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Abstract
Filopodia are long, finger-like membrane tubes supported by cytoskeletal filaments. Their shape is
determined by the stiffness of the actin filament bundles found inside them and by the interplay
between the surface tension and bending rigidity of the membrane. Although one might expect the
Euler buckling instability to limit the length of filopodia, we show through simple energetic
considerations that this is in general not the case. By further analyzing the statics of filaments inside
membrane tubes, and through computer simulations that capture membrane and filament fluctuations,
we show under which conditions filopodia of arbitrary lengths are stable. We discuss several in
vitro experiments where this kind of stability has already been observed. Furthermore, we predict
that the filaments in long, stable filopodia adopt a helical shape.

I. INTRODUCTION
Filopodia are slender protrusions from a cell’s exterior surface that may act as mechano-sensors
during axon growth and cell movement[1,2]. Their shapes and stability are determined by a
mechanical interplay between the bounding lipid membrane and enclosed bundles of the
filamentous protein actin. Tension and bending rigidity of the membrane resist formation and
growth of filopodia, while actin filaments, running parallel to the long axis of the filopodium
and rooted in the cytoskeleton, provide the counterbalancing force against membrane
retraction.

The tubular shape of membrane extensions, usually called membrane tethers or tubes in the
absence of a filament bundle, reflects a compromise between energetic costs of stretching and
bending the membrane. At a certain tube radius R, the reward for reducing surface energy
(which scales as R) precisely balances the concomitant penalty for increasing curvature (which
scales as 1/R). Resulting from this balance is a membrane energy that grows linearly with the
tube’s length L, giving rise to a longitudinal restoring force[3,4,5].

By itself, a bundle of actin filaments should behave under compression much like a simple
elastic rod. Compressive forces below a certain threshold fb induce little deformation. Beyond
that threshold the rod becomes extremely pliable, undergoing a long-wavelength instability
known as Euler buckling. Because fb decreases quadratically with a rod’s length, a growing
actin bundle under fixed load is expected to buckle and collapse at a critical length, lb.

Together, these arguments would seem to imply an upper limit on filopodial growth: once the
length of a filopodium exceeds the Euler buckling length, the filament bundle can no longer
sustain the restoring force of the membrane tube, leading to collapse. Calculations based on
this notion suggest a limiting length of 1 – 2μm[3,6]. By contrast, filopodia several tens of
μm in length have been observed in experiment[2,7]. Stability of long filopodia has been
rationalized as a consequence of tight bundling of actin filaments such as done by the protein
fascin. A quadratic increase of bundle stiffness with the number of tightly linked filaments,
however, is insufficient to explain the observation of filopodia over 10 – 20μm in length.

NIH Public Access
Author Manuscript
Phys Rev Lett. Author manuscript; available in PMC 2008 August 4.

Published in final edited form as:
Phys Rev Lett. 2008 June 27; 100(25): 258102.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In this article we reconsider the buckling of a semi-flexible filament bundle inside a membrane
tube, paying careful attention to the compatibility of membrane and bundle geometries. In our
calculations we find that the buckling instability is removed by the constraint that the tube must
enclose filaments as they deform. Contrary to conventional pictures, presence of an enclosing
membrane stabilizes the bundle against buckling, rather than causing it, so that filaments in a
sufficiently thin tube may grow to arbitrary length without collapse. We present Monte Carlo
simulations of a worm-like chain inside an elastic tube, fully incorporating effects of thermal
fluctuations, which verify this surprising stability.

II. THE ENERGETICS OF BUCKLING FILOPODIA
We describe the conformation of a semi-flexible filament (or bundle of filaments) by a
parameterized curve r(s) with inextensibility condition |∂r(s)/∂s| = 1. The corresponding energy
is that of a worm-like chain,

(1)

where l is the bundle’s contour length, and lp is its effective persistence length: throughout this
text we will assume uncross-linked bundles with an effective persistence length  where
Nfil is the number of filaments in the bundle and  μm for a single actin filament.

This model yields an Euler buckling force fb = lpkBTπ2/4l2 at which sinusoidal deformations
of period 2l become favorable at all amplitudes. For a growing rod under fixed compressive

load f, the buckling length is therefore . The energy of the membrane tube
includes contributions from both surface tension and bending energy. For a cylindrical
geometry the standard model of Helfrich[8] yields[4]

(2)

where γ is the surface tension, κ is the bending rigidity, L is the tube’s length, and R is its radius.
Because the energy grows linearly with L, a constant force ftube acts longitudinally against the
overall filopodium contour length[20].

A. A simple argument against Euler buckling
Fixed compressive force on a rod, i.e., an external potential that decreases in proportion to the
rod’s end-to-end distance, is a crucial ingredient of the Euler buckling scenario. As described
above, a straight membrane tube exerts such a longitudinal force.

A buckling filament bundle, however, does not remain straight. In a narrow filopodium the
membrane will accommodate the filaments’ deflection by deforming congruently, as depicted
in Fig. 1(a) and (b). As a result the compressive forces tending to retract the tube will follow
the contour of the bundle, no longer directed along the rod’s end-to-end distance.

