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Abstract
CDKN2A is the major melanoma susceptibility gene so far identified, but only 40% of three or more
case families have identified mutations. A comparison of mutation detection rates was carried out
by “blind” exchange of samples across GenoMEL, the Melanoma Genetics Consortium, to establish
the false negative detection rates. Denaturing high performance liquid chromatography (DHPLC)
screening results from 451 samples were compared to screening data from nine research groups in
which the initial mutation screen had been done predominantly by sequencing. Three samples with
mutations identified at local centres were not detected by the DHPLC screen. No additional mutations
were detected by DHPLC. Mutation detection across groups within GenoMEL is carried out to a
consistently high standard. The relatively low rate of CDKN2A mutation detection is not due to failure
to detect mutations and implies the existence of other high penetrance melanoma susceptibility genes.
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1. Introduction
GenoMEL (the Melanoma Genetics Consortium; http://www.genomel.org) is comprised of
groups on four continents working on high penetrance genes in multiple case melanoma
families. The major susceptibility locus for melanoma is CDKN2A on chromosome 9p. The
majority of causal mutations at this locus, many of which are single base pair substitutions in
exons 1α and 2, affect the function of the protein p16INK4a. Some of the mutations in exon 2
also impact on the alternative splice product of the locus, p14ARF. Since p16INK4a was first
described as a melanoma susceptibility gene,1–3 increasing numbers of mutations at the locus
have been described.

Less common types of germline mutation have been reported, including a promoter variant
that creates an alternative initiation codon,4,5 and a deep intronic mutation common in
England.6 A comprehensive screen of the intronic regions of CDKN2A identified two
additional putative intronic mutations. However, in English pedigrees at least, these do not
appear to explain predisposition to melanoma in a significant proportion of families.7

Recently, rare causal mutations have been identified in exon 1β; these mutations impact
p14ARF alone. Specifically, a germline deletion not affecting p16INK4a was reported in
2001,8 a 16 base pair insertion in exon 1β was detected in a Spanish melanoma family,9 and
a number of pedigrees with exon 1β splice site variants have been described.10,11 Finally, a
recent screen of 146 English melanoma families identified a small number of pedigrees with
germline deletions at the 9p21 locus.12

Within GenoMEL the overall proportion of families with identifiable mutations is relatively
low and there is considerable variation between centres.13,14 In a study from Italy, 33% of
pedigrees with 2 or more cases of melanoma had mutations,15 whereas a Spanish study showed
that 17% of melanoma families had CDKN2A mutations.16 In Australia lower percentages
have been reported, e.g. 8.4% of 2 or more case families.17 The variation between centres may
result from founder effects and the variable presence of other as yet unidentified susceptibility
genes such as the putative gene at 1p22.18 There may also be an effect of the environment.
Clustering in families in areas of high sun exposure such as Australia may result from enhanced
contribution of lower penetrance susceptibility genes such as MC1R. Indeed, compared to
Europe, there is almost doubling of the penetrance of CDKN2A mutations in Australia thought
to be due to higher ultraviolet radiation flux.19

Another possibility however, is that groups had failed to identify significant numbers of
mutations at the CDKN2A locus, particularly since early mutation detection studies often used
the single stranded conformational polymorphism (SSCP) analysis rather than sequencing.
GenoMEL, therefore, designed an audit to evaluate the overall quality of mutation detection
across the entire CDKN2A locus. We also investigated the utility of denaturing high
performance liquid chromatography (DHPLC) as a screening approach to be used by
GenoMEL in large numbers of samples. Samples that had initially been genotyped at the centre
of origin by sequencing (eight centres) or by SSCP (one centre) were sent to Leeds, UK, for
screening with DHPLC. The study also therefore provides a comparison of sequencing with
DHPLC.
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2. Materials and Methods
2.1. Samples and general organisation

The core groups within GenoMEL agreed to send samples to the Division of Epidemiology
and Biostatistics of the Cancer Research UK Clinical Centre at Leeds, UK. The participating
groups were from Barcelona, Spain (BCN), Leiden University Medical Center, the Netherlands
(LUMC), Queensland Institute of Medical Research, Australia (QIMR). Massachusetts
General Hospital, Boston, USA (MGH), the National Cancer Institute, Washington, USA
(NCI/USA), an NCI group collaborating with Emilia-Romagna, Italy (NCI/Italy), the
University of Genoa, Italy (U Genoa), the University of Pennsylvania, Philadelphia USA (U
Penn) and Westmead Institute for Cancer Research, New South Wales, Australia (WICR). The
samples were labelled by study number alone, and therefore the Leeds group were blind to the
mutation status of the sample.

