
Discrete state model and accurate estimation of loop entropy of
RNA secondary structures

Jian Zhang1,2, Ming Lin3, Rong Chen4, Wei Wang2, and Jie Liang1,a

1 Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA

2 National Laboratory of Solid State Microstructure, Nanjing University, People’s Republic of China

3 Department of Information and Decision Science, University of Illinois at Chicago, Chicago, Illinois 60607,
USA

4 Department of Statistics, Rutgers University, Piscataway, New Jersey 08854-8019, USA

Abstract
Conformational entropy makes important contribution to the stability and folding of RNA molecule,
but it is challenging to either measure or compute conformational entropy associated with long loops.
We develop optimized discrete k-state models of RNA backbone based on known RNA structures
for computing entropy of loops, which are modeled as self-avoiding walks. To estimate entropy of
hairpin, bulge, internal loop, and multibranch loop of long length (up to 50), we develop an efficient
sampling method based on the sequential Monte Carlo principle. Our method considers excluded
volume effect. It is general and can be applied to calculating entropy of loops with longer length and
arbitrary complexity. For loops of short length, our results are in good agreement with a recent
theoretical model and experimental measurement. For long loops, our estimated entropy of hairpin
loops is in excellent agreement with the Jacobson–Stockmayer extrapolation model. However, for
bulge loops and more complex secondary structures such as internal and multibranch loops, we find
that the Jacobson–Stockmayer extrapolation model has large errors. Based on estimated entropy, we
have developed empirical formulae for accurate calculation of entropy of long loops in different
secondary structures. Our study on the effect of asymmetric size of loops suggest that loop entropy
of internal loops is largely determined by the total loop length, and is only marginally affected by
the asymmetric size of the two loops. Our finding suggests that the significant asymmetric effects of
loop length in internal loops measured by experiments are likely to be partially enthalpic. Our method
can be applied to develop improved energy parameters important for studying RNA stability and
folding, and for predicting RNA secondary and tertiary structures. The discrete model and the
program used to calculate loop entropy can be downloaded at
http://gila.bioengr.uic.edu/resources/RNA.html.

I. INTRODUCTION
Accurate assessment of the free energy of secondary structures of RNA molecules is essential
for understanding the stability and function of this important class of biomolecules. It is the
basis of RNA secondary structure predictions,1 and is also important for RNA tertiary structure
predictions. Numerous experiments have been carried out to measure the free energy
contributions of important structural features,1–6 including base stacking, base pair closing,
first mismatch of base pairing, asymmetric terms, and coaxial stacking. Although enthalpic
and entropic contributions of base-paired stem regions can now be well accounted for by the
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nearest-neighbor models and experimentally measured parameters, and theoretical models for
simple RNA oligomers work well,1 the evaluation of entropic cost of loops remains
challenging.

For larger RNA molecules, loop regions such as hairpins, bulges, internal loops, and helical
junctions (or multibranched loops) (see Fig. 1) are ubiquitous and play central roles in forming
RNA secondary structures.5–7 Frequently, they are also important for RNA functions.7–9
However, little is known about the entropic cost of the loop regions, especially when loops are
long and when multibranched loops form.4 An analysis of a database containing 246 RNA
structures shows that instead of engaged in base pairing, 46% of the nucleotides remain as
single strands forming different types of loops.10 Therefore, substantial improvements in RNA
structure prediction is likely to require that the entropic cost of forming such loops be calculated
or measured accurately.

Experimental measurement of loop entropy is difficult. First, a phenomenological model is
needed with which to fit observed data, and the accuracy will depend on whether all important
physical factors are incorporated in the model. Parameters for estimating multibranch loop
entropy are especially problematic, as they are currently obtained by a genetic algorithm that
optimizes the results of secondary structure predictions. This approach is not based on a
physical model and the derived parameters may not reflect accurately the true entropic costs,
1 as predicted free energy is frequently less stable than experimentally measured values.5
Second, as the number of nucleotides increases, the number of possible secondary structures
also grows rapidly. It becomes increasingly difficult to design sequences that will produce
desired conformational transitions and melt in a two-state manner for experimental
measurement.5

Previous theoretical models for free energy estimations of RNA secondary structures use
simplified assumptions for the loop conformational entropies. For example, loop entropy is
assumed to depend on the loop sizes linearly for multibranched loops in Ref. 11. A polymer
principle based statistical mechanical model was developed based on square and cubic lattice
chain conformations,12–15 and gave good estimation of folding thermodynamics of secondary
structures.12 An important recent advance is the development of a method for calculating loop
entropy based on a virtual bond representation of RNA backbone.16 This method considers
excluded volume and is based on the enumeration of all possible self-avoiding walks on a
diamond lattice with fixed ends at the stem terminus of an RNA structure.16 For loops up to
length of 9, the calculated loop entropy of hairpins, bulges, and internal loops has excellent
agreement with the experimental results. However, for loops of longer length, enumeration
becomes infeasible due to the exponentially increasing size of conformational space.17 In these
cases, one has to use an empirical extrapolation formula.16 However, it is validity and
applicability is untested.

