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Abstract
Sleep after learning often enhances task performance, but the underlying mechanisms remain unclear.
Using a well-characterized rotation learning paradigm implemented both behaviorally and in
computer simulations, we compared two main hypotheses: the first, that off-line replay during sleep
leads to further potentiation of synaptic circuits involved in learning; the second, that sleep enhances
performance by uniformly downscaling synaptic strength. A simple computer model implemented
synaptic changes associated with rotation adaptation (30°), yielding a reduction in mean directional
error. Simulating further synaptic potentiation led to a further reduction of mean directional error,
but not of directional variability. By contrast, simulating sleep-dependent synaptic renormalization
by scaling down all synaptic weights by 15% decreased both mean directional error and variability.
Two groups of subjects were tested after either two rotation adaptation training sessions or after a
single training session followed by sleep. After two training sessions, mean direction error decreased,
but directional variability remained high. However, subjects who slept after a single training session
showed a reduction in both directional error and variability, consistent with a downscaling
mechanism during sleep.
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Introduction
There is growing evidence that sleep after learning can enhance performance [1–3,5,12–15,
20,22,23,26,29,32]. Several studies, using both implicit and explicit learning paradigms, have
shown that performance can improve after a night of sleep, or even after a nap, but not after
an equivalent period of wakefulness.

The mechanisms by which sleep may lead to performance enhancements are presently
unknown. One plausible idea is that neural activity during training potentiates local synaptic
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circuits during wakefulness, that similar patterns of neural activity are replayed during sleep,
and that off-line replay may lead to a further potentiation of synaptic circuits [1,31,33,37].

An alternative possibility is that sleep may enhance performance by uniformly downscaling
or renormalizing synaptic strength [34,35]. This mechanism would not produce further
learning, but merely an increase in signal-to-noise ratios because local synapses unrelated to
the newly learned task are reduced to sub-threshold strength and cease to influence
performance.

To compare these two these general mechanisms, we took advantage of a rotation adaptation
paradigm that shows sleep-dependent performance enhancement [12]. This motor task is a
form of implicit learning that is well-characterized kinematically and from a neuroimaging
perspective [9,16–19]. In addition, this task permits accurate parameterization of both
performance improvement and noise reduction. As subjects gradually adapt their movements
to a systematic rotation imposed to the perceived cursor trajectory, the directional error of
movement trajectories as well as their variance are progressively reduced.

Here we first introduce a schematic computer model of rotation learning in which both
mechanisms can be easily implemented and compared, leading to differential predictions. In
the simulations, after a training session modeled as synaptic potentiation at an offset
corresponding to the imposed rotation (30°), the test block showed, as expected, a reduction
in mean direction error. To simulate the occurrence of further synaptic potentiation, whether
occurring on-line during wakefulness or off-line during sleep, synaptic strength was further
increased at the same offset. This led to further reduction of mean directional error, but
directional variability did not improve. By contrast, to simulate sleep-dependent synaptic
renormalization, all synaptic weights after the first training session were scaled down by the
same fraction (e.g. 15%). After downscaling, the test block showed a decrease in both mean
directional error and variability.

To test the predictions obtained from the model, we turned to behavioral experiments. One
group of subjects underwent a first training session during the day. After a short interval, they
underwent a second, additional training session followed by a testing session. A second group
of subjects went to sleep after the first training session, and then underwent a testing session
without further training. Performance tests showed that after a second training session during
the day, mean direction error had decreased, but directional variability was still high. By
contrast, subjects who had slept after the first training session showed both a reduction in mean
directional error and in variability, consistent with a downscaling mechanism during sleep.

Material and Methods
1. Neural network model

The model describes at the level of individual neuron elements, a visuomotor mapping from
2D visual space to 2D motor output space (Figure 1). The model consists of 360 neuron-like
elements in each of two layers: 1. a visual input layer (V) and 2. a motor output layer (M). Each
element in V represents 1° of 360° of visual space in hand-centered coordinates, while each
element in M represents 1° of 360° possible hand movement directions. A visual target
presentation activates elements in V which project to elements in M, thereby signaling a motor
output direction.

