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Abstract

To determine the spatial and temporal dynamics of influenza A virus during a single epidemic, we examined whole-genome
sequences of 284 A/H1N1 and 69 A/H3N2 viruses collected across the continental United States during the 2006–2007
influenza season, representing the largest study of its kind undertaken to date. A phylogenetic analysis revealed that
multiple clades of both A/H1N1 and A/H3N2 entered and co-circulated in the United States during this season, even in
localities that are distant from major metropolitan areas, and with no clear pattern of spatial spread. In addition, co-
circulating clades of the same subtype exchanged genome segments through reassortment, producing both a minor clade
of A/H3N2 viruses that appears to have re-acquired sensitivity to the adamantane class of antiviral drugs, as well as a likely
antigenically distinct A/H1N1 clade that became globally dominant following this season. Overall, the co-circulation of
multiple viral clades during the 2006–2007 epidemic season revealed patterns of spatial spread that are far more complex
than observed previously, and suggests a major role for both migration and reassortment in shaping the epidemiological
dynamics of human influenza A virus.
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Introduction

Intensive study of the molecular evolution of influenza A virus

has provided important insights into its seasonal genesis and

spread in human populations [1–4]. The rapidity with which both

epidemics and pandemics of influenza A virus arise and spread

globally has also generated great interest in understanding the

spatial-temporal dynamics of this important human pathogen [5–

9]. Phylogenetic trees of the epitope-rich HA1 domain of subtype

H3N2 influenza A viruses sampled since its emergence in 1968

exhibit a distinctive ‘cactus-like’ pattern, in which most lineages go

extinct within a few years of their genesis, so that usually only a

single lineage persists between seasonal epidemics [10,11]. This is

most likely the result of strong host-mediated selection pressure,

resulting in continual evolution at key antigenic sites, a process

termed ‘antigenic drift’ [11,12]. This antigenic evolution is also

episodic, with major changes in antigenicity occurring with a

periodicity of approximately 3 years [13]. A variety of epidemi-

ological and evolutionary models have been developed to explain

this phylogenetic pattern [14,15], and how the evolution of the

HA1 domain relates to that in the rest of the viral genome [16].

Although antigenic drift is clearly a key determinant of influenza

A virus evolution, this process has rarely been observed in a single

locality over a single epidemic season [17,18]. Rather, multiple

viral introductions appear to drive evolution at the scale of local

epidemics, allowing for the co-circulation of multiple clades of the

same subtype [16,18]. At a global scale, viral migration from

regions characterized by more persistent influenza transmission,

notably East and South-East Asia, appears to be important in

determining large-scale epidemiological patterns [19,20,21]. In

addition, reassortment events between viruses of the same subtype

occur frequently, and are sometimes associated with major

antigenic changes in both the A/H3N2 [22] and A/H1N1

subtypes [23]. However, a complete understanding of the

evolutionary and epidemiologic dynamics of influenza A virus at

all spatial and temporal scales remains an important goal [24].

Every winter, epidemics of human influenza recur in the United

States, and are associated with an annual average of 226,000

hospitalizations and 36,000 deaths, mainly caused by secondary

bacterial pneumonia in the elderly and young children [25,26].

Epidemiological models have found a strong correlation between

the regional spread of influenza virus infection in the United States

and the movement of people to and from their workplace [9]. In

addition, US influenza epidemics tend to originate in California,

which may reflect this region’s interconnectivity to Asia and

Australia [9]. Although of great importance, most spatial models
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have utilized mortality cases due to pneumonia and influenza (P &

I) and hence do not consider the evolutionary history of the viruses

involved. Indeed, it is striking that detailed phylogenetic analyses

of influenza A viruses from a single season at a national level have

not been undertaken, even though the rapid rate of influenza A

virus evolution [14,27–29] means that viral genome sequences

may contain important information on country-wide spatial

dynamics.

Our goal here is to determine the spatial-temporal dynamics of

influenza A virus during a single epidemic season (2006-2007) in

the United States through the phylogenetic analysis of whole-

genome sequence data. Since the 1968 pandemic, A/H3N2

viruses typically dominate most influenza seasons, including 16 of

the past 20 US epidemics ([30], for example), and are associated

with higher levels of morbidity and mortality [31], higher rates of

evolutionary change [14], and greater synchrony in the timing of

local epidemics across the United States than A/H1N1 viruses [9].

However, during the 2006–2007 US influenza epidemic, more

viruses reported by the CDC were of the A/H1N1 (62.3%) than

the A/H3N2 subtype (37.7%) [30]. The evolutionary dynamics of

this epidemic were particularly complex, including a late-season

switch in dominance from the A/H1N1 to the A/H3N2 subtype,

the co-circulation of multiple antigenically distinct lineages within

both A/H1N1 and A/H3N2, an A/H3N2 vaccine mismatch, and

the co-circulation of adamantane resistant and sensitive viral

lineages in both subtypes [30,32]. Our analysis of 353 whole-

genome influenza A virus sequences of both the A/H1N1

(n = 284) and A/H3N2 (n = 69) subtypes from this 2006–2007

US season represents the first attempt to investigate the spatial-

temporal spread of a nationwide influenza virus epidemic within

the context of genomic-scale evolutionary dynamics.