In this work, we develop a method for estimating entropy of secondary structures of RNA
molecules with long loops. We first develop an optimized discrete k-state virtual bond model
that faithfully represents RNA backbone conformations. It is derived from an analysis of RNA
backbone rotamers. We then develop an efficient sampling method based on the sequential
Monte Carlo principle to estimate the entropy of RNA loops in hairpins, bulges, internal loops,
and multibranch loops. Our model has the advantage that it incorporates excluded volume
effect, and can calculate the entropy of loops of arbitrary complexity and of very long length
(up to 50 in this study) without resorting to extrapolations. Here, we aim to compute
conformational entropy and assume that the entire loop is unattached and there is no intraloop
base stacking. Furthermore, by increasing the number of states or using different rotamers
libraries in different structural regions, our model can be adjusted conveniently to improve
accuracy, which enables us to take full advantage of such discrete models. This would be
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impossible for lattice models. Our work provides a basis for both RNA structure representation
and for entropy estimation, which we believe will also be useful for RNA tertiary structure
predictions.

We organize our papers as follows: we first describe the optimized k-state virtual bond model
for RNA backbones and our sampling method. In the results section, we discuss the estimated
values of loop entropies of various secondary structures, and derive empirical formulae that
predicts loop entropy accurately. We conclude with as short discussion.

II. METHODS
A. Database

The RNA05 database from Duke University is used in this work.18 This database contains 172
RNA structures with total 9 486 nucleotides. These structures are selected from the Nucleic
Acid Database (NDB, Feb 2005 version), with resolution of 3.0 Å or better.19 We further
remove nucleotides that have steric overlaps with other nucleotides, as identified by the
MOLPROBITY web server also at Duke University. The remaining 156 structures with total
4 773 nucleotides are used in this study.

B. Virtual bond representation and discrete k-state model
We use the virtual bond representation to describe the RNA backbone conformation.16,20
Here we consider two effective virtual bonds that connect atoms P–C4 and atoms C4–P (Fig.
2), and their torsion angles along the backbone, θ and η. The angles in one “suite,” namely, the
stretch between two consecutive C4 atoms, are combined as a (θ,η) pair. Here, we use suite
instead of residue (the stretch between two phosphorus atoms) as a basis for describing RNA
chains. There are two considerations: (1) RNA structures are determined largely by base
interactions, in patterns that make the relative positioning of successive bases the dominant
factor connecting local conformation with larger motifs. This relationship between successive
bases is reliably and accurately seen even at low resolution and therefore makes a good basis
for a robust coarse description of RNA conformation19; (2) 99% atomic steric clashes are
between atoms on either side of a phosphorus (and thus within a sugar-to-sugar suite) and only
1% are between atoms on either side of the sugar (and thus within a traditional residue),
indicating that the atoms within a suite are most likely to be correlated.19 Following Ref. 19
we use suite as the repeating units of RNA backbone.

In a k-state model, a RNA conformation is represented by the sequence of the conformational
state of the nucleotides, denoted as Sn = (s1, s2, …, sn), where n is the length of the sequence
and si takes the (θ,η) values in one of the k possible states of nucleotides. The virtual bond
length is fixed to 3.9 Å and the bond angle at P and C4 atoms are fixed to the value of 105°
and 95°, respectively. These values are determined by a k-mean clustering analysis of
nucleotide conformations in our structural database, and are the same as reported in a previous
work by Cao and Chen.16

To obtain the optimal (θ,η) values to construct our k-state models for RNA conformations, we
calculate the torsion angles for all structures in the database and obtain a total of 2 480 pairs
of (θ,η) values, each of which corresponds to a point in a two dimensional θ-η plot (Fig. 3).
Then we apply the k-mean clustering method to these points and identify the centers of the k
clusters. The dissimilarity is defined as the Euclidean distance between two data points whose
coordinates are (θ,η). Since the result of k-mean clustering may depend on the initial placement
of the center positions, we start with many random different initial positions and select the one
that minimize a D value defined as

Zhang et al. Page 3

J Chem Phys. Author manuscript; available in PMC 2008 August 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where i is the index of the cluster Ci, k is the total number of clusters, and (θ ̄,η ̄) represents the
center of cluster Ci. Note that for both θ and η angels, 0° and 360° are identified, and therefore
plots in Fig. 3 are embedded on a torus. The results of k-mean clustering for k=4, 5, and 6 are
shown in Fig. 3, and the values of these centers are listed in Table I. Note the first entry in each
case corresponds the A-form conformation, which accounts for a large fraction of date points
in Fig. 3. We use the cluster centers to represent the discrete k conformational states of RNA
nucleotides.

Note that we ignore base- and sequence-dependent information in this study. As indicated in
the results section, this approximation is sufficient to model the entropy of unpaired
nucleotides. It is straightforward to generalize this and to introduce base-specific and sequence-
specific information by treating different nucleotides or di-nucleotides individually, as we have
done for proteins,21 provided the database contains enough structural data.