All groups provided DNA from two melanoma cases from families with three or more
melanoma patients that had been screened by that group, whether a mutation had been detected
or not. In each case the initial mutation detection screen carried out at the centre of origin was
by sequencing, with the exception of WICR, where the primary screen was by SSCP for
CDKN2A exon 1 and by sequencing for exon 2.

The samples were processed by the Leeds group and results sent to the NCI in Washington
Bethesda, MD where DHPLC audit results were pooled with the original groups’ results. Only
coding mutations were assessed; polymorphisms were not considered in this analysis.

2.3. Statistical analysis
The DHPLC results from Leeds were compared to the results from the original centres using
two units of evaluation: “sample” and “exon”. Sample summarized the results over the five
different exons evaluated. Exon separately examined CDKN2A exons 1α, 1β, 2 and 3, and
CDK4 exon 2. Two measures of evaluation were used: failure and discrepancy. Failure was
defined as the percentage of samples or exons that failed the DHPLC assay. Discrepancy was
the proportion of inconsistencies between DHPLC and the original centre’s results. To confirm
discrepancies and eliminate any sample handling errors at any point in the process, all samples
with initial evidence for discrepant results were sequenced at the University of Toronto (D.
Hogg).

2.4. PCR amplification
The four exons of CDKN2A (exons 1α, 1β, 2 and 3) and CDK4 exon 2 were amplified from
genomic DNA by PCR, using previously described primers (Table 1).2,3,20 PCR was carried
out in a total volume of 25 μl, using 25ng genomic DNA, 0.2mM dNTPs, 50μM each primer,
5% (v/v) DMSO, 1.5mM MgCl2, and 1 unit of AmpliTaq Gold DNA polymerase (Applied
Biosystems, Warrington, UK), in the reaction buffer supplied by the manufacturer. PCR
amplification conditions were as follows: An initial denaturation at 94°C for 10 min; followed
by 30 cycles of denaturing at 94°C (30s), annealing at 55°C (30s), and extension at 72°C (30s),
with a final 7 minute extension at 72°C. PCR fragments were isolated by agarose gel
electrophoresis and purified prior to sequencing using the QIAquick Gel Extraction Kit
(Qiagen, Paisley, UK).

2.5. DHPLC analysis
The DNA samples were screened for sequence changes in CDKN2A exons 1α, 1β, 2, and 3,
and CDK4 exon 2, by DHPLC analysis. The DHPLC system had previously been optimised
using the Leeds family samples. Each of 22 separate variants observed in the Leeds melanoma
samples21,22 could be clearly detected by DHPLC using the conditions described below.
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Temperatures for mutation detection were calculated using the DHPLC Melt program available
at http://insertion.stanford.edu/melt.html.23 Melting temperatures were also determined
empirically by running a wild type sample at progressively increasing temperatures until a
reduction in retention time of 1 minute was observed. For CDKN2A exons 1α, 1β and 2, analysis
was carried out at the temperatures determined by DHPLC Melt. For exon 3, one of the two
temperatures used was 1°C higher than that predicted by DHPLC Melt (Table 1).

DHPLC was carried out using a Transgenomic WAVE Nucleic Acid Fragment Analysis system
and DNASep column (Transgenomic, Crewe, UK). The composition of buffer A was 0.1M
triethylammonium acetate (TEAA); buffer B contained 0.1M TEAA and 25% (v/v)
acetonitrile. Analysis was carried out at a flow rate of 0.9 ml/min and a buffer B gradient
increase of 2%/min for 4 minutes. Start and end concentrations of buffer B were determined
empirically for each fragment.

PCR products were prepared for DHPLC by denaturing at 95°C for 5 minutes and then cooling
to 65°C to allow the formation of heteroduplexes. Data analysis was by visual inspection of
chromatograms by two independent observers.

