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OBJECTIVE—Acute activation of G protein–coupled receptor
40 (GPR40) by free fatty acids (FFAs) or synthetic GPR40
agonists enhances insulin secretion. However, it is still a matter
of debate whether activation of GPR40 would be beneficial for
the treatment of type 2 diabetes, since chronic exposure to FFAs
impairs islet function. We sought to evaluate the specific role of
GPR40 in islets and its potential as a therapeutic target using
compounds that specifically activate GPR40.

RESEARCH DESIGN AND METHODS—We developed a se-
ries of GPR40-selective small-molecule agonists and studied their
acute and chronic effects on glucose-dependent insulin secretion
(GDIS) in isolated islets, as well as effects on blood glucose
levels during intraperitoneal glucose tolerance tests in wild-type
and GPR40 knockout mice (GPR40�/�).

RESULTS—Small-molecule GPR40 agonists significantly en-
hanced GDIS in isolated islets and improved glucose tolerance in
wild-type mice but not in GPR40�/� mice. While a 72-h exposure
to FFAs in tissue culture significantly impaired GDIS in islets
from both wild-type and GPR40�/� mice, similar exposure to the
GPR40 agonist did not impair GDIS in islets from wild-type mice.
Furthermore, the GPR40 agonist enhanced insulin secretion in
perfused pancreata from neonatal streptozotocin-induced dia-
betic rats and improved glucose levels in mice with high-fat
diet–induced obesity acutely and chronically.

CONCLUSIONS—GPR40 does not mediate the chronic toxic
effects of FFAs on islet function. Pharmacological activation of
GPR40 may potentiate GDIS in humans and be beneficial for
overall glucose control in patients with type 2 diabetes.
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L
oss of glucose-dependent insulin secretion
(GDIS) from the pancreatic �-cell is responsible
for the onset and progression of type 2 diabetes
(1,2). Oral agents that stimulate insulin secretion,

such as sulfonylureas and related ATP-sensitive K� chan-
nel blockers, reduce blood glucose and have been used as
a first-line type 2 diabetes therapy for nearly 30 years (3,4).
However, these agents act to force the �-cell to secrete
insulin continuously regardless of prevailing glucose lev-
els, thereby promoting hypoglycemia and accelerating the
loss of islet function and, eventually, diminished efficacy
(5,6). Despite the availability of a range of agents for type
2 diabetes, many diabetic patients fail to achieve or to
maintain glycemic targets (7–9). In addition, stricter gly-
cemic guidelines have been proposed to help define a path
toward diabetes prevention through identifying and treat-
ing the pre-diabetes state (10). Agents that induce GDIS
have great potential to replace sulfonylureas as a first-line
therapy for the treatment of type 2 diabetes. In particular,
agents that have positive effects on arresting or even
reversing �-cell demise would represent a major therapeu-
tic advance toward addressing the lack of durability seen
with current therapies and perhaps obviate the need for
eventual insulin intervention (11–13). The recent emer-
gence of glucagon-like peptide 1–based GDIS agents (14–
16), including inhibitors of dipeptidyl peptidase-4 (17) and
peptidase-stable analogs such as exendin-4 (18), is un-
doubtedly a major advance in such a direction. Neverthe-
less, it remains to be observed whether glucagon-like
peptide 1–related agents truly exert durable beneficial
effects on �-cell mass and function.

The molecular pharmacology of lipid and lipid-like
mediators that signal through G protein–coupled recep-
tors (GPCRs) has expanded significantly over the past few
years. To date, several orphan GPCRs have been paired
with lysophospholipids, bile acids, arachidonic acid me-
tabolites, dioleoyl phosphatidic acid, and short-, medium-,
and long-chain free fatty acids (FFAs) (19–21). From these
discoveries, GPCR 40 (GPR40), GPR119, and GPR120 have
been reported to play a role in regulating GDIS and
therefore have potential as novel targets for the treatment
of type 2 diabetes (22–26). GPR40 is a Gq-coupled, family
A GPCR that is highly expressed in �-cells of human and
rodent islets. Several naturally occurring medium- to long-
chain FFAs and some thiazolidinedione peroxisome pro-
liferator–activated receptor-� agonists specifically activate
GPR40 (27,28). Activation of GPR40 by FFAs (29–32) or
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synthetic compounds (23,33) enhances insulin secretion
through the amplification of intracellular calcium signaling.