To asses the clustering quality, we adopt the Silhouette value that describes how well each data
point is clustered.30 We define a(i) as the average dissimilarity of data point i to all the others
in the same cluster A, and d(i, C) the average dissimilarity of i to all data points in cluster C.
The dissimilarity is defined as the Euclidean distance of (θ,η) between data points. After
computing d(i, C) for all clusters C ≠ A, we select the smallest: b(i) =minC≠Ad(i, C). The cluster
B which this minimum is attained is the second-best choice for i. The Silhouette value s(i) can
then be calculated as

and

A s(i) value close to +1 indicates that i is well classified, a value close to 0 indicates i lies
between two clusters, and a value close to −1 indicates i is poorly clustered. Figure 3(d) shows
the distribution of Silhouette value for each data point calculated using the 4-state clustering
procedure. It can be seen that most of them (69.8%) have a value larger than 0.7, and a very
small fraction (0.6%) have a value less than zero. The 5-state and 6-state clustering procedures
give similar results thus are not presented. The distribution of Silhouette values suggests that
the clustering quality is generally good.

Using a real chain representation, Murthy et al. performed grid search of all possible
conformers using the criteria of hard sphere steric exclusion, and developed a comprehensive
conformational map of RNA rotamers, which correlates well with data obtained from x-ray
crystallography of both large and small RNA molecules.31 Although we use different
representation for the RNA chain and the results cannot be directly compared, some common
features can be seen. For example, the first peak βγI in their β-γ plot and the plateau region in
their γ-ε plot shown in Ref. 31 correspond to the central cluster in our θ-η plot. This cluster
corresponds to the A-form conformation of RNA, and accounts for a large fraction of the
conformations of nucleotides in known RNA structures.
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C. Stem libraries of RNA hairpins and bulges
For RNA molecules, the conformation of a loop is constrained by the stem (also termed helix)
it is connected to. These constraints are characterized by specific allowed values of bond length,
bond angle and torsion angle. Different stem conformation will impose varying degree of
constraint, leading to different values of loop entropy. This effect is especially pronounced for
short loops. In experimental studies, as the conformation of a stem fluctuates at a finite
temperature, the measured entropy is effectively an average over all possible stem
conformations sampled within the experimental time scale. To account for this effect and to
facilitate direct comparison with experimental results, we construct a library of stem
conformations to constrain the loop conformations and to calculate average entropy values.

Specifically, we examine the RNA05 database and select 16 representative hairpin structures,
with loop length equally distributed from three to ten. We then map these structures to our
discrete models, collect the positions of the last two nucleotide pairs in the stem that close the
hairpin loop. The coordinates of the nucleotide pairs are then stored in the stem library. This
stem library is used in the calculation of entropies of hairpin loops, internal loops, and
multibranch loops. We find this size of library is sufficient for loop entropy calculation,
especially for long loops which we are mostly interested in. We also construct a bulge stem
library using similar procedure, which is composed of 16 different helical conformations that
close a bulge. The bulge stem library is used in the calculation of bulge loop entropy.

D. Loop entropy and enumeration
For a loop of length n, where n is the number of unpaired nucleotides, its entropy is defined as

(1)

where Ωcoil is the number of all possible conformations of a coil of length n, and Ωloop is the
number of loop conformations that are compatible with the stem that closes the loop. That is,
the bond lengths, bong angles, and torsion angles near the region of stem-loop connection are
located in the allowed regions.

Using the discrete k-state model, we can enumerate all possible backbone loop conformations
as self-avoiding walks for moderate chain length, provided that the conformations of the two
stems this loop connects to are given. This can be also used to study multibranched loops.
Without lost of generality, we take the three-way multibranch loop as an example to illustrate
how the enumeration procedure works. Overall, we grow sequentially the three loops from the
5′ end to the 3′ end, and add stems along the way when needed. It is necessary to select a hairpin
stem conformation and decide on its oreintation for the growing chain to be connected to it.
Once the stem conformations and orientations are fixed, the loop entropy in the k-state model
can be calcuated exactly by enumeration. We start enumeration by randomly choosing a hairpin
stem from the stem library. Starting from this stem, we grow the first loop by enumerating all
possible conformations of specified length. We then randomly select another hairpin stem with
replacement from the stem library, and then select one orientation from several possible ones,
translate and rotate it so it is connected to the 3′ terminal of the first loop. Due to the discrete
nature of the model, the number of orientations that is compatible with the 3′ terminal of the
first loop is finite, usually a few. After which we then grow the second loop, until it reaches
the specified length. We then add the third stem, and continue to grow the third loop. After the
third loop is grown, we count the number of conformations whose 3′ end is spatially compatible
with the first stem where the growth began and calculated loop entropy using Eq. (1). The chain
is said to be compatible if the values of the bond length and bond angle are between 1/1.03 and
1.03 times their value specified earlier. The torsion angle in the 6-state model must be within
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(60, 60, 40, 45, 30, 45) in mod Euclidean distance to the six cluster centers on the plane of
(θ,η), respectively. The final entropy is obtained by averaging over several independent runs
of this process to account for the randomness in the selection of stem and stem orientation. For
short loops (n ≤ 10), there is a large variation in calculated loop entropy, and it is necessary to
repeat the process many times. However, the repetition needed decreases rapidly as loop length
increases from 1 to 10. For long loops where the number of chain conformation is large, we
find that the entropy calculated is independent of the stem conformation and orientation, and
therefore few or no repetition is needed. In the calculation of bulge entropy, we use the same
procedure except the library of bulge stem is used.