2.6. Sequencing analysis of DHPLC ‘positive’ samples
All PCR fragments which displayed an aberrant DHPLC chromatogram were sequenced to
identify the underlying nucleotide change. Sequencing reactions were carried out using the
ABI PRISM BigDye v2 Terminator Cycle Sequencing Kit. Data collection was performed
using a 3100 Genetic Analyser (Applied Biosystems, Warrington, UK) running Applied
Biosystems Data Collection Software (version 1). Data analysis was carried out by visual
inspection of electropherograms, and using Applied Biosystems Sequence Navigator analysis
software (version 1.0.1). DNA sequencing was performed in both directions, initiated from the
forward and reverse primers used in the initial PCR amplification of each fragment.

3. Results
A total of 537 samples were screened by DHPLC for sequence variation in five exons
(CDKN2A exons 1α, 1β, 2 and 3, and CDK4 exon 2). Of the 2685 products processed by
DHPLC 106 (4%) failed the assay. DNA that had been extracted from buccal samples showed
a much higher failure rate than DNA extracted from blood; 18/40 (45%) of DHPLC assays on
buccal-derived DNA failed, compared to 88/2645 (3%) of assays on blood-derived samples.

The DHPLC audit identified 40 different mutations (138 in total) and 10 different
polymorphisms (149 in total) in the five exons investigated. A total of 37/1343 (3%) of DHPLC
assays were found to give a false positive screening result in that the DHPLC traces were judged
to be atypical, but subsequent sequencing showed that the samples were wild type (Table 2).
Where comprehensive local sequencing data were available, a comparison was made between
the DHPLC results and the sequencing data. The DHPLC audit results could be compared to
the local screening data for (at least) CDKN2A exons 1α and 2, in a total of 451 samples.

Three mutations, identified by the local centre’s primary screen, were not detected by the audit
DHPLC (3/1343 = 0.2% by exon, or 3/451 = 0.7% by sample). A Gly101Trp mutation, in
CDKN2A exon 2, was not detected by DHPLC in a sample originating from the National Cancer
Institute, USA (NCI/USA), despite this mutation being clearly detected in several other
samples in this investigation. Sequencing confirmed the presence of the Gly101Trp mutation
in this sample. The CDKN2A exon 1 variant Trp15OPA was not identified in two samples
originating from the Westmead Institute for Cancer Research, Australia (WICR), where this
variant had been detected by SSCP in the primary screen. Sequencing confirmed the presence
of the Trp15OPA mutation in these samples, however repeated DHPLC analysis demonstrated
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that this variant was not detectable using the DHPLC conditions employed. The application of
an additional melting temperature (69°C) for the exon 1 DHPLC subsequently enabled the
detection of the Trp15OPA variant.

The centralised DHPLC audit did not identify any additional mutations that had not been
reported by individual groups after the local primary mutation screen.

4. Discussion
We carried out an assessment of mutation detection by blind exchange of samples from nine
melanoma research groups within GenoMEL. The assessment was carried out with the
intention of 1) standardising mutation detection across a range of research groups worldwide,
2) identifying mutations that may have been missed in the primary mutation screen, and 3)
validating DHPLC as a screening technique.

The DHPLC technique is sensitive, rapid and relatively inexpensive,24–27 and was therefore
considered to be well suited to an audit of this nature. Different screening techniques are known
to have different limitations in identifying mutations.28–30 The use of DHPLC for the audit
screen has the further advantage of complementing a primary screen using complete
sequencing, the screening technique employed at most GenoMEL centres.

The DHPLC failure rate was low, only 3% of assays on blood-derived DNA samples could
not be analysed. However, the failure rate for buccal-derived samples was considerably higher,
at 45%. The overwhelming majority of DHPLC failures were in fact failures of the initial PCR
reaction, resulting in the absence of PCR product for DHPLC analysis. DHPLC is to some
extent sensitive to the quality of DNA used in the initial PCR reaction. Because the number of
buccal samples were so few (n=8), we did not attempt to reoptimise exon-specific PCR
conditions.

A small number (3%) of DHPLC assays were found to give a false positive screening result.
The majority of these were found to be the result of over-cautious scoring of DHPLC traces,
as samples that gave a weak or atypical DHPLC trace were typically recorded as positive, as
is appropriate for a screening technique. Although unlikely, there is the possibility that these
DHPLC positive traces represent a true mutation that is undetectable by sequencing.