The pleiotropic effects of FFAs on the pancreatic �-cell
are well known. The fact that FFAs are in vitro ligands for
GPR40 is suggestive of the link to the wealth of existing
literature data on the acute, stimulatory effects of FFAs on
insulin release (34,35). However, FFAs also exert suppres-
sive or detrimental effects on �-cells. Lipotoxicity of
�-cells, a condition observed with chronic exposure to
high FFA levels, results in impairment in their function
and a resulting diminution in their insulin secretory capac-
ity (36,37). Currently, there is an ongoing debate on
whether GPR40 mediates the deleterious effects of FFAs
on islet function (lipotoxicity) and whether an antagonist
of GPR40 is preferable to an agonist for the treatment of
type 2 diabetes (38,39). Since FFAs can both be metabo-
lized within cells to act as intracellular signaling molecules
(35) and activate more than one receptor (20), they cannot
be used as specific and selective tools to unravel the role
that GPR40 plays in the �-cell. It is therefore necessary to
identify small molecules that specifically activate GPR40.

In the following discussion, we will detail the identifi-
cation and in vitro pharmacology of a novel series of
synthetic GPR40 agonists. Using isolated islets from wild-
type and homozygous GPR40 knockout (GPR40�/�) mice
(to confirm the on-target activity of small-molecule activa-
tors), we not only extended previous findings that acute
activation of GPR40 enhances GDIS in pancreatic �-cells
but also showed that long-term exposure to the GPR40
agonist, in contrast to FFAs, did not impair �-cell function,
thus dissociating the activation of GPR40 from �-cell
lipotoxicity. Finally, acute and subchronic dosing of the
GPR40 agonist robustly reduced the blood glucose excur-
sion during an intraperitoneal glucose tolerance test
(IPGTT) in wild-type, but not GPR40�/�, mice.

RESEARCH DESIGN AND METHODS

Generation of GPR40 stable cell lines. Human and mouse GPR40 stable
cell lines were generated in either Chinese hamster ovary (CHO) cells, stably
expressing nuclear factor of activated T-cells �-lactamase (NFAT BLA), or
human embryonic kidney (HEK) 293 cells. The expression plasmids were
transfected using lipofectamine (Invitrogen), following the manufacturer’s
instructions. Stable cell lines were generated following the appropriate drug
selection.
Fluorometric imaging plate reader–based intracellular calcium assay.

GPR40/CHO NFAT BLA cells were seeded into black-wall clear-bottom
384-well plates (Costar) 1 day before the assay. The cells were incubated with
20 �l/well of Hanks’ buffered salt solution buffer with 0.1% BSA, 2.5 mmol/l
probenecid, and 8 �mol/l Fluo-4-AM at room temperature for 100 min.
Compounds were dissolved in DMSO and diluted to desired concentrations
with assay buffer and added to the cells as 5� solution (13.3 �l/well).
Fluorescence output was measured using a fluorometric imaging plate readerII

