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Abstract

We have developed and tested a complete set of nonbonded parameters for a continuum polarizable
force field. Our analysis shows that the new continuum polarizable model is consistent with B3LYP/
cc-pVTZ in modeling electronic response upon variation of dielectric environment. Comparison with
experiment also shows that the new continuum polarizable model is reasonable, with similar accuracy
as B3LYP/cc-pVTZ in reproduction of dipole moments of selected organic molecules in the gas
phase. We have further tested the validity to interchange the Amber van der Waals parameters
between the explicit and continuum polarizable force fields with a series of dimers. It can be found
that the continuum polarizable model agrees well with MP2/cc-pVTZ, with deviations in dimer
binding energies less than 0.9 kcal/mol in the aqueous dielectric environment. Finally we have
optimized atomic cavity radii with respect to experimental solvation free energies of 177 training
molecules. To validate the optimized cavity radii, we have tested these parameters against 176 test
molecules. It is found that the optimized PB atomic cavity radii transfer well from the training set to
the test set, with an overall root-mean-squared deviation of 1.30 kcal/mol, unsigned average error of
1.07 kacl/mol, and correlation coefficient of 92% for all 353 molecules in both the training and test
sets. Given the development documented here, the next natural step is the construction of a full
protein/nucleic acid force field within the new continuum polarization framework.

Introduction

Most commonly used force fields are additive or nonpolarizable in computational simulations
of structures, dynamics, and functions of biomolecules. They incorporate a relatively simple
potential energy function:

V() =3 ky(b—bp)*+ X ko0 -6+ X ky[cos(ng+6) +1]

bonds angles torsions
+ § B -
nonbond pairs | 7 ij Tij (1)

The first three summations are over bonds (1-2 interactions), angles (1-3 interactions), and
proper/improper torsions (1-4 interactions). The final summation (over pairs of atoms i and j)
excludes 1-2 and 1-3 interactions and often uses different parameters for atoms separated by
three covalent bonds (i.e. the 1-4 interactions) from those for atoms separated by more than
three covalent bonds. It describes electrostatics interactions that are represented by a
Coulombic potential, and dispersion and exchange repulsion interactions that are represented
by a Lennard-Jones 6-12 potential. Many such force fields have been developed for
biomolecular simulations, such as Amber,1-6 CHARMM, -8 GROMOS,? and OPLS.10-12
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In force field applications, the covalent bonding terms are not that critical in biomolecular
simulations, as long as bond and angle parameters are taken from small molecule structures
and vibrational frequencies, and torsion terms are fitted to high level quantum mechanical
potential energy surfaces. The van der Waals parameters are not very different among various
force fields either, mostly derived from Jorgensen’s OPLS parameter set.10 The most important
differences among various force fields are the treatments of electrostatics.

To develop parameters for electrostatics, all force fields face the problem of how to effectively
wrap polarization into the total potential energy as physically and cleanly as possible. Amber
based its parameter development on a set of HF/6-31G™* calculations to effectively increase
molecular dipole moments,S to a similar amount observed in the TIP3P and SPC water models.
13,14 |n CHARMM charges were derived primarily from fits to solute-water dimer energetics.
In addition to fitting the dimer interaction energies, charges for model compounds were
adjusted to obtain dipole moments somewhat larger than experimental or gas-phase ab initio
values. OPLS placed a strong emphasis on deriving nonbonded interactions by comparison to
liquid-phase thermodynamics.lll12 Although the OPLS parameters were principally derived
with reference to condensed phase simulations, comparisons to gas-phase peptide energetics
also show good results. 19

A cornerstone for accurate biomolecular simulations is the molecular mechanical force field.
Accuracy of the force field parameters ultimately determines that of the simulations. Arguably,
polarizable force fields of various forms offer more consistent and balanced treatment of solute-
solute and solute-solvent interactions for biomolecular simulations, at least for the
environment-sensitive electrostatic components. Indeed, it is widely recognized that the use of
an electrostatic model based on fixed charges as in nonpolarizable force fields has a significant
shortcoming: the model is unable to respond directly to the molecular environment.
Nevertheless, it should be pointed out that the need for explicit inclusion of polarization effects
in force fields is still a matter of current discussion in the literature.16:17

Three basic methods for including polarization have been studied: fluctuating charge, Drude
oscillator, and induced dipole models. Fluctuating charge models use the principle of
electronegativity equalization to produce a set of point charges that optimize the total
electrostatic energy. In theory, intermolecular charge transfer is then handled by requiring
conservation of charge for the whole silstem. In applications, charge conservation is often
enforced for each individual molecule.28-21 Drude oscillator methods, also referred to as shell
models, use a harmonic restraint potential to tether a mobile point charge to an interaction site.
In a general Drude oscillator model, an atom carries a charge fixed at the nucleus and a second
restrained charge of variable position. The charge magnitudes and harmonic force constants
are fit to atomic and molecular polarizability data and experimental energies. As with
fluctuating charge model, the Drude oscillator model is most often used with an extended
Lagrangian treatment of the variable charges during a molecular dynamics simulation.22
Probably the best-studied method for handling polarization is use of induced multipole
moments. While higher-order multipole polarization and hyperpolarization can be included in
force fields,23 only induced dipoles are usually considered.

