment in ATP content
(Table 2). As a result, the master-switch energy sensor
AMPK (19), which is activated by decreasing energy
charge, was not stimulated, as determined by the ratio of
phosphorylated versus total AMPK (Fig. 6E), and ACC, a
target for AMPK, was not inhibited by phosphorylation
(Fig. bD).

The work of Rodgers et al. (20) sheds some light on the
regulation of gluconeogenesis in response to nutrients and

changes in redox potential mediated by Sirtl, a NAD*-
dependent deacetylase involved in PGC-la activation.
Therefore, we evaluated the levels of Sirtl to investigate
whether the pathway could be responsible for the coordi-
nated reduction in gluconeogenic enzymes and regulatory
factors. A reduction of ~50% (100 = 9.16 vs. 47.03 = 10.19;
n = T7; P < 0.001; Student’s ¢ test) in the levels of Sirtl
protein in the liver was observed (Fig. 6F-G).

DIABETES, VOL. 57, AUGUST 2008

Although similar silencing pattern and efficiency (~50%)
was obtained in our previous study on type 1 diabetes (12)
using a hydrodynamic gene transfer technique, the present
report demonstrates that the use of adenovirus can result
in an absolute higher silencing efficiency (Supplementary
Fig. 1, which is detailed in an online appendix [available at
http://dx.doi.org/10.2337/db07-1087]) and longer lasting ef-
fects (up to 2 weeks), which allowed us to evaluate the
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FIG. 5. Effect of hepatic PEPCK-C partial silencing on hepatic lipid homeostasis. A: Livers from fed mice 14 days after treatment were fixed in
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periportal (PP) and perivenous (PV) zones are shown with a X200 magnification. Representative pictures from three independent experiments
are shown. B: Triglyceride and fatty acid content in fed livers from unspecific ShRNA (Ad-shCT; l; n = 14) or PEPCK-C-targeted (Ad-shPck1;[];
n = 16) treatment. Data are means * SE; *P < 0.05, **P < 0.01. C: Expression of significant genes involved in glycolysis and lipogenesis (fasn,
srebf1, chrebp, modl, gck, and Ixr-a) was examined. Livers were obtained in fed state 14 days after infection with Ad-shCT (n = 10; H) or
Ad-shPckl1 (n = 11; []). Gene expression was quantified by quantitative RT-PCR using Applied Biosystems 7900HT Micro Fluidic Card, and data
were analyzed using the AACt method and B-2-microglobulin as housekeeping gene. Each value represents the mean relative amount of mRNA
with respect to that in the control experimental treatment. *P < 0.05, **P < (.01, Student’s ¢ test. D: Protein levels of glycolytic and lipogenic
enzymes and transcription factors in livers from fed animals 14 days after treatment were analyzed by Western blot from total liver extracts.
Blots are representative of three independent experiments. E: Densitometric quantification of blots represented in D and F. Data are means *
SE, n = 5-19; *P < 0.05, **P < 0.01, Student’s ¢ test. W, Ad-shCT group; [], Ad-shPck1 group. F: Western blot analysis of ACC protein content and
phosphorylation levels (ACC-P Ser®) in fed livers from Ad-shCT and Ad-shPckl groups. Blots were normalized with y-tubulin. Representative

2206 DIABETES, VOL. 57, AUGUST 2008



A.G. GOMEZ-VALADES AND ASSOCIATES

TABLE 2
Nucleotide and short-chain acyl-CoA content in fed db/db livers
AMP ADP ATP Acetyl-CoA Propionyl-  Succinyl-CoA  Malonyl-CoA
(pmol/g) (pmol/g) (pmol/g) CEC (nmol/g) CoA (nmol/g) (nmol/g) (nmol/g)
Ad-shCT 1.056+0.06 124 +£0.08 1.02=*=0.08 047 *=0.01 140.13*1.95 48.12*+0.84 3144 = 3.12  2.079 = 0.239
Ad-shPckl 0.77 £0.11* 1.16 £0.07 147 =0.17f 0.54 = 0.02f 130.29 =247 56.68 = 1.25F 31.31 = 2.10 4.472 £ 0.932*