(FLIPRII) (Molecular Devices) 10 s before compound addition.
Measurement of inositol 1,4,5-triphosphate production. Human GPR40-
HEK293 stable cells were plated at 16,000 cells/well on 96-well poly-D-lysine–
coated plates and cultured for 72 h in Dulbecco’s modified Eagle’s medium (25
mmol/l glucose) with 10% fetal bovine serum, 25 mmol/l HEPES, and a
selection of antibiotics. Cells were then washed with Hanks’ buffered salt
solution buffer and further incubated for 18 h in 150 �l 3H-inositol labeling
media (inositol- and serum-free Dulbecco’s modified Eagle’s medium), to
which 3H-myo-inositol (NEN/PerkinElmer, Waltham, MA) was added to a final
specific radioactivity of 1 �Ci/150 �l. Agonist titrations have typically been
performed by half-log dilutions run in duplicate in 11-point curves. The plates
were counted in the MicroBeta instrument (PerkinElmer).
Isolation of pancreatic islets and the static GDIS assay. Pancreatic islets
of Langerhans were isolated from wild-type and GPR40�/� mice (littermates)
by collagenase digestion and discontinous Ficoll gradient separation (40). The
islets were cultured overnight in RPMI-1640 medium with 11 mmol/l glucose
to facilitate recovery from the isolation process. Insulin secretion was
determined by a 1-h static incubation in Krebs-Ringer bicarbonate (KRB)

buffer in a 96-well format as previously described (41). Briefly, islets were first
preincubated in KRB medium with 2 mmol/l glucose for 30 min and were then
transferred to a 96-well plate (one islet/well) and incubated with 200 �l of the
KRB medium with 2 or 16 mmol/l glucose in the presence or absence of oleate,
palmitate, or testing compounds for 60 min. The buffer was removed from the
wells at the end of the incubation and assayed for insulin levels using the
Ultrasensitive Rat Insulin ELISA kit (ALPCO, Salem, NH).
Chronic treatment of islets and GDIS. Islets, isolated from wild-type and
GPR40�/� mice (littermates), were cultured in RPMI-1640 medium (11 mmol/l
glucose and 10% FCS) with vehicle or 125 �mol/l FFAs (a 1:1 mixture of
oleate:palmitate), as described previously (42), or a 5 �mol/l GPR40 small-
molecule agonist for 3 days. The FFAs were added directly to the culture
medium from 100� stock solutions in distilled water (for oleate) or 95%
ethanol (for palmitate). After the 3-day exposure to oleate, palmitate, or
GPR40 small-molecule agonist, insulin secretion was determined by the 1-h
static incubation in KRB buffer with either 2 or 16 mmol/l glucose following a
30-min preincubation in the KRB buffer with 2 mmol/l glucose, as described
above for the acute GDIS assay.
Islet perifusion. For islet perifusion, batches of 25 islets each were perifused
in parallel microchambers (Biovail International, Minneapolis, MN) with
oxygenated KRB medium with 2 or 16 mmol/l glucose at a rate of 0.8 ml/min,
and the fractions of the perfusate were collected once per minute for insulin
measurement (43). Insulin concentration in aliquots of the incubation or
perifusion buffers was measured by the Ultrasensitive Rat Insulin EIA kit from
ALPCO Diagnostics (Windham, NH).
The neonatal streptozotocin-induced diabetes rat model and pancreas