To date, most polarizable force fields are still under developments with a few published
applications limited to those from the development groups. The Amber ffO02 potential represents
an initial polarizable member in the Amber force fields with most of its components retained
from nonpolarizable force fields.2%25 The Amoeba force field is a fully polarizable force field
with its own polarizable water potential.26!27 The CHARMM fluctuating charge force field
is another fully polarizable force field.28:29 This force field has been tested with 7
representative globular proteins in explicit polarizable solvent represented by the TIP4P-FQ
potential.28*29 Drude polarizable CHARMM force field incorporates induced polarization into
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the potential function on the basis of the classical Drude oscillator model.30-34 The early
versions of PROSA force fields were first based on a fluctuating charge formalism.3 This
model was later extended via the addition of induced dipoles on some sites.36 The SIBFA
force field has been applied to a series of protein structure and molecular recognition problems.
37-39 The energy function is based on a rather direct decomposition of ab initio SCF
computations, including multipole electrostatics, repulsion, and dispersion-like terms.37-39
Notably, separate terms are used for polarization and charge transfer.37-39 Very recently, the
NEMO potential for a capped glycine residue has been reported.40 This study devoted
considerable attention to the intramolecular potential.40 The SDFF force field is unique among
current polarizable protein force-field efforts in its extensive use of cross-terms and emphasis
on valence potential functions.

With ever improving accuracy in implicit solvents, 4249 an interesting question in the
development of polarizable force fields is how to incorporate electronic polarization in implicit
solvents. Maple et al directly incorporated an explicit polarizable force field in their generalized
Born implicit solvent.46 Schneiders et al combined a Poisson-Boltzmann solvent and the
explicit polarizable Amoeba force field successfully.47 Alternatively, it is also reasonable to
treat electronic polarization in a continuum manner since implicit solvents have treated solvent
polarization in a continuum manner. However, adoption of such a strategy does not argue for
its capability to handle atomic-detailed polarization effects within a molecular environment.
Instead, it is intended to offer an efficient and self-consistent approach in treating polar
interactions in biomolecular simulations more satisfactory than existing additive force fields
with implicit solvents. Continuum treatment of electronic polarization was often used in many
calculations related to solvation free energies.48'49 Typical implicit solvents, such as
numerical Poisson-Boltzmann approachesso*51 and generalized Born approaches52'53 were
developed to deal with non-vacuum solute interior. However, a molecular mechanics force
field that is designed to be consistent with such a treatment of electronic polarization just began
to emerge.54 In a previous study we explored the feasibility to treat electronic polarization in
a continuum manner.>4 We found that an electrostatic model with a single set of parameters
can be used in different environments and conformations with such a continuum treatment of
electrostatic polariza\tion.54 In this work we want to investigate the highly important
nonbonded components for such a force field.

Continuum Polarizable Force Field

In our proposed continuum polarizable model a continuum dipole moment density within the
solute interior is used to represent electronic polarization. The dipole moment density, termed
polarization (P) in classical electrostatics, is related to electric filed (E) as

p-2 g
4 (2)

wheree is the solute dielectric constant, a value of 4 was found to be optimal for tested
molecules.>%

Note that this is different from the commonly used high protein dielectric constants > 20 or
the widely accepted low protein dielectric constant of 2. This discrepancy can be better
understood after a brief review of protein dielectric constants as discussed by Warshel and co-
workers.55 Warshel and co-workers have pointed out that the protein dielectric constant is 1
when all electrostatic details, such as permanent dipoles and induced dipoles, are represented
and sampled explicitly. This is the case for explicit polarizable force fields. Incidentally, this
also argues for why existing additive force fields that are designed with a protein dielectric
constant of 1 are already fundamentally flawed. They have also pointed out that the protein
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dielectric constant is 2 or higher when all except induced dipoles are represented and sampled.
This is the case for continuum polarizable force fields. In other words, the solute dielectric in
the continuum polarizable force fields should be similar to its dielectric at high frequency limit,
&0, 85 N the Debye equation for frequency dependent complex dielectric constant: e=¢’+¢”,

, Es — Eco v (&5 — o) WT
with € =8m+m and € BT Here ¢4 is static dielectric value at zero frequency
and w is angullar frequency, tis tlhe refaxation time for molecular orientation. It should be
pointed out that &, are different for different molecules, ranging from about 2.0 for
cyclohexane, to 4.0 for N-methyl acetamide (NMA) and 5.2 for liquid water at room
temperature. Thus, this value is very different from measured or simulated protein
macroscopic dielectric constant, which can be as high as 20 and above. The much higher value
is to account for rotational polarization, exchange of protein and water in the solvent-exposed
region of protein, and also average over ionization states of acids and bases. This in part
explains why a value as high as 20 has to be used in many previous applications of implicit
solvents in protein stability and pK agredictions where no explicit representation or sampling
of any polarization details presents.5 -57 The current model adopts an empirically optimized
“average” solute dielectric constant of 4 in all molecular mechanics calculations. This value
was shown to give the best agreement in included dipole moments between the continuum
electronic polarizable model and the B3LYP/cc-pVTZ theory for tested model compounds in
tested continuum solvents.>%