Data are means = SE. n = 8. *P < 0.05; 1P < 0.01 vs. control virus treatment; unpaired Student’s ¢ test. Tissue was obtained 14 days after

treatment. CEC = (ATP + 1/2 AMP)/(ATP + ADP + AMP).

metabolic impact and underlying mechanisms of knocking
down hepatic PEPCK-C in a type 2 diabetes model.

Mice with reduced PEPCK-C liver content showed a
clear improvement in glucose tolerance and fed glycemia,
comparable with the results of oral metformin treatment.
However, fasting glucose was unchanged, even though
HGO from pyruvate was clearly reduced. Compensatory
HGO from glycogenolysis, as supported by reduced he-
patic glycogen content in fasting and even in fed animals
when silencing reached 90% (Supplementary Fig. 1), could
be responsible for unchanged fasting glycemia. Accord-
ingly, fasting glycemia was significantly reduced in treated
animals when PEPCK-C was 90% silenced (Supplementary
Fig. 1).

Improved glucose tolerance and insulinemia suggest
increased peripheral insulin sensitivity. Lower insulin lev-
els could be secondary to reduced glycemia; however,
phloridzin treatment, which inhibits intestinal glucose
uptake and renal reabsorption, has been shown to reduce
glycemia with no effects on insulin sensitivity in a type 2
diabetes mouse model (22). Moreover, an ameliorated
intraperitoneal insulin tolerance test (IPITT) and higher
insulin-stimulated AKT phosphorylation in muscle and
adipose tissue strongly support the hypothesis of an
insulin-sensitizing effect. In adipose tissue, AKT phosphor-
ylation at Thr 308 was unchanged by either treatment.
However, it has been shown that insulin-stimulated glu-
cose uptake is independent of signaling through Thr**® and
closely matches Ser?™ AKT-P levels (23). The QUICKI
index was also suggestive of an overall reduction in insulin
resistance. In addition, hepatic PEPCK-C silencing im-
proves clinical symptoms of type 2 diabetes, such as
polydipsia, polyuria, and glycosuria, as revealed by meta-
bolic cage studies (data not shown). Cross talking be-
tween liver and brain through the vagal nerve (24) could
be responsible for a coordinated metabolic regulation in
peripheral tissues in response to hepatic energy metabo-
lism modulation, affecting systemic insulin sensitivity (25).

Interestingly, despite hepatic lipid accumulation, AKT
phosphorylation was also evident in the liver of PEPCK-
C—silenced mice. Hepatic lipidosis is commonly associated
with the induction of insulin resistance through incom-
pletely understood mechanisms. Recent reports have dem-
onstrated that lipid-induced hepatic insulin resistance is
not mediated by fatty acid or TAG accumulation per se
(26,27). Instead, diacylglycerol induces insulin resistance
via activation of PKCe translocation to the vicinity of
insulin receptor substrate-2 (17). In agreement with AKT
phosphorylation data, we have observed that PKCg is not

modulated by PEPCK-C silencing, reinforcing the current
view that lipid accumulation is not necessarily linked to
insulin resistance in the liver.