For hairpin loops, we can enumerate all possible loop conformations for chains of length up
to 21 using the 4-state model, 18 for both 5- and 6-state models. However, as loop length further
increases, the number of conformations increases exponentially and exhaustive enumeration
becomes infeasible. In this case, we develop an efficient sampling method based on sequential
Monte Carlo to overcome this difficulty.

E. The sequential Monte Carlo method
The sequential Monte Carlo method has been applied in previous studies.17,22,23 Here we
give a brief description. The idea is combining chain growth and sequential importance
sampling. During the growing process, one generates a set of properly weighted conformations
with respect to a target distribution and keeps the correct weights of the conformations. The
following scheme illustrates our algorithm:

1. Initialization. We set the initial sampling size to m1 =1, with weight . At step t
−1, we have mt−1 partial conformations with corresponding weights, denoted as

.

2. Chain growth. For each partially grown conformation , we exhaustively test all
possible attachments of the next nucleotide, with a total of  different possibilities.
This will generate no greater than k different partial conformations of length t,

, with temporary weights . We denote all such samples

generated as , where .

3. Resampling. If L≤m, the upper bound of Monte Carlo sample size, we keep all of the
samples and their corresponding weights and set mt = L. If L >m, we use the resampling
procedure of Fearnhead and Clifford24 to choose mt = m distinct samples with
marginal probabilities proportional to a set of priority scores . The steps of this
resampling procedure are as follows:

a.
Find the constant value c satisfying .

b. Choose a subset of distinctive members J1, J2, …, Jm from the set {1, …,
L} so that the marginal probability for the l-th sample to be selected is equal
to . One way to achieve this is to (i) draw U0 ~ Unif[0,1],
and let Uj = j − U0, for j=1, …, m; and (ii) choose Jj = l if p0 + … + pl−1 <
Uj ≤ p1 + … + pl, for l =1, …, L and P0 =0.

c. Let , and update the new weight as .
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4. Estimation. When the target loop length n is reached, Ωcoil is estimated as

, where mn is the number of samples at length n,  is the importance
weight of samples , and  is the identity function of 1.

In order to illustrate the sequential Monte Carlo Method more clearly, we give a flowchart in
Fig. 4.

An advantage of the above resampling method over previous sequential Monte Carlo
method25 and pruning-enrichment approach26 is that it guarantees to generate distinctive
conformations. The priority score βt(St) can be understood intuitively as a measure of the
chain’s “growth perspective,” and is used here to encourage the growth of chain St to specific
directions. In this study we use a simply priority score,

where r=|rt − r0| is the distance between the nucleotides grown at step t and the first stem where
the growth began. Here R=b(n−t), and b=3.9 Å is the bond length, n the target loop length, and
w is a constant that controls the sharpness of the function. This priority score gives high weights
thus high surviving probability to those chains that may reach r0 in subsequent steps, and
eliminate those chains that are impossible to do so.

III. RESULTS
A. Effectiveness of discrete k-state model for RNA

To evaluate how well the discrete k-state model can represent RNA structures, we map an RNA
structure in the continuous space to a structure in the discrete space, requiring that the mapped
structure has the least root mean square deviation (RMSD) with respect to the structure in
continuous space. Here, we use a heuristic buildup algorithm first introduced by Park and
Levitt.27,28 We have mapped all 172 RNA structures in our database to structures in the
discrete space. The chain length ranges from 2 to 156, with the exceptions of a 23S rRNA,
which has a length of 2 754, and a 16s rRNA of length of 1 494. Using the optimized 4-, 5-,
and 6-state models, we find that the RMSD values are small, most of which range from 0.2 to
4.0 Å, with seven exceptions ranging between 4.0 and 5.0 Å. The RMSDs for the two very
long rRNAs are ~4.5, ~4.2, and ~4.0 Å for the 4-, 5-, and 6-state models, respectively. We also
find that the RMSD distance depends weakly on the number of states, and the average over all
structures are 2.2, 2.2, and 2.1 Å for 4-, 5-, and 6-state models, respectively. Overall, our k-
state models work well.

B. Effectiveness of sequential Monte Carlo sampling method
To evaluate the performance of our sampling method, we compare the estimated loop entropy
values with the exact values obtained by exhaustive enumerations. Figure 5 shows the entropies
of hairpin loops calculated using 4-, 5-, and 6-state models. The estimated values are essentially
indistinguishable from the exact values for all 4-, 5-, and 6-state models, indicating that our
sampling method is accurate. The advantage of our sampling method is that we are no longer
limited to short loops and can compute entropies of very long loops.