Once polarization is known from Eqn (2), the polarization energy (Vpor) can then be calculated
from induced charges (p'"%) due to polarization and potential generated by solute point charges

(¢perm):

1,
Vo= — — ind perm 7 ,
pol zfp Y % 3)

, 1
ind
=——V.P
P an 4

Note that the use of Eqns (2) - (4) requires electrostatic field, E. In the proposed continuum
polarizable force field, E (= -V ¢) can be obtained by solving the Poisson’s equation with a
given set of solute point charges (pP&™, permanent charges):®

V- (eVp) = — dmpP™, (6)

In the continuum polarizable force field, atomic charges of each molecule are fitted with respect
to the quantum mechanical electrostatic potential (ESP) simultaneously in vacuo, a low
dielectric environment (¢ = 4), and a high-dielectric aqueous environment (¢ = 78.39) with a
modified RESP methodology that was developed to accommodate the proposed continuum
electronic polarization treatment.>4 The modified RESP was based on a least square fit between
the molecular mechanical (MM) electrostatic potential and the quantum mechanical (QM)
electrostatic potential as in the original RESP.58:99 The procedure can be summarized in the
following steps:

1. Atomic charges Q are initialized by fitting EQM, i.e. the electrostatic potential from
QM, without considering electronic polarization.

2. Induced electronic dipole moment density (P) is calculated by Eqgn. (2) and Poisson’s
equation (V-¢E = 4zpPe'™M) with given pP®'™M, i.e. atomic charges Q.

3. EInd electrostatic potential from induced electronic dipole moment density (P), is
computed.

4. New atomic charges Q are refitted to the difference between electrostatic potential
from QM and that from induced electronic dipole moment density (EQM-Eind),

J Phys Chem B. Author manuscript; available in PMC 2008 August 4.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Tan et al.

Page 5

5. Go to Step 2) until convergence is achieved.

As discussed in our previous study, when the environment is not in vacuo, there are two
contributions to polarization, the first is electronic and the second is solvent. What complicates
the picture is that there is, in general, a coupling between the two polarization effects. Thus it
is not straight forward to separate the final polarization effect into two isolated components:
solvent and electronic polarization effects. The MM electrostatic field from solving Poisson’s
equation includes all the effects. However, the QM electrostatic field does not include the
contribution of solvent polarization due to the way that ESP is computed in the Gaussian
program. 60 Therefore the contribution of solvent polarization has to be subtracted from the
included electrostatlc field to achieve a consistency between QM and MM as discussed in our
previous study

In this study, the quantum mechanrcal electrostatic potential was obtained in B3LYP/cc-pVTZ
with the Gaussian03 program 0 The PCM solvent®1:62 was used to model polarization
responses to different dielectric envrronments The charge fitting calculations were performed
with a revised Amber9 package The electrostatic field was calculated with a numerical
Poisson-Boltzmann (PB) solver64.6 (|gb 10) in the SANDER module. Atomic radii were set
to be consrstent wrth those in the PCM solvent81:62 in Gaussian03.60 The probe radius was
set to be 0.6 A.44 Solvent excluded surface was used to assign dielectric constant in the solute
interior. Dielectric constant for the solute region was set to be 4 as discussed above, and that
for the solvent region was set to be 1 for vacuum, 4 for a low dielectric environment, and 78.39
for a high-dielectric aqueous environment to be consistent with the PCM solvent in
Gaussian03.80 The ionic strength was set to 0 mM. A grid spacing of 0.2 A was used in the
finite-difference PB solver. To ensure accurate boundary potential on the finite-difference grid,
the longest dimension of the finite-difference grid was set to be 4 times that of solute. The
relative convergence criterion was 0.0001 for the finite-difference solver. No cutoff for
electrostatic interactions was used.

Parameter Development Strategy

Since covalent components vary little upon treatments of non-covalent components, it is safe
to retain these parameters from previous generations of force fields, at least at this stage of the
development. However, the two non-covalent components, namely, electrostatics and van der
Waals interactions need careful refinement. Accurate treatment of non-covalent interactions
were pioneered by OPLS developers in their efforts to gursuing accurate reproduction of the
thermodynamic properties of pure organic Irqurds Indeed, the OPLS non-covalent
parameters have become the basis for all other modern force fields.

The accuracy of non-covalent parameters is also crucial for the development of any polarizable
force fields. In this study we assumed that there is an overall consistency between implicit and
explicit polarizable models, at least for intramolecular electrostatic interactions, because both
models are designed to be consistent with the same benchmark ab initio training data, the
B3LYP/cc-pVTZ electrostatics.”4 Due to the consistency in electrostatics, intramolecular non-
covalent parameters can be made interchangeable, at least approximately, between implicit
and explicit polarizable models in Amber. Any future update of van der Waals parameters for
the explicit polarizable model can be plugged into the continuum polarizable force field without
further changes. This strategy apparently simplifies future refinements of all force fields based
on the same benchmark ab initio quantum mechanical theory.