If the contour length of the tube does not decrease, deflecting the bundle begets no energetic
reward. In the limit of a vanishingly thin filopodium, the geometric constraint of enclosure will
thus negate any energetic gain from retracting the filament, preventing enclosed actin filaments
from buckling.

In other words: since any bending of the filament will lead to bending — rather than shortening
— of the membrane, the compressive force ftube that acts to shorten the membrane tube will
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be exerted along the contour of the filament. Though “compressive”, this force will in effect
counteract buckling by adding membrane bending energy to the filament bending energy.

B. Buckling of filopodia of finite radius
The radius of an empty membrane tube can be estimated from Eq. 2. As a function of R this
energy is minimal at

(3)

For typical values of membrane rigidity κ ≈ 40 kBT and surface tension γ ≈ 0.0025 kBT/nm2,
Eq. 3 gives R = 89 nm. (For cell membranes, κ ranges from 20–80 kBT, and γ ranges from
0.0013–0.025 kBT/nm2 [9,10,11,12,13].)

Adding Eqs. 1 and 2 gives the total energy of a semi-flexible filament enclosed by a membrane
tube:

(4)

Our analysis of filopodium buckling will focus on minimizing Eq. 4 with respect to L, R, and
r(s), subject to the constraint of enclosure. The global minimum will always correspond to a
tube of zero length and infinite radius “enclosing” a straight filament lying parallel to the flat
membrane, i.e., complete collapse. Our arguments above suggest, however, that this
configuration may be very difficult to reach. Beginning from an initial state of narrow
protrusion, collapse would require that large energy barriers be surmounted through costly
bending fluctuations. If other local energy minima exist, and can be accessed with modest
deformation, they are likely to be very stable.

Any plausible mode of deformation would maintain the bundle’s contour within a small radius,
as could be accomplished by a helical configuration (see Fig. 1(c)). Below, we consider in
detail the energetics of a helical bundle circumscribed by a cylindrical membrane tube. While
this choice is not unique, it does allow for efficient reduction of the tube’s length without
widening or bending the cylinder. This scenario, which we refer to as “helical buckling”, is
described mathematically by

(5)

where n is the number of helix windings per unit contour length. Eq. 5 ensures filament in-
extensibility as well as enclosure within a membrane tube of radius R and length

. Notice that this parameterization includes as limiting configurations both an
undeformed filopodium (L/l = 1) and a completely collapsed filopodium (L/l = 0).

Fig. 2 shows the energy per contour length of a helically buckled filopodium,

(6)

as a function of R and L/l. For the values of κ and γ considered, a bundle comprising of just
one filament (Nfil = 1) possesses a single energy minimum at L/l = 0, i.e., it is unstable to
collapse. But stability against collapse can be achieved with a modest increase in the number

Pronk et al. Page 3

Phys Rev Lett. Author manuscript; available in PMC 2008 August 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of filaments. With only six filaments a local energy minimun appears at approximately one
winding per 1500 nm (R ≈ 100 nm, L/l ≈ 0.9). Not surprisingly, the corresponding radius slightly
exceeds that of an empty tube, reflecting the radial force generated by this mode of bundle
deformation. The energy barrier to collapse in this case, roughly 0.1 kBT/nm, is indeed
substantial for a filopodium more than 100nm in length[21].

By the same reasoning, it is possible to find a minimum number of filaments that keeps the
filopodium stable for any combination of membrane surface tension and bending rigidity. In
Fig. 3, we plot this number against plausible values for κ and γ, and see that it is less than 10
for most of this range, implying that a small number of filaments is enough to stabilize
arbitrarily long filopodia against buckling. This number is well within the range of what is
commonly thought to be the actual number of filaments in filopodia[3] and is similar to the
number of filaments thought to be required to nucleate a filopodium[6,14].

If the filopodium as a whole experiences an external force, e.g. when it is pushing against an
obstacle, it will generally not be stable against Euler buckling. This situation arises in
experiments such as those performed by Liu et. al. [14], where filopodium-like protrusions
grow into the lumen of a vesicle and contact the other end of the vesicle, and buckle.

Another experimental observation of stability — and instability — against buckling is found
in Ref. [15]. There, a microtubule is grown inside a vesicle in such a way that it forms
membrane-enclosed protrusions on both ends of the vesicle. Because the membrane envelops
these protrusions, the microtubule is stable against buckling wherever it is in a protrusion.
Inside the vesicle, however, the microtubule is not enveloped by a membrane tube and thus
proceeds to buckle.

III. SIMULATIONS
In order to check whether the stability argument described in the previous section is valid, we
performed Monte Carlo simulations of a semi-flexible rod in a membrane tube. In these
simulations, the membrane is modeled as a triangulated sheet with dynamic re-triangulation
as described in [8,16], with bending energy calculated as in Ref. [17]. The rod, which represents
the filament bundle, is discretized into many sections of constant length.