Our observed high concordance between primary and audit screens (99.8%) was based on a
large sub-set of genotyping data from across GenoMEL. In some cases a direct comparison
could not be made between primary and audit screens, as a number of research groups had not
routinely screened the whole of CDK4 exon 2 or CDKN2A exon 1β, due to the low reported
frequency of mutations in these genes.20,31–33 Also, some samples had been screened by a
specific test for a mutation already identified in an additional family member, hence the primary
screen did not cover the entire exon.

Although the DHPLC assay can be optimised to detect known variants in a particular exon,
there is always the possibility that the technique could be insensitive to a previously
unidentified variant. Employing as broad a set of variants as possible to optimise the DHPLC
assay can reduce this risk. One of the benefits of undertaking a mutation detection audit across
a number of research groups is that it enables the pooling of many different CDKN2A variants,
and therefore increases confidence in the ability of the technique to identify variants in future
studies.

The DHPLC analysis of CDKN2A exon 3 was somewhat problematic. Approximately 50% of
all exon 3 DHPLC traces were positive, but only 7/244 (3%) carried a causal mutation. The
presence of two common 3’UTR polymorphisms (500 c>g and 540 c>t) substantially increased

Harland et al. Page 5

Eur J Cancer. Author manuscript; available in PMC 2009 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the cost of subsequent sequencing to identify the underlying mutation. In addition, the
frequency of the polymorphisms in the population (15% and 20% respectively) is such that
they are occasionally found as homozygous variants, which are not detected by DHPLC.34
Therefore, DHPLC is not ideally suited to the analysis of this exon. Perhaps an improved
approach to high throughput screening of CDKN2A exon 3 and its flanking regions would be
the use of mutation specific tests for the three known variants in this part of the gene (the two
3’UTR polymorphisms in the exon and the causal melanoma associated intronic variant
IVS2-105 a>g). No other germline causal variant has been identified in exon 3, and indeed the
size of the translated portion (4 amino acids) and demonstrated lack of function of exon 335
make the existence of additional mutations unlikely.

DHPLC was evaluated as an alternative technique for mutation detection. This study has shown
that the technique can be used to carry out primary CDKN2A mutation screening for future
large-scale studies where issues of speed and expense are critical. DHPLC has been shown to
have only a slightly lower rate of mutation detection than direct sequencing, which is generally
regarded to be the most sensitive screening technique.36,37 Out of a total of 50 different
variants identified in this study, a single variant (Trp15OPA) was initially opaque to the audit
DHPLC. This represents a sensitivity of 98% compared to sequencing. Following further
optimisation the sensitivity was subsequently increased to 100%. The technique’s relative low
cost (approximately 8 times cheaper than sequencing) and high throughput makes it ideal for
screening large numbers of samples in which the expected mutation frequency is low, for
example a population based screen for CDKN2A mutations.

This audit also has shown that the variation in mutation detection frequencies between the
different groups is not a result of variation in sequencing approaches; in fact the standard of
screening across groups is uniformly high. Rather the variation in mutation frequency between
groups reflects differences between populations, either through differing genetic backgrounds
or environmental contributions. GenoMEL continues to address this issue to better understand
the mutation frequency variation across populations.
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Table 1
PCR primers and DHPLC conditions

Exon Primers Fragment Size DHPLC Temperature
CDKN2A
Exon 1α

F-CAGCACCGGAGGAAGAAAG
R- GCGCTACCTGATTCCAATTC 351 bp 65, 68, (69)

CDKN2A
Exon 2

F- GGAAATTGGAAACTGGAAGC
R- GGAAGCTCTCAGGGTACAAATTC 499 bp 60, 65, 70

CDKN2A
Exon 3

F- CCATTGCGAGAACTTTATCC
R- TGGACATTTACGGTAGTGGG 329 bp 56, 62

CDKN2A
Exon 1β

F- CACCTCTGGTGCCAAAGGGC
R- CCTAGCCTGGGCTAGAGACG 351 bp 61, 65, 69

CDK4
Exon 2

F- GCTGCAGGTCATACCATCCT
R- ATCATCACACCCCACCTATAGG 371 bp 62
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