The only issue left in the development of non-covalent terms in the continuum polarizable
force field is reproduction of solvation free energies of model compounds in a given solvent.
In this study, we adopted the widely used thermodynamic cycle shown in Fig. 1 to compute
solvation free energies of small organic compounds.49 In the thermodynamic cycle,
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electrostatic free energy, AGY‘“", is evaluated by discharging the solute in the first solvent (here

in vacuum). The solute, now completely nonpolar, is transferred between the two solvents.
This step gives the nonpolar, or repulsive/attractive contributions to the solvation energy,

AGIZ“’. The solute is then recharged in the second solvent (here in water), and the associated

electrostatic interaction energy, AG} °! 'is calculated. The total solvation free energy, AGY,
is obtained from the sum of the free energies of the three separate steps:

AGP'=AG ™ +AGP+AGY ™!

The total electrostatic solvation free energy at steps 1 and 3 is usually termed polar solvation
free energy and the nonelectrostatic solvation free energy at step 2 is usually termed nonpolar
solvation free energy. Thus, the total solvation free energy of a molecule can be expressed as
a sum of polar (electrostatic) and nonpolar (van der Waals) solvation free energies. Both polar
and nonpolar components need to be optimized for the continuum polarizable force field. Our
previous study of nonpolar solvation free energy, however, shows that the nonpolar solvation
free energy model does not contain any compound specific parameters that can be adjusted for
optimal accuracy."’5 Thus only polar solvation free energy needs to be optimized. In doing so
the accuracy of the nonpolar solvation free energy model is on the order of ~1.0 kcal/mol when
it is compared with the TIP3P solvent even if an exhaustive optimization was utilized. 4 Thus
the lack of compound specific parameters does limit the overall accuracy of the calculated total
solvation free energy.

Since only atomic cavity radii are the freely adjustable parameters in the polar component, the
optimization of the polar component becomes rather straightforward. Here we have used a
large and diversified set of generic organic molecules to optimize the atomic cavity radii.
Following our previous effort in the calibration of atomic cavity radii for the nonpolarizable
Amber force field, 44 the atomic cavity radii can first be grouped by Amber atom types and the
net charges of functional groups to increase the ratio between parameters and fitting data
constraints. To further increase the ratio between parameters and fitting data constraints, we
have removed a few rare atom types that cover less than 10 training molecules. Finally, a total
of 20 parameters are used for the 39 Amber atom types against 353 experimental data
constraints.

Computational Details

Polar solvation free energy is calculated by the PB solvent with the continuum polarizable
solute force field. The boundary between solute and solvent is the solvent excluded surface
with a probe radius of 0.6 A%4 and atomic cavity radii to be optimized. The solute and solvent,
with associated charges and dielectric boundaries, are mapped onto a finite-difference grid.
Electrostatic potentials are calculated by solving the PB equation with the finite-difference
solver.54,65 The total polar solvation energy is the sum of steps 1 and 3 of Fig. 1,

AG™'=1/2)"gi(0) - ¢Y),

where gj and ¢ are the charge and calculated potential at the ith gridpoint, for the case of
transfer from vacuum (V) to water (W).

Nonpolar solvation free energy is decomposed into two terms: AGyegp, repulsive (cavity) free
energy, and AGgy, attractive (dispersion) free energy.45 Free energy simulations of spherical
cavities have shown that for small cavities, AGyep, correlates with the cavity volume, while for
large cavities, AGyep correlates with the cavity surface.87-69 The crossover occurs around the
cavity radius of 10 A70,71 Interestingly, a surprising conclusion from our previous analysis
is that both molecular surfaces and volumes can be used as estimators of repulsive solvation
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free energies with very similar high accuracies even if the tested monomer molecules are all
within the previously reported switching region (spherical radii around 10 A) from volume-
dependence to surface-dependence.45 A probable reason for the apparent discrepancy between
our previous conclusion® and the literature is that our simulations were on “realistic”
molecules,* while the literature simulations were performed on ideal spherical cavities. Our
additional tests of both molecular surfaces and volumes on larger biomolecules show that
molecular volumes transfer better from small molecules to large biomolecules (Tan and Luo,
in preparation). Thus the molecular volumes were used to estimate AGye. Specifically, the
solvent accessible volume (SAV, i.e. the molecular volume enclosed by the solvent accessible
surface) was used:4°

AGl‘ep:p - SAV+c (6)

where p = 0.0378 kcal/mol-A32 is a solvent pressure parameter and ¢ = -0.5692 kcal/mol.4°
These parameters were optimized with respect to the TIP3P solvent, and the SAV was
computed with the atomic van der Waals rmin radius definition and an optimized solvent probe
of 1.30 A4°

AGg4 is approximated by the van der Waals attractive interaction potential energy between
solute (u) and solvent (v) as/2-74

AGyq ~ (U %)

In general, the solute-solvent van der Waals interaction energy can be analytically expressed
as the following volume integral

N,

S
U;‘[Y:pr(lw' (r(l“') Vatt (raw) draw
a=1 (8)

Here the sum is over all solute atoms (Ns) and the integration is over the solvent occupied
volume. pau(raw) is a solvent distribution function around solute atom a at a given solute-
solvent di:%tance raw- Vait(raw) is the attractive van der Waals potential in the ¢ decomposition
scheme:

u,(r) r<o
Vrep (r):{ OU( ) o ©
9

0 r<o
u, ([ r>o (10)

Vau (1) = {

A B
where 4y, () =—5 — < is the Lennard-Jones 6-12 potential. Here, A = 4e012 and B = 4ed®, &
and o are the well-depth and radius parameters of the Lennard-Jones potential, respectively.
The Amber ff02 nonbonded parameters were used in this study for all molecules.