It can also be seen that the entropy calculated by the 4-state model is much smaller than that
by 5- and 6-state model, and is also much smaller than that derived from experiments, especially
for long loops. This is likely due to the lack of chain flexibility in 4-state model and the
concomitant difficulties in modeling the closure of the loops. Therefore, we will dispense with
entropy calculated using 4-state model in the following discussions.
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C. Loop entropies of RNA secondary structures
1. Entropy of RNA secondary structures with short loops—We compare our
estimated entropy values of hairpin, bulge, and internal loops with experimentally measured
values at short loop length (n≤10, Fig. 6). The model used in the calculation is the 6-state model.
The experimental data are taken from Ref. 2.

As shown in Fig. 6, there is a general good agreement between calculated and measured entropy
values, although the agreement is not perfect. One possible reason is that experimentally
measured loop entropy can be sequence dependence due to possible mismatched intraloop base
stackings, while such contributions to the entropy is ignored in our calculations, similar to the
study of Cao and Chen.16

We also compare our results with that of a recent theoretical model by Cao and Chen.16 Using
virtual bond representation for RNA backbones and enumeration of all possible self-avoiding
walks on a diamond lattice model, Cao and Chen calculated the entropy values for hairpin
loops, bulges, and internal loops.16 These entropy calculations are shown to lead to
impressively accurate predictions of the thermal denaturation curves, the equilibrium folding/
unfolding pathways, and the native structures of RNA molecules. Comparison of the loop
entropies calculated using our 6-state model (Fig. 6) with that of Ref. 16, we find that the
agreement of our results with experiments is comparable to that described in Ref. 16, indicating
the usefulness of our method in calculating RNA entropy important for predicting RNA
secondary structures.

2. Extrapolated entropy of RNA secondary structures with long loops—The main
focus of our study is to estimate entropy of secondary structures with long loops. Our approach
not only gives comparable results of entropy at short length, but also can estimate entropy
values of long loops of arbitrary complexity. We have calculated the entropy of hairpin, bulge,
internal loops, three-way, and four-way multibranch loops, all with long loop length, which
will be discussed in detail in later sections.

Because there is no direct measurement of entropy of long loops when n>9, we compare our
results with a phenomenological model that calculates loop entropy by extrapolating measured
entropy values at length nmax, where nmax=9, 5, and 6 for hairpin, bulge, and internal loops,
respectively. This extrapolation model is based on the treatment of Jacobson and Stockmayer,
1,29

(2)

3. Entropy of RNA hairpins with long loops—Figure 7 shows the calculated loop
entropy for hairpin loops of length of 3–50 and the corresponding extrapolated values. For
hairpin loops of length n>10, the estimated loop entropy is in excellent agreement with
extrapolated values, regardless whether the 5-or the 6-state model is used. This suggests that
the extrapolation formula provides very accurate estimation for the entropy of long hairpin
loops. The estimated values using the 5-state model is very similar to that using the 6-state
model, suggesting that our 5-state model is sufficiently accurate for modeling RNA loop
entropy (Fig. 7).

4. Entropy of RNA bulges with long loops—Figure 8 shows the estimated entropy values
of bulge loops and corresponding extrapolated values. In general, the estimated entropy values
agree with extrapolated values, especially for the 6-state model. The discrepancy is less than
0.5kB, rresponding to a free energy of 0.3 kcal/mol at 37 °C. This is well within experimental
errors.1 However, although the discrepancy is rather small, we find the calculated entropy
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decreases slightly faster than the extrapolated values. To quantify this difference, we fit the
calculated entropy −ΔS(n) in Fig. 8 using a phenomenological model for 10<n<50. In this case,
data at shorter length are not used, as our interests are in the behavior of long loops. This leads
to the following empirical formula:

(3)

where c=1.85, which determines the decreasing slope of the loop entropy as length increases.
−ΔS(10) is used as a free parameter, and the best fit gives a value of −ΔS(10) =9.2kB. The
coefficient c of the second term is larger than the value of 1.75 in the model of Jacobson and
Stockmayer. This larger decreasing rate may be due to the stricter conformational constraint
imposed by the helix that close the bulge loop, relative to the constraints in hairpin loops. In
fact, the average end to end distance that is used to constrain loops, determined from the atom
positions stored in our hairpin and bulge stem libraries, is 15.1 and 11.9 Å for hairpin and bulge
loops, respectively. This represents a significant difference.

5. Entropy of RNA long internal loops—Figure 9 compares the estimated and
extrapolated entropy values of long internal loops. In our calculation, the entropy of loop of
length 2n is calculated for a n by n internal loop, and the entropy of length 2n+1 is for a n by
n+1 internal loop. This choice is made to eliminate possible asymmetric size effect, which will
be fully addressed in a later section. The loop entropy values of n<6 determined by experiment
are also plotted along with extrapolated values.