Results

Multiple introductions of A/H1N1 influenza virus during
the 2006–2007 US season generate complex spatial
patterns

Our phylogenetic analysis of 284 whole-genome A/H1N1

influenza viruses sampled between December 2006 and March

2007 in 17 US states revealed substantial genetic diversity for all

eight segments of the viral genome. In particular, eight

phylogenetically distinct clades (denoted A–H), defined by both

high bootstrap values and long branch lengths, are evident on the

trees of each genome segment, as exemplified by the HA

phylogeny (Figure 1). The phylogenies of the seven other genome

segments contain clades identical to those on the HA phylogeny

(Figures S1, S2, S3, S4, S5, and S6, with the PB1 phylogeny

presented in Figure 2). Previous studies [20,22–23] suggest that

each clade is likely to represent a separate introduction of the virus

into the United States, although the small sample of sequences

available mean that individual clades may sometimes represent

multiple introduction events. One clade, herein denoted clade A,

was clearly dominant, as it comprised the majority of isolates (175/

284 isolates, 61.6%, Table 1). Minor clades B, C, D, E, F, G, and

H contained only 47, 12, 35, 6, 6, 1, and 2 isolates each,

respectively (Table 1).

Clade A was the most geographically and temporally pervasive

of the eight clades, circulating in 24/30 localities and 14/15 weeks

studied, although allowall clades were sampled over wide temporal

and geographic scales (Table 1, Figures 3, 4). Notably, there was

no association between the phylogenetic positions of isolates and

their week of collection (Figure 3) or geographic region (Figure 4).

Rather, clades co-circulated in both time and space, with small

clades that are detected in only a single region (E, G, and H) to

likely be an artifact of limited sampling. The largest clades A and B

were highly geographically dispersed, containing isolates collected

from both relatively isolated areas and major US cities spanning all

six US regions, including 24 and 18 out of 30 localities sampled,

respectively (Table 1, Figure 4). However, in contrast to a

simplified spatial model in which a single lineage spreads in a

unidirectional manner, we observed no strong signal for viral

migration among the co-circulating clades, even when individual

clades were studied in isolation (Table 2). Indeed, a parsimony-

based analysis in which the US state of origin of each isolate is

coded as an extra character and mapped onto each ML tree

revealed a strong clustering by US state (p,0.001), but only weak

evidence for movement among states (data not shown; available

from the authors on request).

The number of isolates collected from different US localities

varied widely (ranging from 1 isolate from Detroit, Michigan to 42

isolates from Houston, Texas, Table 1), and such geographical

biases in our data had a profound effect on spatial patterning.

Accordingly, the number of clades identified in a locality was

strongly associated with the number of isolates sampled from that

locality (Spearman rho = 0.77, P,0.0001), while the population

size of each locality was not associated with the number of viruses

or clades identified (P.0.69). In addition, the first virus isolated in

our A/H1N1 sample was from Cincinnati, Ohio (Table 2), likely

an artifact of the relatively large sample collected from this city (30

isolates, Table 1).

The peak in A/H1N1 genetic diversity occurred during early

February (corresponding to week 10, Table 2), with six of the eight

clades co-circulating during this week. Geographically uneven

sampling also meant that the most clades were detected in the

most heavily sampled localities. For example, six clades (A, B, C,

D, E, and F) were detected in Houston, Texas, the most intensively

sampled locality (Table 1). Extensive genetic diversity was also

detected within a single week: as a case in point, at least four clades

(A, B, D, F), representing two major antigenically distinct lineages

circulating globally (see below), were all present in Houston, Texas

during week 10 (Table 2). Abundant viral diversity was also

detected in localities that contributed relatively few (6–14) isolates,

including both urban and remote areas. Three different clades

circulated in all of the following localities: Los Angeles, California

(clades A, C, F); Denver, Colorado (clades A, C, G); New York

Author Summary

This study is the first of its kind to reconstruct the spread
of an epidemic of influenza A virus across a single country,
in this case the United States. In contrast to a single viral
lineage spreading across this country, a phylogenetic
analysis of the whole-genome sequences of more than 300
influenza A viruses of the A/H1N1 and A/H3N2 subtypes
sampled from the 2006–2007 epidemic season reveals that
multiple phenotypically and antigenically distinct viral
lineages of entered and co-circulated in the US during this
time. Furthermore, the widespread co-circulation of
multiple lineages, even in geographically remote localities,
allowed for frequent reassortment between influenza A
viruses of the same subtype. Through reassortment, a
minor lineage of A/H3N2 viruses surprisingly re-acquired
sensitivity to the adamantane class of antiviral drugs, and a
new A/H1N1 antigenic variant emerged that later became
globally dominant. In sum, these results highlight the
complexity of the spread of influenza A virus in time and
space, and highlight the need for intensified global
surveillance involving whole-genome sequence data.