As a first approximation, a uniform distribution (i.e. constant density) can be used in Eqgn (8).
Under the constant water density approximation the volume integral in Egn (8) can be
transformed into an integral over the solute accessible surface (SAS) with a simple application
of the divergence theorem: >

NS NS
U;[‘[/:'OWZZIS, Oy (Tas) Tas - Nsdos,
a=lb=1 "~ (11)
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where indexes a and b run over all solute atoms. The surface integration is over the SAS of
atom b (Sp). Oat(ras) is a function defined on the SAS of atom b, and t is the outward normal
vector associated with the SAS element, dos. In the o decomposition scheme, the corresponding
g1t in Egn (11) can be shown to be

1 A, Baw
att__3[3m.; - a;“}if Tas £ O
3lras] o - (12)
Ay B,
Oy = leZ - —= 6if Lgs>0
Olrgs| 3lrgsl (13)

Here Agw, Baw are the van der Waal coefficients for interactions between solute atom a and
water oxygen atoms (w).45

Empirical;)arameter optimization was conducted with a genetic algorithm (GA) based
optimizer. 6 GA is an efficient stochastic optimization method that has been widely applied
to minimization problems because it is ideally suited for multiple-dimensional global search
problems where the search space contains multiple local minima and the search variables may
or may not be correlated. The GA begins with the generation of an initial population of a given
number of solutions. The fitness of each solution, here the root mean squared deviations
between the computed and experimental solvation free energies, is first evaluated. Then a new
population is generated via selection, crossover, and mutation based on their fitness. This
process is repeated until a desired fitness is reached or the maximum number of generations
exceeded.

Molecular Systems

A set of 353 organic molecules’’ was used in the parameterization of the polar component of
the continuum polarizable force field. The complete 353-molecule set is further divided into
two sets for the optimization and validation of PB cavity radii: 1) training set, which consists
of odd sequence-numbered molecules; and 2) test set, which consist of even sequence-
numbered molecules. Only the solvation free energies in water were used in the
parameterization.78'81 All molecules were built with the SYBYL software package of Tripos
Inc.82 and optimized using the MMFF94 force field.83-87 For each molecule, only the global
minimum conformation was used. Simple conformational searches were performed for some
molecules in cases where the global minimum conformations were not apparent. The geometry
of each molecule was further optimized in HF/6-31G* using the Gaussian03 program.

Results and Discussion

Quality of Atomic Charges

The agreement between theoretical and experimental solvation free energies strongly depends
on the quality of atomic charges for tested molecules. As shown in our previous study, in
principle it is possible to use one set of atomic charges to describe different solvent dielectric
environments with the continuum polarizable model.>4 However, it is impossible to do so
when a traditional nonpolarizable model is used.®4 This turns out to be the case in the current
study with amuch larger set of test molecules. Figure 2 shows the correlations of total molecular
dipole moments between the continuum polarizable model and B3LYP/cc-pVTZ for the three
dielectric environments used, in vacuo, =4, and £=78.39. It should be pointed out that the
total molecular dipole moment from the continuum polarizable model is the sum of the
permanent dipole moment from the atomic point charges and the induced dipole moment
computed from Eqgn (4) after solving the PB equation. It can be found that the continuum
polarizable model is consistent with B3LYP/cc-pVTZ as far as molecular dipole moments are
concerned with correlation coefficients higher than 99% for all three different dielectric
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environments. It should also be emphasized again that it is impossible to use a single set of
charges in the nonpolarizable model to achieve the same agreement with B3LYP/cc-pVTZ in
all three environments simultaneously, as pointed out in our previous study for a smaller set
of molecules. %%

Comparison with experimental dipole moments also shows that the continuum polarizable
model is reasonable as shown in Table 1. The root mean square deviation (RMSD), unsigned
average error (UAVG), correlation coefficient is 0.50 Debye, 0.22 Debye, 90%, respectively,
between the continuum polarizable model and experiment. This agreement should be viewed
in the context that the same set of charges has to be used for all three different dielectric
environments. Thus, the agreement with experiment in the gas phase alone is not trivial. The
dipole moments with B3LYP/cc-pVTZ are also given. Given that B3LYP/cc-pVTZ and the
continuum polarizable model are highly correlated, its agreement with experiment should be
similar to that of the continuum polarizable model with RMSD of 0.52 Debye, UAVG of 0.20
Debye, and correlation coefficient of 90%. It should be pointed out that noticeable deviations
exist between the continuum polarizable model and experiment for formates. However, similar
deviations also exist for the same compounds with B3LYP/cc-pVTZ. This is not a surprise
because the continuum polarizable model is trained to be consistent with B3LYP/cc-pVTZ.
Finally the atomic charges for all molecules are given in the Amber prepin format in the
Supplementary Material.