Dislipidemia is associated with obesity and insulin re-
sistance in type 2 diabetes (28). PEPCK-C silencing re-
sulted in reduced plasma TAG, together with an important
elevation of hepatic lipids, mainly nonsterified fatty acids.
An important but not sufficiently appreciated role for
PEPCK-C in the liver is glyceroneogenesis: the provision
of glycerol-3-phosphate to sustain fatty acid re-esterifica-
tion for triglyceride synthesis (29,30). Therefore, PEPCK-C
silencing could induce a significant reduction in fatty acid
re-esterification activity. How to reconcile a concomitant
increase in liver TAG and a reduction of TAG in plasma is
not apparent. However, elevated fatty acids in the liver
could be originated from excess import, reduced oxida-
tion, and/or increased de novo synthesis. Results pre-
sented above support that PEPCK-C-silenced livers
maintain mitochondrial function. Long- and medium-chain
fatty acid oxidation are highly regulated through PEPCK-C
import into the mitochondria at the level of CPT-1. Re-
duced CPT-1 mRNA levels in PEPCK-C—silenced animals,
together with increased malonyl-CoA content, a potent
allosteric inhibitor of CPT-1, provide indirect evidence for
a slight inhibition of fatty acid oxidation. However, this
allosteric inhibition can be overridden by fatty acid abun-
dance (31,32). Moreover, it is clear from our data that no
blockade at the level of mitochondria is responsible for the
accumulation of fatty acids because O, consumption in the
presence of octanoate, which is imported into mitochon-
dria independently of CPT-1, is unaffected in PEPCK-C—
silenced hepatocytes. Also, increased plasma ketones and
cellular propionyl-CoA is suggestive of maintained mito-
chondrial and increased peroxisomal oxidation. Actually,
after a low-dose ciprofibrate-mediated peroxisome prolif-
eration, SOD expression is modulated with a similar
pattern to that observed in our model (18).

The contribution of de novo lipogenesis to the accumu-
lation of TAG and fatty acids seen in livers of Ad-shPck1
treated mice can also be discarded. Key regulatory factors
involved in lipogenesis were either maintained (ChREBP)
or reduced (SREBPlc and LXR-a). Lipogenic enzymes
regulated by these factors (ACC and FAS) were unaltered,
suggesting a main contribution of ChREBP in gene expres-
sion regulation of these targets. Whether liver glucokinase
(GK) might be a target gene for SREBP1c-mediated induc-
tion has remained controversial (33,34). Our data revealed
no alteration on GK mRNA or protein levels, suggesting
that the LXR-o/SREBP1c axis is not directly regulating GK

blots from three independent experiments are shown. G: Liver cytosolic and membrane fraction were isolated as described in RESEARCH DESIGN AND
METHODS. Membrane and cytosol fractions (50 pg) were loaded in a 10% SDS-PAGE. PKCe protein content in each fraction was detected by
Western blot. Cellular fraction enrichment was assessed with immunodetection of membrane (EGFR) and cytosolic (L-PK) proteins. Represen-
tative blots are shown. H: Densitometric quantification of blots shown in G demonstrates unaltered membrane translocation from cytosol of
PKCe after PEPCK-C silencing. Data are means + SE, n = 6. ll, Ad-shCT; [], Ad-shPck1 group. (Please see http://dx.doi.org/10.2337/db07-1087 for

a high-quality digital representation of this figure.)
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FIG. 6. Energy homeostasis in the liver in response to PEPCK-C silencing. A:

High-resolution respirometry in isolated hepatocytes from fed mice 14 days O

after infection with Ad-shCT (M) or Ad-shPck1 ([J]) was measured in gluconeo- G

genic medium as described in RESEARCH DESIGN AND METHODS. Measurements of the

different mitochondrial chain respiratory states were as follows: Routine respi- 100 A

ration was measured in the presence of octanoate, followed by the inhibition of

ATP synthase with 1 pg/ml oligomycin, and uncoupled respiration was initiated 80 1

by the addition of 1 pmol/l1 FCCP followed by 5 pmol/l antimycin A to stop

respiration. Finally, cytochrome c oxidase (COX) activity (J.ox) was measured 60
40 A
20 A1