Although the calculated entropy is in general agreement with experiments for short loops (Fig.
6), the calculated entropies are significantly larger than the extrapolated values for long internal
loops (Fig. 9). Since the calculated entropy at n=6 is very close to the experimental
measurement (with a discrepancy of 0.2kB, or 0.14 kcal/mol at 37 °C, Fig. 5), the large
discrepancy for long loops is reflected by the small slope of the curve of the estimated values.
A fitting of data between 10<n<50 using an empirical model gives

(4)

where c=1.55 and −ΔS(10) =9.5kB. The coefficient c of the second term is smaller than the
value 1.75 in the model of Jacobson and Stockmayer, suggesting that as the length of internal
loop increases, the entropy decrease slower than what would be expected from the Jackson–
Stockmayer model.

6. Entropy of multibranch long loops—Multibranch loops are nearly ubiquitous in RNA
molecules and play central roles in forming RNA secondary structures.5,6 However, their free
energy and entropy are difficult to measure experimentally, due to possible coaxial stacking
effects and the difficulty in designing sequences with desired phase transitions for measurement
as the loop lengths increases. Estimating their entropy is well-suited for computational studies.
Using the method described earlier, we can calculate the loop entropy of three-way, four-way,
or more complicated multibranch loops. Figure 10 shows the calculated entropy for three-way
multibranch loops. In our calculation, the entropy of loop of length 3n is calculated from an
n by n by n multibranch loop, the loop of length 3n+1 from a n by n by n+1 loop, and 3n+2
from a n by n+1 by n+1 loop, respectively. It is straightforward to compute average entropy
values for other combinations.

The curve for the extrapolated entropy is calculated as2

and
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where h is the number of helices.2 For three-way multibranch loops, h equals 3.

As shown in Fig. 10, the estimated entropy is significantly larger than the extrapolated value,
and it increases less rapidly as the loop lengths increase. One possible reason of this discrepancy
is that the experimentally used sequences are relatively short, and there are non-negligible
possibilities of forming coaxial stacked helices, in which two helices are separated by one or
zero unpaired nucleotide. The coaxial stacking will greatly decrease the number of possible
conformation of loops, hence reduces loop entropy.

It is possible that the experimentally determined free energy of initiation of multibranch loop
is not the pure entropic cost to close the loop, but may include the extra enthalpic and entropic
contributions from coaxial stacking. Since our calculation corresponds to the entropy of longer
multibranch loops with symmetric length distributions, in this case the coaxial stacking effect
becomes impossible.

The estimated entropy of multibranch loops as shown in Fig. 10 can be described by an
empirical model,

(5)

where c=1.40 and −ΔS(10) =9.9kB. The coefficient c is smaller than the constant c=1.75 for
the hairpin loops, and is also smaller than the value c=1.55 for the internal loops.

It seems that as the number of helices increases, the entropy decreases more slowly as loop
length increases. To confirm this observation, we calculated the entropy of four-way
multibranch loops, and compared it with that of hairpin, bulge, internal, and three-way
multibranch loops (Fig. 11). It can be seen clearly that the slope of the entropy curve decreases
as the number of helices increases. The coefficient c is 1.75, 1.55, 1.40, and 1.23 for entropy
of hairpin loop, internal loop, three-way, and four-way junctions, respectively. The entropy of
bulge loop is special as it has the largest slope, possibly due to the stricter constraints imposed
by the helical strand it is connected to. The reduced slope of the entropy curves of internal,
three-way, and four-way multibranch loops is due to the fact that, in addition to the constraints
they impose on the loop conformation, the additional helices also impose constraints to the
coil states, decreasing the value of ln Ωcoil in Eq. (1) thus the slope. The Jacobson and
Stockmayer treatment fails in these cases because it uses the Gaussian approximation where a
loop can adopt any rotation angle and is not restricted by excluded volume. This approximation
ignores the constraints imposed by the additional helices, which clearly will deviate from the
Gaussian approximation. Overall, Fig. 11 shows that the traditional Jacobson and Stockmayer
model only works well for hairpin loops and need to be modified for bulge, internal, and
multibranch loops.

7. Effect of size asymmetry—We are also interested in the effect of size asymmetry on
loop entropy. We investigate this effect by calculating the entropy for all possible combinations
of loop length of internal loops of lengths up to n=50. The result is shown in Fig. 12. It can be
seen that the loop entropy is largely determined by the loop length, and the asymmetric
distribution of loop length only result in small changes in loop entropy, usually in the order of
0.1kB or 0.06 kcal/mol at 37 °C. This suggests that the two chains in an internal loop are
independent of each other, especially when loops are long. Moreover, the asymmetric effect
slightly increases the entropy thus the stability, whereas it was found to decrease the stability
according to experimental data.1
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These findings are in contrast to experimental observations, where the asymmetric effect is

thought to be large, and a free energy penalty of  is usually introduced to

account for this effect ( , according to Ref. 1). The source of this
discrepancy is likely due to the fact that what is calculated here is purely the entropic change
due to asymmetric distributions of loop lengths, whereas in experiments the asymmetric effect
is partially enthalpic in nature, arising from possible noncanonical base pairing that tend to
form between symmetric loops and therefore make the two chains dependent on each other.6