Quality of van der Waals Parameters

The second important component in the continuum polarizable model that has to be properly
calibrated is the van der Waals interaction. As discussed in Methods, the van der Waals
parameters are assumed to be interchangeable between explicit and implicit polarizable force
fields if an overall consistent electrostatic treatment can be maintained as the case between the
ff02 explicit polarizable force field and the newly proposed continuum polarizable force field
in Amber.

We have used dimer binding energies at the MP2/cc-pVTZ level of theory in the PCM solvent
to test the compatibility between the continuum polarizable model and the existing van der
Waals treatment in the Amber force fields. Table 2 lists the binding energies of four tested
dimers in water, the intended environment to use the continuum polarizable model. It can be
found that overall the continuum polarizable model agrees with MP2/cc-pVTZ very well, with
deviations less than 0.9 kcal/mol. This can be compared with the agreement between the ff02
explicit polarizable force field and MP2/cc-pVTZ, which is also shown in Table 2. Note that
the deviations between ff02 and MP2/cc-pVTZ are much larger in the gas phase, as high as 3.0
kcal/mol. However, it should be pointed that all binding energies are also uniformly larger in
the gas phase. The electrostatic screening in water in general brings down the deviation in the
aqueous phase as in the case for the continuum polarizable model. Thus, whether implicit or
explicit polarizable treatment is used, reasonable agreement with MP2/cc-pVTZ can be
achieved in the molecular mechanics approaches.

Calibration of PB Cavity Radii

The third important issue in the development of the continuum polarizable force field is the
accuracy of solvation treatment. Note that this is very different from any polarizable or
nonpolarizable force field that is intended for explicit solvent simulations, where the solvent
interactions have been incorporated within the calibration of the van der Waals parameters of
both solute and solvent molecules. As discussed in Methods, a total of 20 parameters are used
for the 39 Amber atom types in the optimization against 353 experimental data constraints.
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The new PB atomic cavity radii are optimized by reproducing the solvation free energies of
177 molecules in the training set, and are tested against the test set of 176 molecules. Genetic
algorithm (GA) was used to optimize the cavity radii. The optimized cavity radii along with
the corresponding Amber atom types in the continuum polarizable model are given in Table
3. The statistics for the training set, the test set, and the complete 353-molecule set are shown
in Table 4. It can be found that the optimized PB atomic cavity radii transfer well from the
training set to the test set. RMSD, UAVG, correlation coefficient are 1.27 kcal/mol, 1.06 kcal/
mol, 93% for the training set, and 1.34 kcal/mol, 1.08 kcal/mol, 91% for the test set,
respectively. Overall an RMSD of 1.30kcal/mol, UAVG of 1.07 kcal/mol, and correlation
coefficient of 92% are achieved for the 353-molecule set. Correlation between theoretical and
experimental solvation free energies for the 353-molecule set is also given in Fig. 3. Table 5
lists the solvation free energies for all molecules by both theory and experiment. The polar
components, the nonpolar cavity components, and the nonpolar attractive components of
solvation free energies are also given for all 353 molecules.

A detailed analysis of agreement between theory and experiment for each functional group is
shown in Table 6. It can be found that the agreements for the first five classes of compounds
(alkanes, alkenes, alkynes, aromatic hydrocarbons, and fluorides) are very well, with RMSD’s
less than 1.0 kcal/mol. The performance for aromatic groups is particularly excellent with
RMSD of 0.54 kcal/mol only. However, agreements for nitro compounds and compounds with
nitrogen on hetero rings are much worse with RMSD higher than 2.0 kcal/mol. Note that we
have use a uniform PB cavity radius value for all nitrogen atom types. This may be an over-
simplification of highly diversified chemical environments of different nitrogen atoms. A
similar discrepancy between theoretical and experimental solvation free energies for amines
and amides was also reported before for free energy simulations in explicit solvent in both the
Amber and OPLS force fields.88-90 As shown in Table 1, theoretical dipole moments for
nitrogen containing compounds generally agree well with experiment. Therefore the poor
agreement for solvation free energies are mostly likely related to either the continuum solvation
approximation or the classical electrostatic approximation of solute solvent interactions.

Conclusions

In this work we have developed and tested a complete set of nonbonded parameters for a
continuum polarizable force field. Our analysis shows that the new continuum polarizable
model is consistent with B3LYP/cc-pVTZ in modeling electronic response upon variation of
dielectric environment. Comparison with experiment also shows that the new continuum
polarizable model is reasonable, with similar accuracy as B3LYP/cc-pVTZ in reproduction of
dipole moments of selected organic molecules in the gas phase. However, it should be pointed
out that the proposed continuum polarization scheme is not intended to describe the atomic-
detailed polarization within molecular environment. For example, the response of the
continuum polarizable model under an external electric field is left unstudied. Incidentally,
such studies have never been conducted for published explicit polarizable models either. It is
likely that none of the existing classical polarizable models can properly reproduce experiment
in such studies. Instead we intend to offer an efficient and self-consistent approach in treating
polar interactions in biomolecular simulations more satisfactory than existing additive force
fields with implicit solvents.