in the presence of 2 mmol/l ascorbate and 500 pmol/1 N,N,N’,N'-tetramethyl-p-
phenylenediamine in each sample. COX activity measurements served as inter-
nal measurement normalization. Inset: Respiratory indexes (44) were calculated
as follows: RCR, an indicator of the extent of respiration uncoupling, is the
quotient between fully uncoupled respiration (FCCP) and the respiration in the
presence of oligomycin. UCR, an estimate of the respiratory capacity reserve, is 0-
the quotient between fully uncoupled respiration (FCCP) and routine respira-

tion (octanoate). Finally, RCRP, a coefficient indicating the portion of respira-

tory capacity applied to ATP synthesis, is calculated by subtracting oligomycin respiration from routine respiration and dividing by FCCP
respiration. Data are means = SE (n = 5). *P = 0.06, Student’s ¢ test. B: Expression of significant genes involved in mitochondrial function (ucp2,
cptl, and hmgc?2) was examined in fed Ad-shCT (n = 10; B) or Ad-shPckl1 (n = 11; []) animals. Total RNA was extracted with RNAeasy mini kit
(Qiagen). cDNA synthesis was performed using Ready-To-Go You-Prime First Strand Beads (Amersham Biosciences) with random hexamers.
Gene expression was quantified by quantitative RT-PCR using Applied Biosystems 7900HT Micro Fluidic Card, and data were analyzed using the
AACt method. Gene expression was normalized using -2-microglobulin as housekeeping gene. Values represent the mean relative amount of
mRNA with respect to that in the control experimental treatment (Ad-shCT). *P < 0.05, Student’s t test. C: Mitochondrial inner membrane ADP
transporter content VDAC, detected by Western blot, was used as indicator of mitochondrial respiratory chain content. D: Cellular protein
content of the cytosolic (SOD-1) and mitochondrial (SOD-2) forms of SOD were used as indicators of cellular oxidative stress after hepatic
PEPCK-C silencing as detected by Western blot. Representative blots are shown. E: Western blot analysis of AMPK protein content and
phosphorylation levels (AMPK-P Thr'”?) in fed livers from Ad-shCT and Ad-shPckl groups. F: Sirtl protein levels in fed livers form control
(Ad-shCT) or PEPCK-C silencing adenovirus (Ad-shPck1) animals were estimated by Western blotting. All blots were normalized using y-tubulin.
Representative blots from three independent experiments are shown. G: Densitometric quantification of Sirtl protein content in fed livers
performed from blot shown in F confirms a significant reduction of the protein in Ad-shPck1 ([J) compared with Ad-shCT (H) treatment group.
Data are means = SE, n = 6; ***P < 0.001, Student’s t test.

Sirt1
(arbitrary units)
_|

in our model, in agreement with results obtained by Mitro increased CEC. Therefore, lipid accumulation in the liver

et al. (35) using a LXR-a agonist. might be multifactorial, involving increased uptake from
Fatty acid uptake and activation could instead contrib- peripheral fat stores and reduced triglyceride synthesis,

ute to the liver fat accumulation and to decreased serum VLDL assembly, and export.

TAG and FFA. FFA import and activation into the liver is Liver-specific knockout animals are euglycemic and able