Network elements—Each element in V is activated by the presence of a target in the
corresponding portion of the visual field, and projects with normalized weighted connections
to a subset of elements in M. The probability of firing [36] for an individual motor cell is
determined by the suprathreshold incoming synaptic weight as given by the following equation:
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(1)

where n is a normalization factor equivalent to the maximum suprathreshold input for all motor
units. This normalization assumes that motor units respond with the same probability of firing
to an equal amount of synaptic input.

Connections: Default mapping—The map from visual inputs to motor outputs is defined
by the weights of the connections from V to M. The default mapping of the weight w from an
element i in V to an element j in M is given by the following Gaussian:

(2)

which is centered at xα with a maximal strength given by cαand a width σa.

Network output—The output movement direction is determined by taking the mean of the
movement angle represented by the active units in M during a given trial. With this population
coding scheme, the activity of the output units in M can code for a motor output in any direction.

Learning the visuomotor shift—Learning in the model is implemented as the addition of
synaptic weight to the connections between V and M. The added weights follow a Gaussian
profile centered at xβ, with independent parameters cβ and σβ governing the peak and width of
the added weights, respectively. Therefore, the distribution of weights after learning is given
as

(3)

Before the visuomotor shift xα=0°, and xβ =0° and after the visuomotor shift xα =0°, and xβ
=30°. The indices i and j each cover the range 0–360°.

Measuring performance—Performance of the model was evaluated by simulating 88 trials
of 8 movements each. The directional error X was determined by the difference between the
output direction and the target direction. The mean and variance of the directional error were
computed per trial and then averaged over all trials. These measures were used to evaluate the
performance of the model network. To assess performance enhancement, we compared the
two learning measures, mean directional errors and variances, between groups (Sleep and
Downscaling) and testing times (Test 1 and Test 2) with one-way ANOVA.

2. Behavioral experiment
Subjects—24 right-handed subjects (13 men, 11 women, aged 25–36 years) participated in
the study. All were naïve to the purpose of the experiments and signed a consent form. Subjects
were randomly assigned to one of two groups. One group (Extra-Training, n=12) was tested
in a single day. The other one (Sleep, n=12) was tested over two successive days.

Experimental procedure—As in previous experiments [9,16], subjects sat facing a
computer monitor, held a screen cursor with their right hand and moved it on the surface of a
digitizing tablet. An opaque shield prevented subjects from seeing their hand or arm. Targets
were eight radially arrayed circles at 4.2 cm from a starting point, separated by 45° and
displayed on a computer monitor. Targets appeared randomly at a rate of 1/s. Subjects were
instructed to make straight out-and-back movements reversing direction within the target and
to move as fast as possible without making in-flight corrections. Cursor location was visible
on the screen at all times. Targets were presented in blocks of 11 cycles of 8 targets resulting
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in 88 movements over 90 seconds. Subjects were given 30 seconds to rest between two
consecutive blocks.

All subjects performed a first training session in the morning. This consisted in a baseline block
of movements at 0° rotation, two training blocks during which the direction of the screen cursor
was rotated 30° counterclockwise, and one testing block at 30°. Fifteen minutes after the first
session, subjects in the Extra-Training group underwent a second training block with 30°
rotation, followed by a testing block. Subjects in the Sleep group underwent a testing block 24
hours after the first training session, without further training.

Data analysis—Movement onsets, peak velocity and reversal points were calculated as
reported previously [9]. The directional error for each movement was taken as the difference
between the direction of the target and the direction of the hand at the peak outward velocity
from the initial hand position [9].

To estimate the degree of learning achieved, we computed the mean directional error for each
testing block of the first and second sessions. For each testing blocks, we also computed the
mean variance of directional error, as the average of the variances around the error mean for
each of the eight targets. Thus, this measure of variable error represents the variability in
directional error after the systematic and direction-dependent variance has been accounted for
[7].

To assess performance enhancement, we compared the two learning measures, mean
directional errors and variances, between groups (Sleep and Extra-Training Groups) and
testing times (First and Second sessions) with mixed model ANOVA and post-hoc tests
(Bonferroni-Dunn). Differences were considered significant at a value of p< 0.05 with the
appropriate correction for multiple comparisons.

Results
The model performance was tested in the baseline condition (0° shift) by presenting a visual
stimulus at each of the 360° of visual space (Figure 2). The mean directional error of the motor
output in the baseline condition was 0.05±0.3° and the variance was 18.2±1.6°. For each
condition the number of trials = 88.