The modest goal is justified because implicit solvents have been developed for their efficiency.
Apparently there are limitations in these simplified solvation treatments, for example the
limitations of atom-centered dielectric models91 and the related issue in the use of solvent
excluded surface in molecular dynamics simulations.5 Further improvements in the nonpolar
components are also needed.4° Interestingly, efforts to address these limitations have emerged,
such as in the treatment of coupling between polar and nonpolar components.gzv93
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We have further tested the validity to interchange the Amber van der Waals parameters between
the explicit and continuum polarizable force fields with a series of dimers. It can be found that
the continuum polarizable model agrees well with MP2/cc-pVTZ, with deviations in dimer
binding energies less than 0.9 kcal/mol in the aqueous dielectric environment.

Finally we have optimized atomic cavity radii with respect to experimental solvation free
energies of 177 training molecules. To validate the optimized cavity radii, we have tested these
parameters against 176 test molecules. It is interesting to note that the optimized PB atomic
cavity radii transfer well from the training set to the test set. Overall an RMSD of 1.30 kcal/
mol, UAVG of 1.07 kacl/mol, and correlation coefficient of 92% are achieved for all 353
molecules in both sets. In addition, a detailed analysis of the agreement between theoretical
and experimental solvation free energies for each functional group shows that the new
polarizable model works excellently for alkanes, alkenes, alkynes, aromatic hydrocarbons, and
fluorides. However, agreements for nitro compounds and compounds with nitrogen on hetero
rings are much worse. Because theoretical dipole moments for nitrogen containing compounds
agree very well with experimental values, a likely reason for the discrepancy between theory
and experiment may be the over-simplification in using a single PB cavity radius value for all
nitrogen atom types in the highly diversified chemical environments. The poor agreement in
solvation free energies may also be related to the lack of modeling electron transfer between
the solute and solvent molecules in the continuum solvation treatments, which has been argued
for theS%agt(i)cular difficult modeling of solvation free energies of amines by classical force
fields.®°”

Based on the development documented here, our next natural step is the construction of a full
protein/nucleic acid force field within the new continuum polarization framework. Given
implicit solvents that are based on the Poisson-Boltzmann theory, for example either numerical
Poisson-Boltzmann approaches50!51 and generalized Born approaches~r’2153 that were
developed to deal with non-vacuum solute interiors, the dielectric forces can be computed on-
the-fly in molecular dynamics simulations. Therefore, such a polarizable force field can be
applied in implicit-solvent molecular dynamics simulations with virtually no additional cost
over a nonpolarizable force field. Nevertheless, more detailed refinement efforts in both the
covalent terms and the van der Waals terms in the Amber polarizable force fields, which have
left untouched, should also be addressed in future publications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Dipole moments in vacuo, ¢ = 4, and ¢ = 78.39 for the 353-molecule set.
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Calculated and experimental solvation free energies for the 353-molecule set.
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Table 1
Gas-phase dipole moments (D) of selected organic compounds in the 353 molecule set. About two per functional groups
are chosen. MM: continuum polarizable model. QM:B3LYP/cc-pVTZ. EXPT: Experimental values from the CRC

Handbook of Chemistry and Physics, 871"
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Compound MM oMm| EXPT]
propane 0.06 0.09| 0.08
2-methyl-1,3-butadiene] 0.23 0.26} 0.25
propyne 0.76 0.8 0.78
1-butyne 0.77 0.77 0.78
1-hexyne 0.93 0.93] 0.83
toluene 0.32 0.36) 0.38
ethylbenzene 0.30 0.35 0.59
fluoromethane 1.54] 1.71 1.86
chlorofluoromethane 1.72 1.72 1.82
chloromethane 1.87 1.944 1.9
dichloromethane 1.66 1.67, 1.6
bromomethane 1.89 1.92 1.82
dibromomethane 1.58 1.52 1.43
methanol 1.39 1.57 1.7
ethanol 1.35 1.49 1.69
phenol 1.24] 1.28 1.22
diethyl ether 0.95 0.99| 1.15
diisopropyl ether 1.04] 1.11 1.13
acetaldehyde 2.44 2.55 2.75
propanal 2.63 2.69 2.72
acetone 2.68 2.82 2.88
acetic acid 1.67 1.7 1.7
methyl formate 3.94 4.08 1.77
ethyl formate 4.03 4.16) 1.93
ethyl acetate 1.95 2.04 1.78
methylamine 1.1 1.26) 131
ethylamine 11 1.22 1.22
propylamine 1.06 1.16) 1.17
diethylamine 0.78 0.81] 0.92
pyridine 2.14 2.15] 2.21
2-methylpyridine 1.88 1.86} 1.85
4-methylpyridine 2.61 2.63] 2.7
acetonitrile 3.81 3.92 3.92
nitroethane 3.38 3.59 3.23
1-nitropropane 3.62 3.76] 3.66
2-nitropropane 3.44 3.64] 3.73
N-methylformamide 4.04] 4.08 3.83
acetamide 3.63 3.77 3.68
dimethyl sulfide 1.51 1.57, 1.55
diethyl sulfide 1.49 1.59 1.54
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Table 2
Dimer binding potential energies (kcal/mol). NMA: n-methylamine. ASH: acetate. SER: methanol. A: adenine. T:
thymine. C: cytosine. G: guanine. ff02: explicit polarizable ff02 model. MP2: MP2/cc-pVTZ. MM: continuum
polarizable model. Note that ff02 and associated MP2 calculations were performed in gas phase.