IV. CONCLUSION
The estimation of free energy of RNA secondary structures is important for understanding
RNA stability and folding. Among all physical factors contributing to RNA stability, assessing
conformational loop entropy is the most challenging task for both experimental measurement
and for theoretical calculations. For example, there is no known experimental measurement of
entropy for loops longer than 12 bases. In this work, we have developed optimized discrete k-
state models for representing RNA backbone structures, which incorporate the excluded
volume effect. Combined with an efficient sequential Monte Carlo sampling method, we have
calculated the conformational entropy of various RNA secondary structures with loops,
including hairpin, bulges, internal, and multibranched loops. For short loops, entropy is
calculated through exhaustive enumeration of self-avoiding walks in the k-state space
connecting the two bases at one end of an RNA stem. The main focus of our study is to compute
entropy of long loops, which is achieved by using the sequential Monte Carlo sampling method.

Our results for short loops agree well with a recent theoretical study, and is also in good general
agreement with experimental results. For long loops, the calculated entropies of hairpin loops
are in excellent agreement with the Jacobson–Stockmayer model, which extrapolates from
experimental data. However, for internal loop and multibranch loops, we find that the entropy
value decreases less than expected from the Jacobson–Stockmayer model as loop length
increases. It is because the additional helices impose additional constraints thus distort the
assumed Gaussian distribution in the Jacobson–Stockmayer model. For bulge loops, the
entropy decreases more, possibly due to the stricter constraints imposed by the helical strand
it is connected to. This suggests that the bulge loop and more complex secondary structures
including internal loops and multibranched loops require additional modification beyond the
Jacobson and Stockmayer model. Based on estimated loop entropy, we have developed
empirical formulae for entropy calculations that work well for all these different secondary
structures with long loops.

We also studied the asymmetric size effect of loops and find that loop entropy is predominantly
determined by the overall loop length, and the asymmetric division of individual loop lengths
has small effects on the overall entropy of internal loops. Moreover, the asymmetric effect
slightly increases the entropy thus the stability. These findings are in contrast to previous
experimental observations. This discrepancy suggests that entropy due to strictly asymmetric
size effect is small, and experimentally observed large asymmetric effect is likely to be partially
enthalpic in nature.

The approach we developed in this study is general. It provides a basis for both structure
representation and entropy estimation. It can be applied to calculate the entropy of loops
associated with other RNA spatial structures, such as loops in pseudoknots, loops with base
triplets, and loops associated with other tertiary contacts. The improved entropy estimation
will be useful for studying RNA stability and folding, and for RNA structure prediction.

Zhang et al. Page 11

J Chem Phys. Author manuscript; available in PMC 2008 August 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Acknowledgements

This work is supported by grants from National Science Foundation (DBI-0646035), National Institute of Health
(GM68958 and GM079804), and Office of Naval Research (N00014-06-1-0100). J.Z. and W.W. are also supported
by the National Natural Science Foundation of China (90403120, 10504012, and 10704033) and the National Basic
Research Program of China (2006CB910302). We acknowledge Shanghai Supercomputer Center for computing
resources.

References
1. Mathews DH, Sabina J, Zuker M, Turner DH. J Mol Biol 1999;288:911. [PubMed: 10329189]
2. Serra MJ, Turner DH. Methods Enzymol 1995;259:242. [PubMed: 8538457]
3. Xia T, SantaLucia J, Burkard ME, Kierzek R, Schroeder SJ, Jiao X, Cox C, Turner DH. Biochemistry

1998;37:14719. [PubMed: 9778347]
4. Mikulecky PJ, Takach JC, Feig AL. Biochemistry 2004;43:5870. [PubMed: 15134461]
5. Diamond JM, Turner DH, Mathews DH. Biochemistry 2001;40:6971. [PubMed: 11389613]
6. Mathews DH, Turner DH. Biochemistry 2002;41:869. [PubMed: 11790109]
7. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA. Science 2000;289:905. [PubMed: 10937989]
8. Gesteland, RF.; Cech, TR.; Atkins, Jf, editors. The RNA World. 2. Cold Spring Harbor Laboratory

Press; New York: 2005.
9. Brierley I, Pennell S, Gilbert RJC. Nat Rev Microbiol 2007;5:598. [PubMed: 17632571]
10. Dima RI, Hyeon C, Thirumalai D. J Mol Biol 2005;347:53. [PubMed: 15733917]
11. McCaskill JS. Biopolymers 1990;29:1105. [PubMed: 1695107]
12. Chen SJ, Dill KA. J Chem Phys 1995;103:5802.
13. Chen SJ, Dill KA. J Chem Phys 1998;109:4602.
14. Chen SJ, Dill KA. Proc Natl Acad Sci USA 2000;97:646. [PubMed: 10639133]
15. Zhang W, Chen SJ. J Chem Phys 2001;114:7669.
16. Cao S, Chen SJ. RNA 2005;11:1884. [PubMed: 16251382]
17. Liang J, Zhang JF, Chen R. J Chem Phys 2002;117:3511.
18. See http://kinemage.biochem.duke.edu/databases/rnadb.php for the RNA05 database and