Both the membrane vertices, and the filament discretization points consist of excluded volume
enforcing the impenetrability of the membrane to the filament and to itself. The effective
bending rigidity, which is influenced by the presence of exclusion spheres on the membrane
triangulation vertices, is measured and re-calibrated by measuring the radius that an empty
membrane tube adopts.

The initial geometry shown in Fig. 4 is a straight filopodium with a spherical cap and a straight
filament of 4 μm, which exceeds the Euler buckling length in all cases. The 4270 triangles of
the membrane are distributed over the surface so that that they are close to equilateral.

The membrane vertices and filament points are free to move except at the ‘open’ end, where
the filament bundle is held at fixed orientation; the end-vertices of the membrane are held in
the plane perpendicular to the initial filament direction.

As shown in Fig. 4, simulated filopodia are stable at lengths far beyond their Euler buckling
length, even though the membrane deviates noticeably from a straight cylindrical tube (if there
were no membrane curvature energy, the membrane would adopt a helicoidal shape[18]). This
membrane deformation almost disappears as the filament bundle is made stiffer.
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We do, however, find that the simulated filopodia are only stable against buckling at higher
filament stiffnesses (larger numbers of filaments) than the analysis leading to Fig. 3 would
predict. For the parameters used in the simulation, our analysis predicts that 6 filaments would
be sufficient. Simulations at these and other values of κ and γ suggest that filament bundle
stiffnesses of roughly 1.5 times the analytical values are required for filopodium stability,
which seems to be due to the ability of the membrane to locally adapt to the helicity of the
membrane, lowering the free energy barrier to collapse.

This does not change the argument of the previous section: filopodium collapse can, for any
reasonable κ and γ, always be overcome with a finite — and small — number of filaments in
the filament bundle.

IV. CONCLUSION
Our simulations, combined with the observations of localized buckling in Ref. [15] and the
observation of long filopodia in systems without actin filament bundling proteins[14], suggest
that filopodia with relatively small numbers of uncross-linked filaments can be stable against
classical Euler buckling. The filament bundles inside the filopodia are predicted to adopt a
helically buckled conformation, in accordance with the energetic considerations of section II
B. In this conformation, the filament can still continue to grow.

Although there is experimental evidence for the stability of filopodia to buckling, observing
the helically buckled filament bundle experimentally might prove challenging: the radius of
the helix is only large enough to be resolved optically in the most marginally stable filopodia.
Invasive visualization techniques, such as electron microscopy of fixed samples, could
jeopardize the mechanical integrity of membrane or filaments.

It should be noted that the mechanisms leading to helical buckling are not necessarily restricted
to filopodia: this might happen in any comparable situation where a membrane exerts forces
on a stiff filament or filament bundle, such as in cilia. Helically arranged filaments have, for
example, been observed in non-spherical bacteria[19]. The mechanism described here might
be able to account for both the symmetry breaking and the helical pitch in such arrangements.
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FIG. 1.
Absence of Euler buckling in narrow filopodia. If an initially straight elastic rod (a) experiences
a sufficiently large downward force f, it will buckle, because the energy gain f Δz exceeds the
bending energy of the rod. By contrast, in a filopodium (b) the compressive force exerted by
the membrane is directed along the contour of the supporting filament bundle, denying it the
potential energy gain that leads to buckling. A filopodium may lower its energy, however, by
adopting a helical configuration (c). Here, the energy decreases due to shortening of the
membrane tube.
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FIG. 2.
Contour plot of the combined membrane and filament energy per unit contour length from Eq.
6, as a function of tube radius R in nanometers, and of the ratio of the tube length L and the
filament contour length l (a measure of helicity). The membrane bending rigidity is κ = 40
kBT, and its surface tension is γ = 0.0025 kBT/nm2. The plot (a) shows the energy for 1 filament,
and plot (b) is for 6 filaments. Darker shades stand for lower energies; numbers label contours
in units of kBT/nm. Note the presence of a local energy minimum in (b).

Pronk et al. Page 8

Phys Rev Lett. Author manuscript; available in PMC 2008 August 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 3.
Contour plot of the number of filaments with  required for a stable, helically buckled
filopodium as a function of curvature rigidity κ and surface tension γ. Increasing the surface
tension γ yields narrower membrane tubes, stabilizing the filopodium against buckling.
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FIG. 4.
Simulation snapshots showing the membrane and filament bundle inside it (perpendicular to,
and along the longitudinal axis). Filopodia with 4 μm contour length begin each simulation in
an elongated configuration shown in a. The filament bundles with stiffnesses corresponding
to 6 (for b), 10 (for c), and 18 (for d) filaments (with parameters similar to those in Fig. 2), are
shown after approximately 8 · 106 MC steps per membrane triangle vertex. The Euler buckling
lengths lb for these configurations are 0.28 μm (b), 0.36 μm (c) and 0.49 μm (d) respectively.
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