Dimers MM MP2 ff02 MP2
NMA/NMA| -3.85 -3.01 -7.16 -7.47
ASH/SER -3.24 -2.64 -8.93 -11.95]
AT -6.41 -6.50 -13.25] -15.29)
CG -12.53] -11.71] -28.65] -28.04
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Table 3
PB atomic cavity radii (A) and atom types.

Atom type PB radius Description

hi 0.421 H bonded to aliphatic carbon with 1 electrwd. group

h2 0.327 H bonded to aliphatic carbon with 2 electrwd. group

h4 0.577 H bonded to non-sp3 carbon with 1 electrwd. group

h5 2.021 H bonded to non-sp3 carbon with 2 electrwd. group

ha 0.735 H bonded to aromatic carbon

hc 0.753 H bonded to aliphatic carbon without electrwd. group

hn 0.681 H bonded to nitrogen atoms

ho 0.000 Hydroxy! group

0 1.117 Oxygen with one connected atom

oh 1.293 Oxygen in hydroxy! group

0s 1.094 Ether and ester oxygen

c 1.200 Sp2 C carbonyl group

cl 1.139 SpC

c2 1.200 Sp2C

c3 1.181 Sp3C

ca 1.139 Sp2 C in pure aromatic systems

cc 1.139 Sp2 carbons in non-pure aromatic systems

cd 1.139 Sp2 carbons in non-pure aromatic systems, identical to cc

ce 1.139 Inner Sp2 carbons in conjugated systems

cf 1.139 Inner Sp2 carbons in conjugated systems, identical to ce

cp 1.139 Head Sp2 C that connect two rings in biphenyl sys.

n 1.114 Sp2 nitrogen in amide groups

nl 1.114 SpN

n2 1.114 Aliphatic Sp2 N with two connected atoms

n3 1.114 Sp3 N with three connected atoms

na 1.114 Sp2 N with three connected atoms

nb 1.114 Sp2 N in pure aromatic systems

nc 1.114 Sp2 N in non-pure aromatic systems

nd 1.114 Sp2 N in non-pure aromatic systems, identical to nc

nh 1.114 Amine N connected one or more aromatic rings

no 1.114 Nitro N

s 2.210 S with one connected atom

sh 2.210 Sp3 S connected with hydrogen

ss 2.210 S with one connected atom

p5 1.514 Phosphate with four connected atoms, such as O P(OH)3

py 1.514 Special p5 in conjugated system

f 1.612 Fluorine

cl 2.488 Chlorine

br 2.616 Bromine
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Table 4
Statistics for the training set (177), the test set (176), and the 353-molecule set. RMSD: root-mean-squared deviation
(in kcal/mol). UAVG: unsigned average error (in kcal/mol). CC: correlation coefficient.

training test all
RMSD 1.27 1.34 1.30
UAVG 1.06 1.08 1.07
cc 93% 91% 92%
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Table 6
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Performance by solute functional group. No. of solute: number of solute molecules. The ranges of compound sequence

numbers as in Table 5 are also shown for the listed solute groups. RMSD and UAVG are in kcal/mol.

Solute group No. of solute RMSD UAVG
alkanes 19(1-19) 0.74 0.59
alkenes 20(20 - 39) 0.78 0.68
alkynes 7(40 - 46) 0.84 0.78
aromatic hydrocarbons 18(47 - 64) 0.54 0.41
fluorides 19(65 - 83) 0.89 0.74
chlorides 38(84 - 121) 1.10 0.98
bromides 18(122 - 139) 1.35 1.16
alcohols 45(140 - 184) 1.07 0.90
ethers 19(185 - 203) 1.44 1.25
aldehydes 15(204 - 218) 1.44 1.33
ketones 17(219 - 235) 1.59 1.52
acids 6(236 - 241) 1.55 1.52
esters 29(242 - 270) 1.10 1.00
amines 27(271 - 297) 1.65 1.36
amides 23(298 - 320) 1.43 1.10
nitriles 4(321 - 324) 1.05 1.05
nitro compounds 6(325 - 330) 2.24 2.15
compounds with N in heterorings 5(331 - 335) 2.59 2.07
compounds with S 7(336 - 342) 1.94 1.66
compounds with P 11(343 - 353) 1.97 1.59
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