MOLPROBITY web server.
19. Murray LJW, Arendall WB III, Richardson DC, Richardson JS. Proc Natl Acad Sci USA

2003;100:13904. [PubMed: 14612579]
20. Duarte CM, Pyle AM. J Mol Biol 1998;284:1465. [PubMed: 9878364]
21. Zhang JF, Chen R, Liang J. Proteins 2006;63:949. [PubMed: 16477624]
22. Zhang JF, Chen Y, Chen R, Liang J. J Chem Phys 2004;121:592. [PubMed: 15260581]
23. Zhang JF, Lin M, Chen R, Liang J, Liu JS. Proteins 2007;66:61. [PubMed: 17039507]
24. Fearnhead P, Clifford P. J R Stat Soc Ser B (Stat Methodol) 2003;65:887.
25. Zhang JL, Liu JS. J Chem Phys 2002;117:3492.
26. Grassberger P. Phys Rev E 1997;56:3682.
27. Park B, Levitt M. J Mol Biol 1995;249:493. [PubMed: 7783205]
28. Zhang JF, Chen R, Liang J. Proteins 2006;63:949. [PubMed: 16477624]
29. Jacobson H, Stockmayer WH. J Chem Phys 1950;18:1600.
30. Kaufman, L.; Rousseeuw, PJ. Finding Groups in Data. Wiley; New York: 1990.
31. Murthy VL, Srinivasan R, Draper DE, Rose GD. J Mol Biol 1999;291:313. [PubMed: 10438623]

Zhang et al. Page 12

J Chem Phys. Author manuscript; available in PMC 2008 August 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://kinemage.biochem.duke.edu/databases/rnadb.php


FIG. 1.
(Color online) A schematic diagram showing RNA secondary structures of hairpin, bulge,
internal, and multibranch loops.
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FIG. 2.
(Color online) The virtual bond representation of RNA backbone. The torsional angles θ and
η are calculated and used in the analysis of backbone rotamers.
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FIG. 3.
(Color online) The set of (θ,η) angle pairs of clusters in RNA molecules and the centers of k-
clusters calculated by the k-mean clustering method. The centers are marked by stars. (a), (b),
and (c) are for k=4, 5, and 6 clusters, respectively. (d) shows the distribution of Silhouette value
calculated for the 4-state clustering procedure.
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FIG. 4.
The flowchart showing the SMC sampling algorithm.
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FIG. 5.
(Color online) Comparison of loop entropies calculated by exhaustive enumeration and
estimated by sequential Monte Carlo (SMC) sampling method using the 4-state, 5-state, and
6-state model. They are essentially indistinguishable, suggesting that our sampling method
works well.
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FIG. 6.
The calculated entropies of hairpin, bulge and internal loops and the corresponding
experimental values. The model used in calculation is the 6-state model. All the three figures
are plotted with the same scale, which is also the same with that used in Ref. 16 to facilitate
comparison with the previous theoretical model.
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FIG. 7.
Comparison of the hairpin loop entropies calculated by 5- and 6-state models and the
extrapolated values (note that the values at n≤9 are determined by experiments). The curve
calculated by 6-state model is smoother than that by 5-state model because the calculation are
repeated many times to ensure the relative standard error is less than 1%.
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FIG. 8.
Comparison of the bulge loop entropies calculated by 5- and 6-state models and the extrapolated
values (the values for n≤5 are determined by experiments). The entropy calculated by 4-state
model is not shown because it is significantly smaller than the extrapolated value, similar to
the case of hairpin loop. The fitted curve using Eq. (3) is also shown in (b).
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FIG. 9.
Comparison of the internal loop entropies calculated by 5- and 6-state models and the
extrapolated values. The values for n≤6 are determined by experiments. The fitted curve using
the empirical model of Eq. (4) is shown in (b).
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FIG. 10.
Comparison of the three-way multibranch loop entropies calculated by 5- and 6-state models
and the values calculated by the empirical model (see the text). The fitted curve using the
empirical model Eq. (5) is shown in (b).
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FIG. 11.
(Color online) Comparison of the calculated entropies of hairpin, bulge, internal, three-way,
and four-way multibranch loops. It can be seen clearly that the slope of the entropy curve
decreases as the number of helices increases.
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FIG. 12.
(Color online) The loop entropy as a function of size asymmetry |n1−n2|, calculated for all
combinations of loop length of internal loops of lengths n=n1+n2≤ 50. The entropy of loops
with odd number of n>11 are not shown in the interest of clear presentation. The data points
connected by a line have the same loop length n.
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