perfusion. Timed pregnant Wistar rats were purchased from Charles River
Laboratories. Pups were dosed with vehicle (0.5 mol/l citrate, pH 4.5) or 100
mg/kg i.p. streptozotocin (STZ) (Sigma-Aldrich) 48 h after birth. At 3 weeks of
age, male pups were separated and housed, two per cage. Food and water
were given ad libitum, and rats were maintained on a 12-h light-dark cycle.
Perfusions were performed when rats were 8 weeks old, as described
previously (44). For each surgery, rats were sedated with nembutal anesthesia
(100 mg/kg i.p.). The peritoneal cavity was then opened, and the celiac artery
was ligated dorsally. A 27-g cannula was inserted into the celiac artery for
perfusant afflux, and another cannula was inserted in the portal vein for
perfusant efflux. Immediately following surgery, rats were placed into a 37°C
humidified whole-body perfusion chamber and perfused at 3 ml/min with a
modified KRB buffer (O2 saturated; 37°C). Perfusant buffer contained 2 or 16
mmol/l glucose supplemented with vehicle (DMSO), 10 �mol/l compound B,
or 30 mmol/l L-arginine. Perfusant (�90% recovery) was collected in 1-min
intervals and stored frozen at �70°C until analysis. Insulin was determined
using a rat-specific insulin radioimmunoassay kit (Millipore, Billerica, MA). All
procedures were approved by the Merck Rahway Institutional Animal Care
and Use Committee.
IPGTT. Male GPR40�/� and littermate wild-type C57BL/6N mice (7–11 weeks
of age) from Taconic Farms (Germantown, NY) were housed 10 per cage and
fed with rodent diet (Teklad 7012) and water ad libitum. On the morning of
study, mice (n � 5–7 per group) were fasted for 5–6 h. Animals were then
treated orally with vehicle (10 ml/kg 0.25% methylcellulose), Cpd-B, or Cpd-C
60 min before the IPGTT (2 g/kg i.p. dextrose). Blood glucose levels were
determined from tail bleeds taken at �60, 0, 20, 40, and 60 min after dextrose
challenge. The blood glucose excursion profile from t � 0–60 min was used
to integrate an area under the curve (AUC) for each treatment. Percent
inhibition values for each treatment were generated from the AUC data after
the subtraction of the AUC of the vehicle and water group, which received
vehicle at �60 min and water at 0 min. Concentrations of test compound in
mouse plasma were determined by liquid chromatography/tandem mass
spectrometry in blood samples collected at 60 min of the IPGTT (2 h after
dosing).
Chronic treatment of established diet-induced obesity mice with

GPR40 agonist. C57BL/6N mice (Taconic Farms) were switched to a high-fat
diet (60% kcal, R4129; Research Diet) at the age of 6 weeks, which was
continued through out the study. Cpd-A was given to the established diet–
induced obesity (eDIO) mice at age 20 weeks (14 weeks on the high-fat diet)
at 10 mg/kg (oral gavage, once a day) for 10 days. On day 10 of the treatment,
an IPGTT was performed as described above.
Calculations and statistics. All data are expressed as means 	 SE.
Statistical analysis was conducted by using either single-factor ANOVA or
Student’s t test, as appropriate. Statistical significance was defined as P 

0.05.

RESULTS

Identification of small-molecule GPR40 agonists. The
intracellular signal transduction pathway of GPR40 pro-

GPR40 AGONIST REDUCES BLOOD GLUCOSE IN MICE
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ceeds through the activation of the Gq class of G� proteins
with subsequent phospholipase C activation, generation of
inositol 1,4,5-triphosphate (IP3), and intracellular Ca2�

release. We confirmed that multiple medium- and long-
chain FFAs activated human and mouse GPR40 expressed
in CHO cells (Fig. 1A and B), whereas the short-chain
FFAs (propionic, butyric, and pentanoic acid) had minimal
activation against the mouse and human receptors. There
also appeared to be a general increase in potency across
the saturated fatty acids with increasing chain length from
hexanoic acid (C6:0) to lauric acid (C12:0), as reported
previously. A good correlation of potency was observed
between human and mouse GPR40 by those fatty acids.

Kotarsky et al. (27) first showed that some thiazo-
lidinedione ligands of the peroxisome proliferator–acti-
vated receptor-� also activate GPR40. We thus screened
�2,000 thiazolidinedione compounds from the Merck
compound collection using the FLIPR assay in human
GPR40-CHO stable cells and identified a partial agonist
(relative to oleate) for GPR40 with an EC50 of 1,585 nmol/l
(Fig. 1C, Cpd-A). This compound was inactive in binding
assays (at concentrations up to 10 �mol/l) against human
peroxisome proliferator–activated receptor-�, -�, and -�
isoforms. Subsequent lead optimization (L. Yang, unpub-
lished data) significantly improved the properties of Cpd-A
and resulted in a series of specific and high-affinity GPR40
agonists exemplified by Cpd-B and Cpd-C. As shown in
Fig. 1C and D, Cpd-B and Cpd-C elicited a dose-dependent