Simulated learning produces a decrease in directional error and an increase in variability
Learning was simulated by the addition of synaptic weight (cβ =0.5; σβ =10) to the connections
from visual units to motor output cells with a preferred direction shifted by 30° (Figure 2).
When the 30° shift was introduced, the directional error of the motor output shifted by 30° to
29.9±0.3° with variability of 16.8±1.4°. After learning, the mean directional error improved
to 5.9±0.9° but with an increase in the variance of directional error to 69.2±13.3° (one-way
ANOVA; F=5072.6; p<0.001).

Simulating extra learning produces an improvement in the mean directional error but no
improvement in the variability

To simulate the effects of additional learning, either due to a second training session or to off-
line replay followed by synaptic potentiation, additional synaptic weight (cβ =0.5; σβ =10) was
added to the same offset location (xβ). This doubled the amount of synaptic weight due to
learning while the mean directional error decreased by 28.4% to 4.2±.9° (F=14.35, p<0.001)
while the variability did not change significantly (69.2±13.3° vs. 68.2±12.1°; F=211.0;
p=0.77).
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Simulating downscaling produces a significant reduction in the variability of the directional
error

To test the hypothesis that downscaling can improve performance, the individual weights of
all connections from the visual to the motor map were scaled down by 15% of their value
(Figure 2). The immediate effect of downscaling was to reduce the postsynaptic input to the
motor output cells by 15%. This caused a large fraction of the synaptic input to fall below the
firing threshold. The remaining suprathreshold input was now strongest to motor output units
with the greatest total synaptic weight, which in this case were those representing the direction
of the recently learned shift. The result was that the mean directional error fell by 34.8% to 3.8
±.6° (F=32.6; p<0.001) while the variance decreased 60% to 26.6±3.5° (F=67.3; p<0.001).

The model thus predicts that downscaling improves performance significantly, while additional
learning has a relatively minor impact on the mean and variability of the directional error. The
greatest improvement produced by downscaling is seen primarily in the reduction of variance
of directional error accompanied by a significant improvement in the mean error. Results shown
reflect a downscaling factor of 15 %, which is in the range observed in recent in vivo
experiments [36]. In the model, varying the specific value of the downscaling factor
consistently produces an improvement in performance, unless downscaling is so large that
synaptic input falls below firing threshold. In vivo, such a scenario is unlikely: downscaling
is thought to be effected by sleep slow waves, which are in turn sensitive to net synaptic
strength. Therefore, while synaptic strength reaches physiological baseline levels, as would be
the case at the end of the night, slow waves are small enough that any further downscaling
would cease, thereby implementing a safe, self-limiting process [34,35].

2. Behavioral experiments
In the baseline “no-rotation” blocks, the means and variances of directional errors were the
same in the two groups (Figure 3, p=0.44).

By the end of the first training session with an imposed 30° rotation, directional error had
decreased to 7.1°±2.6° (all subjects combined), with no significant difference between the two
groups (Sleep: 6.9°± 2.6°; Extra-Training: 7.5°±2.6°, F(1,44)=0.94, p=0.9). In the testing block
of the first session, the mean and variance of directional errors were similar in the two groups
(Figure 3, mean: F(1,22)=0.8, p=0.4; variance: F(1,22)=0.17, p=0.7).

In the testing block of the second session, the mean of directional errors decreased further,
compared to the first session testing block, in both groups (Figure 3, effect of session: F(1,44)
=9.97, p=0.003). Although the improvement was more evident in the Sleep group (31.5%
versus 23.1%), there was not statistical difference between the two groups (Figure 3, effect of
group: F(1,44)=2.7, p>0.1). On the other hand, the variance of the directional error decreased
significantly from the first to the second session (F(1,44)=5.48, p=0.02) only in the Sleep group
(Figure 3, Sleep group: F(1,22)=10.44, p=0.001; Extra-Training group: F(1,22)=0.48, p=0.5,
decrease of 43.3% versus 8.6%). Thus, in the second session, the variance of the Sleep group
at test reached the value range of the baseline “no-rotation” block (p>0.05) and was
significantly lower than that of the Extra-Training group (p=0.001).