an ATP-consuming step that could be sustained by the to bypass the complete absence of PEPCK-C activity in
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their livers with extrahepatic gluconeogenesis (8). Burgess
et al. (36) have presented data demonstrating a weak flux
control coefficient for gluconeogenesis in partial PEPCK-C
knockout mice, suggesting that other factors like TCA
cycle flux could contribute to gluconeogenic flux indepen-
dent of PEPCK protein content. Because PEPCK-C is not
only required for gluconeogenesis and glyceroneogenesis
but also for cataplerosis (i.e., the removal of citric acid
cycle anions), the failure of this process would result in an
impairment in the TCA cycle and mitochondrial function
in the liver, leading to decreased B-oxidation and oxygen
consumption, together with a complete derangement in
energy metabolism (6,8,9,36). Data presented in this manu-
script, together with our previous study in streptozotocin-
induced diabetic animals (12), demonstrate that a 50%
reduction of PEPCK expression results in reduced HGO
and glycemia. In addition, mitochondrial respiration and
CPT-1-independent B-oxidation of fatty acids is not af-
fected, suggesting that TCA cycle flux was sustained as
long as intermediates (acetyl-CoA and succinyl-CoA) were
not accumulated and ketones were overproduced. The
discrepancy among the various studies might be related to
one of three factors. First, knockout mice have a complete
ablation of the PEPCK-C gene in the liver, in contrast to
the partial reduction in the enzyme described in this study.
In fact, 90% reduction in PEPCK-C protein levels in the
liver, obtained with higher adenoviral dosage (Supplemen-
tary Fig. 1), reproduce the blockade on mitochondrial
function observed in the knockout mice (36). Second,
adaptation to a lack of PEPCK-C in knockout animals as a
consequence of deletion of the gene very early during
development (37) may induce a compensatory increase in
gluconeogenesis in tissues other than the liver. In this
regard, a recent study points to a disparity between results
obtained from a liver Ppar-a knockout mouse and a
short-term knockdown model using chemically modified
siRNA against Ppar-« (38). Third, studies on liver-specific
knockout mice were directed toward understanding the
physiological role of PEPCK-C in the liver. To our knowl-
edge, liver PEPCK-C knockout animals have not been
previously studied in relevant models of diabetes, such as
the one presented in this study.

The coordinated regulation of several key players in
energy homeostasis in the livers of Ad-shPckI-treated
animals is an intriguing observation. We have identified
Sirtl as a probable mediator in the response of the cell to
a partial reduction in PEPCK-C content. A nutrient signal-
ing response mediated by pyruvate induces Sirt1 protein in
liver during fasting, where it interacts with and deacety-
lates PGC-1a in an NAD"-dependent manner, increasing
PGC-1a ability to coactivate HNF-4a and, therefore, up-
regulate gluconeogenic genes, but not mitochondrial
genes (20). In addition, Sirtl-mediated deacetylation of
FOXO1 has been shown to promote its transcriptional
activity over gluconeogenic genes (39,40), suggesting an
integrated regulation by insulin and Sirtl over gluconeo-
genesis in treated animals. Moreover, Sirtl transcription is
inhibited by a NADH-mediated mechanism (41). In this
context, Sirtl seems to function as a nutrient sensor by
decoding fluctuations in cellular NADH levels. Therefore,
our observation of a substantial reduction of Sirtl identi-
fies this nutrient sensor as a potential mediator of the
coordinated downregulation of gluconeogenesis. Recent
data from Sun et al. (42) have shown that oral administra-
tion of resveratrol, an activator of Sirtl, improves glucose
homeostasis and insulin sensitivity mainly though its ac-
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tion on muscle. However, the potential for Sirtl as a
therapeutic target for diabetes in the liver is curtailed by
its role in gluconeogenesis, as recently suggested by
reduced HGO and improved glucose homeostasis and
insulin sensitivity in db/db mice after hepatic Sirtl silenc-
ing (43).

All in all, we present evidence to sustain that partial
silencing of liver PEPCK-C in db/db mice leads to im-
proved control of glycemia, insulinemia, and peripheral
sensitivity to the hormone through its coordinate inhibi-
tion of key players responsible for the activation of liver
gluconeogenesis, in the absence of a blockade at the level
of mitochondria. In addition, we show that this model
represents a departure from the view, recently challenged,
that steatosis leads to insulin resistance. Finally, our
observations join the growing body of evidence that
indicates that PEPCK-C plays a key role in the control of
hepatic energy metabolism in type 2 diabetes animals,
validating liver PEPCK-C as a target for pharmaceutical
intervention. Nonetheless, in view of the known discrep-
ancy between the large contribution of gluconeogenesis to
hepatic glucose production in small rodent models as
compared to large animals (i.e., canine, human) the suit-
ability of the approach should be further tested in a larger
animal model.
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