increase in calcium mobilization (as detected by FLIPR
assays) and IP3 accumulation in GPR40 stable cell lines.
Cpd-B (and its des-methyl analog Cpd-C) is a full agonist at
both the human and mouse GPR40 receptors, with EC50s
ranging from 15 to 300 nmol/l. In general, a good correla-
tion was observed between both assays with respect to the
rank order of potency for a variety of analogs.
Acute effects of FFAs and GPR40 agonist on GDIS in
islets from wild-type and GPR40�/� mice. Small-
molecule agonists of GPR40 have been shown by others
(23,33) to enhance GDIS in insulinoma cell lines, but it has
yet to be established that activation of GPR40 with syn-
thetic agonists would enhance GDIS in primary islets. We
thus examined the acute effects of FFAs and GPR40
agonists (Cpd-B and Cpd-C) on GDIS in islets from
GPR40�/� and wild-type mice in both 1-h static incuba-
tions (Fig. 2A and B) and in islet perifusion experiments
(Fig. 2C). Insulin secretory responses to glucose were
comparable in wild-type and GPR40�/� islets in the static
incubation assay. Fatty acid treatment (200 �mol/l oleate
or palmitate) significantly promoted glucose-dependent
insulin secretion in wild-type islets (oleate 1.9 	 0.4-fold,
palmitate 2.4 	 0.3-fold; n � 6; P 
 0.01 for both) but not
in the GPR40�/� islets (oleate 1.2 	 0.3-fold, palmitate
1.8 	 0.5-fold; n � 6; P 
 0.05 for both). Likewise, the two
small-molecule GPR40 agonists, when tested at 10 �mol/l,
significantly augmented GDIS in wild-type islets but were
totally inactive in the GPR40�/� islets (Fig. 2A). The
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FIG. 1. Activation of human and mouse GPR40 by fatty acids and small-molecule agonists. Representative dose responses of various fatty acids
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effects of Cpd-B on GDIS in wild-type islets were concen-
tration dependent, and a maximal effect was reached at 5
�mol/l (Fig. 2B).

The glucose dependency of GPR40-mediated insulin
secretion was also examined in the islet perifusion system.
Islets from wild-type mice were sequentially stimulated by
2, 6, 8, and 16 mmol/l glucose together with Cpd-B, and
insulin responses to those conditions were monitored at
1-min intervals. As shown in Fig. 2C, Cpd-B significantly
enhanced insulin secretion triggered by 16 mmol/l glucose
but not 6 and 8 mmol/l glucose. The AUC of insulin
secretion in the presence of Cpd-B was significantly
greater than that stimulated by glucose alone (32 	 0.1 vs.
19 	 1.2 ng/25 islet � 10 min; n � 3; P 
 0.01).
Chronic effects of FFAs and GPR40 agonist in iso-
lated islets from wild-type and GPR40�/� mice. To
investigate the effects of long-term activation of GPR40 by
FFAs or GPR40-selective agonists on islet function, islets
were isolated from the GPR40�/� and wild-type littermates
and cultured for 72 h with or without FFAs (a 1:1 mixture
of palmitate and oleate at a total final concentration of 125
�mol/l) or Cpd-B (5 �mol/l). Insulin secretion was mea-
sured in 1-h static incubation assays after the 3-day culture
period. There was no difference in glucose- or KCl-stimu-
lated insulin secretion between GPR40�/� and wild-type
islets cultured in normal medium. As previously reported
(38), the 3-day exposure to FFAs equally and significantly
inhibited GDIS in wild-type and GPR40�/� islets (Fig. 3A).
In addition, insulin secretion in response to membrane
depolarization caused by 30 mmol/l KCl and islet insulin
content were also diminished identically by the 3-day FFA
treatment in islets from wild-type and GPR40�/� animals
(Fig. 3A and B). In contrast, chronic treatment of islets
(wild-type and knockout) with Cpd-B did not have any
effect on GDIS, indicating that the GPR40 agonism,
whether evoked with FFAs or structurally distinct small
molecules, is not involved in the impairment of insulin
secretion seen with chronic fatty acid treatment. The 3-day
continuous exposure to Cpd-B apparently did not cause
desensitization of the �-cells to GPR40 activation, as GDIS
could be enhanced equally well when fresh compound was
added to the islets that had been treated for 3 days by the
compounds (data not shown).
Effects of a GPR40 agonist on insulin secretion from
the in situ pancreas perifusion of the neonatal STZ
(nSTZ)-induced diabetic rat. To begin to explore the
potential of GPR40 agonism for the treatment of type 2
diabetes, we tested the efficacy of GPR40 agonists on ex
vivo GDIS from the perfused pancreata of nSTZ-induced
diabetic rats (44,45). Compared with isolated islets, this
model is an attractive way to study insulin secretion
dynamics in situ, as it provides improved resolution and
fidelity that approaches the native setting. As shown in Fig.
4A, the pancreata from vehicle (sham) rats exhibited
identical biphasic insulin secretory responses to both
glucose (16 mmol/l) pulses, which were totally lost in
pancreata from the nSTZ-induced diabetic rats. When
present in the perfusate at 10 �mol/l during the glucose (16
mmol/l) stimulation phase, Cpd-B induced a pronounced
enhancement of insulin secretion when compared with
vehicle-treated pancreata (AUCinsulin: 249 	 67 vs. 29 	 6
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wild-type islets (with DMSO added as vehicle). B: Effects of increasing
concentrations of Cpd-B on insulin response at 16 mmol/l glucose in
wild-type islets measured by the static incubation assay. Data are
means � SE of three experiments. *P < 0.05 compared with vehicle
(DMSO) control. C: Glucose dependency of GPR40-mediated insulin
secretion in mice islets. Batches of islets from C57BL/6 mice were
perifused with KRB medium containing 2, 6, and 8 mmol/l glucose