Discussion
Two competing frameworks have been proposed to account for the improvements in
performance that are frequently observed after sleep. The reactivation-consolidation
hypothesis suggests, in its most schematic version, that off-line replay during sleep of neuronal
firing patterns occurring during learning leads to a further potentiation of memory traces, which
would explain the improvement after sleep [1]. This hypothesis is supported by evidence for
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off-line reactivation of neurons and brain areas involved in the initial learning, obtained using
both multi-unit recordings in animals and neuroimaging in humans. It should be noted that
direct evidence for synaptic potentiation during sleep is currently lacking, but it is assumed
that it may occur due to changes in calcium dynamics [4]. It is possible that synaptic potentiation
during sleep may also lead to a migration of memory traces to a set of regions different from
the ones initially involved during the learning task [1,15,21,26–28].

An alternative hypothesis – the synaptic homeostasis hypothesis - suggests that during sleep,
synapses would be renormalized or downscaled, meaning that their efficacy or weight would
decrease by a similar percentage [34,35]. The main purposes of downscaling would be to
counteract the increased costs in terms of energy, space, cellular supplies, and saturation in the
ability to learn, which would be caused by a net increase in synaptic strength during learning.
Under certain circumstances, as exemplified by rotation learning tasks, downscaling might also
result in improved performance due to an increase in signal-to-noise ratios. Evidence for this
hypothesis comes from molecular and electrophysiological studies suggesting a net
potentiation of synapses in the cerebral cortex of animals who had been mostly awake, and a
net depression in the cortex of animals who had been asleep [36]. Additional evidence comes
from studies demonstrating that rotation learning, as well as manipulations promoting synaptic
potentiation, result in a local increase in slow wave activity during sleep, presumably due to
increased local synchronization caused by synaptic strengthening [12].

In this work, we have attempted to compare the alternative accounts of sleep-dependent
performance enhancements offered by the reactivation-consolidation hypothesis and the
synaptic homeostasis hypothesis. Sleep-dependent performance improvements have been
reported with various kinds of learning tasks [1,12–15,20,22,23,26,29,32] and have been
ascribed to different sleep stages or to different aspects of brain activity during sleep. For the
present purposes we chose rotation learning because it is a well-characterized task, easy to
parametrize, and it is mostly implicit, not requiring any cognitive strategy: indeed, for rotation
up to 30° subjects do not report any awareness either of the rotation or how the learning occurs.
The imposition of a visuomotor rotation causes a mismatch in the alignment of the visually-
and proprioceptively-perceived hand positions. Learning, in this case, is a gradual process
involving the formation of new visuomotor maps and of new internal models [6,8,10,11].
Classic studies of motor and procedural learning predict that, initially, subjects should adapt
to the imposed perturbation at the expense of a large increase in variability. Later on learning
asymptotes and variability returns within the normal range. Here we focused on the variability
associated with learning new visual-proprioceptive-motor mappings, excluding from
consideration a component dependent on target direction that is related to limb dynamics
[30].

The present results confirm that, after the first learning session, directional error improves but
response variability is high. Later, if subjects are allowed to sleep, performance improves
further and variability returns to the normal range. Instead, an additional learning session does
not improve variability. Thus, these results support the notion that sleep is important for
achieving skilled, low-variability performance, an effect that is not achieved through additional
training sessions. Of course, we cannot discard the possibility that spaced training or more
intensive training occurring twelve hour later, might produce a decrease in performance
variability similar to the one observed after sleep. It has been also reported that repeated
training, without intervening sleep, induces a worsening in a visual discrimination learning
task [23–25]. By contrast, in our motor task, the extra-training session did not induce significant
deterioration in either mean performance or its variability.

The results obtained with a simplified model of rotation adaptation suggest that synaptic
downscaling, as postulated by the synaptic homeostasis hypothesis, can account in a
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parsimonious manner for the changes in directional error and variability observed in behavioral
experiments. It may at first appear counterintuitive that a proportional reduction in synaptic
strength should lead to better performance. However, the simulations indicate that synaptic
downscaling, by reducing postsynaptic input, decreases the variability of postsynaptic firing,
in that output units with the greatest pre-downscaling synaptic input become the only ones to
fire post-downscaling. Assuming that output units represent movement vectors, the result is
that movement variability returns within the baseline range, just as observed in behavioral
experiments. Interestingly, imaging experiments in humans show that during initial learning
brain activation is at first diffuse and bilateral [18]; in expert learners, instead, activity is
confined to more restricted foci of activation in parietal regions [9], consistent with increased
signal-to-noise ratios. Thus, our simple model illustrates how the combination of synaptic
downscaling with a simple threshold mechanism can produce significant improvements in the
signal (mean direction) to noise (variability of mean direction) ratio.