for 10 min each sequentially (with 10 min washout by 2 mmol/l glucose
in between). Insulin released during those stimulation was measured
once per minute. Data are means � SE of three independent experi-
ments. *P < 0.05 compared with 16 mmol/l glucose alone.
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ng/20 min with glucose alone; n � 4; P 
 0.01). The
restoration of insulin secretion by Cpd-B mainly occurred
in the first phase of �-cell responses. Cpd-B also enhanced
insulin secretion stimulated by 30 mmol/l arginine at the
end of the perifusion experiment.
Effect of GPR40 agonist on IPGTT glucose levels in
wild-type and GPR40�/� mice. To extend the above
results to an in vivo setting, we tested the effects of our
small-molecule GPR40 agonists on glucose excursion dur-
ing IPGTT in normal lean mice. Cpd-C was selected for
this experiment based on pharmacokinetic consider-
ations. Cpd-C possesses excellent oral bioavailability
(�100%), a plasma half-life of 8 h, time to reach
maximum concentration (Tmax) of 3 h, and maximum
concentration (Cmax) of 1.4 �mol/l, following a 2 mg/kg
oral dose (data not shown). The oral administration of
Cpd-C, 1 h before the dextrose challenge in the IPGTT,
significantly reduced blood glucose excursion in a dose-
dependent manner from 3 to 100 mg/kg, with maximum
efficacy (73% inhibition of AUCglucose) achieved at �30
mg/kg and a corresponding plasma concentration of 37

�mol/l measured 2 h postdose (Fig. 5A). The glucagon-
like peptide 1 mimetic exendin-4 was included as a
positive control, and it completely prevented any glu-
cose excursion at a concentration of 0.0025 mg/kg.

To demonstrate that the observed Cpd-C–induced glu-
cose lowering was GPR40 dependent, the effects of the
ligand on blood glucose excursion during an IPGTT were
investigated again in a cohort of GPR40�/� mice and
littermate wild-type mice. The administration of 30 mg/kg
Cpd-C again resulted in a significant suppression of
AUCglucose during IPGTT in the wild-type mice. In contrast,
the same dose of the compound exerted no inhibition of
blood glucose excursion in the GPR40�/� mice (Fig. 5B).
The above findings demonstrated that robust glucose
lowering in normal wild-type mice by Cpd-C is mediated
by GPR40.
Effect of acute and chronic treatment with GPR40
agonist on IPGTT glucose levels in eDIO mice. To
further evaluate the potential of GPR40 activation for
treatment of type 2 diabetes, we studied the effect of
GPR40 agonist (Cpd-B) on IPGTT glucose levels in high-fat
diet–induced obese (eDIO) mice both acutely and sub-
chronically. We induced eDIO in C57BL/6 mice with a 60%
high-fat diet for 14 weeks (started at age 6 weeks). The
effects of Cpd-B (10 mg/kg, oral gavage) on IPGTT glucose
were tested before and after 10 days of continuous dosing
(10 mg/kg, daily). The eDIO mice weighed significantly
heavier (42 	 0.6 vs. 28 	 0.4 g; n � 8; P 
 0.001) and
manifested impaired glucose tolerance compared with
mice on regular diet (AUCglucose: 18,311 	 272 vs. 13,540 	
326 mg � dl�1 � 60 min�1; n � 8; P 
 0.001). Acute treatment
of the eDIO mice with Cpd-B (10 mg/kg) significantly
reduced IPGTT glucose levels by �50% (Fig. 6A). The
glucose-lowering efficacy of Cpd-B was well maintained
after a subchronic dosing. As measured by the IPGTT
performed on the last day of compound treatment (Fig.
6B), 10 mg/kg Cpd-B reduced glucose excursion by 70%,
similar to the acute efficacy achieved in these mice before
the initiation of the 10-day dosing period. Although we did
not measure food intake in this study, the chronic efficacy
does not appear to be attributable to any changes in food
intake and body weight of the mice. There were no
differences in body weight between vehicle- and Cpd-B–
treated mice either before (42 	 0.6 g for the vehicle vs.
41 	 0.7 g for the Cpd-B group; n � 8; P 
 0.05) or after
(44 	 0.8 g for the vehicle vs. 45 	 0.8 g for the Cpd-B
group; n � 8; P 
 0.05) the chronic treatment.

To determine whether acute dosing of GPR40 agonist
promotes in vivo insulin secretion in mice, we performed
a slightly modified IPGTT experiment using mice that had
been fed with the 60% high-fat diet for 4 weeks. In that
cohort of high-fat diet–fed mice, Cpd-B (30 mg/kg, admin-
istrated orally 60 min before glucose challenge) did not
affect the basal insulin levels at 0 min (1.72 	 0.5 vs.
1.26 	 0.2 ng/ml) but significantly enhanced insulin
responses at 5 min during an IPGTT relative to vehicle
control (3.8 	 0.4 vs. 2.4 	 0.4 ng/ml; n � 8; P 
 0.02).

DISCUSSION

GPR40 is a Gq-coupled family A GPCR specifically ex-
pressed in the pancreatic �-cell (46,47). The discovery of
its activation by medium- and long-chain FFAs has
sparked considerable interest in and experimentation on
this receptor, from basic research to potential drug dis-
covery efforts. Nevertheless, there are still several impor-
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FIG. 3. Effects of a 3-day exposure to FFAs or Cpd-B on insulin
secretion and insulin content in islets from wild-type (WT) and
GPR40�/� mice. Islets from the wild-type and GPR40�/� mice were
cultured for 3 days with or without fatty acids (65 �mol/l of palmitate
� 65 �mol/l of oleate) or Cpd-B (5 �mol/l). Insulin secretion (A) was
measured by the static insulin secretion assay in KRB medium with no
FFAs or Cpd-B present. Similarly treated islets were also used for islet
insulin measurement following acid ethanol extraction (B). Data are
means � SE of three separate experiments. *P < 0.05 when compared
with vehicle (veh) control.
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tant questions that remain to be answered. How much
does GPR40 contribute to the acute (stimulatory) and
chronic (inhibitory) effects of FFAs on islet function?
What will be the consequences of acute and chronic
activation of GRP40 with a pharmacophore on islet func-
tion and beyond? Can agonists of GPR40 stimulate suffi-
cient GDIS to result in the reduction of blood glucose in
normal and diabetic animals? We set out to address some

of these questions in this study using potent selective
agonists of the receptor in conjunction with GPR40 knock-
out mice.