By contrast, our simulations suggest that further strengthening of circuits involved in learning
rotation adaptation, as might occur due to additional training or through off-line replay, can
lead to an improved directional error but not to a substantial reduction of response variability.
To the extent that an additional learning session during wakefulness does indeed produce a
further strengthening of the relevant circuits, the predictions of the model are confirmed, in
that response variance did not improve significantly. Altogether, the behavioral results conform
to the simulated results when these implemented synaptic downscaling and not when they
implemented additional synaptic strengthening

Of course, caution is needed to interpret the present findings and to extend these conclusions
to other categories of learning. Our computer model of rotation learning is purposely as simple
as possible, and we have assumed that synaptic potentiation is a homogeneous process. It is
possible that sleep may be associated with synaptic potentiation, but through mechanisms that
may differ considerably from those associated with learning during wakefulness. For example,
due to changes in the level of certain neuromodulators, or due to the frequent hyperpolarization
of cortical cells during slow wave sleep, synaptic potentation could be restricted to a much
smaller set of connections, thereby possibly reducing variability. Alternatively, potentiation
may occur in circuits downstream of those involved in waking plasticity, potentially leading
to different behavioral outcomes. Also, synaptic potentiation and downscaling might occur
together during sleep: the strongest synapses could be potentiated further, while weaker
synapses would go through a process of downscaling, yielding an even larger decrease in
performance variability. More studies and direct cellular evidence are obviously needed to
define the precise mechanisms responsible for the reduction of variability after sleep.
Moreover, it remains to be seen to what extent sleep improves performance variability in other
learning tasks: for instance, implicit and explicit learning tasks may show different patterns of
improvements and sleep-dependence. Nevertheless, precisely because our model is simple and
makes minimal assumptions, it provides a starting point for developing more elaborate
accounts of sleep-dependent improvements in performance.
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Figure 1.
Model of rotation adaptation. A. Individual neuron-like network elements sum synaptic inputs
to determine the probability of firing. B. The model contains a Visual input layer (V) with
network elements representing a 360° hand-centric visual coordinate space and a Motor output
layer (M) with neurons representing 360° of output movement directions. Weighted
connections from V innervate M to determine the output movement direction given a particular
visual stimulus in V. Visuomotor learning is simulated by adding synaptic weight to these
connections.
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Figure 2.
Comparison of model performance with extra learning and downscaling. A. The learning and
testing process starts at 0° rotational shift, training then occurs with a 30° shift in the visuomotor
mapping at which time Test 1 occurs. In the case of extra learning, Test 2 occurs after an
additional training period at 30°. In the case of downscaling, Test 2 occurs after synaptic
weights are scaled down by 15% (downscaling). B. Total synaptic input to M (from V) is
shown. The red line indicates the threshold above which the model neuron may fire. During
training additional synaptic weight is introduced (indicated by the cyan line) resulting in a
change in the distribution of synaptic input (dark blue line). In the case of extra learning, there
is a further increase in synaptic input. In the case of downscaling, the synaptic input is scaled
down and a portion of the synaptic input is reduced to below firing threshold. C. The probability
of firing for network elements in M when visual input is presented at different locations in V.
In the case of additional extra learning, the probability distribution widens slightly. In the case
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of downscaling, the probability distribution narrows, sharpening the newly learned target and
removing the trace of the original target location. D. The mean directional error improves after
both extra learning and downscaling. E. The variance of the directional error does not decrease
significantly with extra learning, while it is significantly reduced after downscaling.
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Figure 3.
Behavioral experiment. A. Two groups of subjects adapted to a rotated display and were tested
either after extra learning or after sleep. B. The mean directional error improves after both extra
learning and sleep. E. The variance of the directional error does not decrease significantly with
extra learning, while it is significantly reduced after sleep.
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Table 1
Model parameter values

Parameter Value Parameter Value
σα 40 σβ 15
cα 0.535 cβ 0.5
θ 0.5
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