GPR40 has been previously shown to mediate part of the
enhancement of GDIS by FFAs (i.e., the acute effect of
FFAs on insulin secretion) (22,23,29–33,38) but not the
chronic toxic effects of FFAs in islets (38). The results
from this study are largely consistent with those findings.
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Our data indicate that both oleate and palmitate lost the
majority of their actions on GDIS in GPR40-depleted islets,
thus suggesting that GPR40 is a major, if not the sole,
mediator of the acute stimulatory action of FFAs on GDIS
(no attempt was made to calibrate precisely their EC50 and
maximal activity on insulin secretion). The residual effects
of FFAs observed in the GPR40�/� islets could be medi-
ated by the intracellular metabolism/oxidation of FFAs
(35) or by additional cell surface receptors such as
GPR120 (23).

The potential role of GPR40 in mediating the chronic

inhibitory effects of FFAs on islet function is also a matter of
debate. Overexpression of GPR40 selectively in pancreatic
�-cells caused dramatic disintegration of the islets and severe
hyperglycemia in an insulin promoter factor 1–GPR40 trans-
genic line (39). On the other hand, islets from the GPR40
knockout mice appear to be as vulnerable as wild-type islets
to the detrimental effects from FFAs in vitro (38). Our study
has provided additional support for the latter observation,
namely, that GPR40 does not mediate �-cell lipotoxicity.
Similar to what was shown by Latour et al. (38), we found
that 3 days of exposure to FFAs caused comparable inhibi-
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tion of GDIS in wild-type and GPR40�/� islets. In addition,
we observed significant and identical reductions in islet
insulin content in wild-type and GPR40�/� islets, an impor-
tant feature of the chronic inhibitory effects exerted by FFAs
in �-cells (42). We thus conclude that GPR40 is not respon-
sible for lipotoxicity in �-cells exposed to elevated FFAs in
vitro or in vivo.

Small-molecule agonists of GPR40 have recently been
reported by at least two groups (23,33). Yet, to the best of
our knowledge, the utility of such agents for potentiating
GDIS as a novel therapy of type 2 diabetes has yet to be
disclosed. Accordingly, we studied the effects of a novel
GPR40 agonist discovered in our laboratories upon GDIS
in several experimental paradigms. First, we showed that
the GPR40 agonist enhanced GDIS in mouse islets using
both static incubation and islet perifusion methods; the
effects were dependent on the presence of GPR40. Second,
we demonstrated that the action of our GPR40 agonist was
strictly glucose dependent. Third, we found that the
GPR40 agonist restored GDIS (at least the first phase) in
pancreatic �-cells from the nSTZ rat, a diabetes model that
possesses three key traits similar to those seen in the
human disease: sustained hyperglycemia, a substantial
reduction in �-cell mass (
90% reduction in pancreatic
insulin content), and impaired GDIS in the residual �-cell
population (44,45). The significant restoration of GDIS
(particularly the first phase of insulin secretion) in this
model by Cpd-B strongly suggests that such ligands will be
efficacious in treating type 2 diabetic patients with com-
promised �-cell function and mass. Finally, our compound
exerted robust glucose-lowering efficacy during an IPGTT
in mice. This is the first report of a GPR40 agonist
demonstrating glucose control efficacy in preclinical ani-
mals. Taken together, our findings support the proposition
that GPR40 agonists may be beneficial for restoring GDIS
and glucose control in type 2 diabetes and, therefore, merit
further evaluation in clinical studies. Results from the
present study do not support the assertion that chronic

activation of GPR40 may harm �-cell function (the “lipo-
toxicity” hypothesis). In contrast, our study has provided
strong evidence that activation of GPR40 can enhance
GDIS in islet �-cells from normal and diabetic rodents and
thereby improve glucose tolerance.
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