Molecular Epidemiology of Influenza Virus
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City, New York (clades A, C, H); Tullahoma, Tennessee (clades A,

B, D), Aberdeen, Mississippi (clades A, D, F); and Weber City,

Virginia (clades A, B, D) (Table 2). In fact, more than one clade

was observed in every locality from which .1 viral sample was

obtained (Table 2).

At least three antigenically distinct clades of A/H1N1
virus co-circulated

To view the phylogenetic relationships among A/H1N1 clades

from the 2006–2007 epidemic in a wider geographical context, we

included 48 background A/H1N1 influenza viruses sampled from

the northern and southern hemispheres between 2001–2006, years

that were dominated by viruses antigenically similar to A/New

Caledonia/20/1999 (‘New Caledonia-like’) [30]. These sequences

were available for the HA and NA segments, including three

antigenically distinct influenza vaccine reference strains selected

for 2006–2007 (A/New Caledonia/20/1999), 2007–2008 (A/

Solomon Islands/3/2006), and 2008–2009 (A/Brisbane/59/2007)

(Figure 1) [30,33,34]. Of the eight clades that co-circulated during

the 2006–2007 season, five (A, B, C, D, and E) appear to be

descendents of New Caledonia-like viruses from 2002–2005,

(Figure 1), while three (F, G, H) are separated from all other

isolates by a very long branch with high (100%) bootstrap support

(Figure 1). Due to their extensive phylogenetic divergence, we

define clades F, G, and H as ‘set 2’ clades, in contrast to the ‘set 1’

clades A, B, C, D, and E.

We inferred the antigenic characteristics of these eight clades

based on their phylogenetic relationships and the number of

amino acid differences at antigenic sites in the HA from vaccine

reference strains of known antigenicity. Accordingly, set 1 clades

A, B, C, D, and E are likely to be New Caledonia-like in

antigenicity, given that (a) 90% of A/H1N1 viruses from this US

epidemic were New Caledonia-like (as characterized by the CDC

surveillance [30]) and set 1 clades were most prevalent, (b) set 1

clades are phylogenetically related to other New Caledonia-like

viruses from 2002–2005 (Figure 1), and (c) set 1 clades differ by

only 3–5 amino acids from A/New Caledonia/20/1999, 1–2 of

which occurred in antigenic or potential glycosylation sites, versus

A/Canterbury/01/2001(H1N1)A/Canterbury/119/2001(H1N1)
A/Canterbury/53/2001(H1N1)

A/New Caledonia/20/1999(H1N1)
A/New York/494/2002(H1N1)

A/New York/291/2002(H1N1)
A/New York/497/2003(H1N1)

A/New York/443/2001(H1N1)
A/Wellington/1/2001(H1N1)

A/New York/350/2003(H1N1) A/New York/220/2002(H1N1)
A/New York/292/2003(H1N1)
A/New York/348/2003(H1N1)

A/New York/483/2003(H1N1)
A/New York/484/2003(H1N1)

A/New York/222/2003(H1N1)
A/New York/488/2003(H1N1)

A/Memphis/5/2003(H1N1)
A/New York/227/2003(H1N1)
A/Memphis/6/2003(H1N1)A/New York/496/2003(H1N1)

A/New York/221/2003(H1N1)
A/New York/230/2003(H1N1)

A/New York/493/2003(H1N1)
A/New York/223/2003(H1N1)

A/New York/486/2003(H1N1)
A/New York/228/2003(H1N1)
A/New York/293/2003(H1N1)
A/New York/399/2003(H1N1)

A/Hong Kong/948/2006(H1N1) A/Thailand/CU32/2006(H1N1)
A/Stockholm/17/06 H1N1

A/South Australia/58/2005(H1N1)
A/Waikato/11/2005(H1N1)
A/Waikato/13/2005(H1N1)
A/Waikato/17/2005(H1N1)
A/Waikato/4/2005(H1N1)

A/Stockholm/4/06 H1N1
A/Texas/UR06-0026/2007(H1N1)

A/Texas/UR06-0420/2007(H1N1)A/Texas/UR06-0467/2007(H1N1)
A/Texas/UR06-0468/2007(H1N1)

A/Texas/UR06-0503/2007(H1N1)
A/Texas/UR06-0542/2007(H1N1)

A/Florida/UR06-0208/2007(H1N1)
A/Vermont/UR06-0301/2007(H1N1)
A/Florida/UR06-0501/2007(H1N1)

A/Oregon/UR06-0186/2007(H1N1)
A/Texas/UR06-0012/2006(H1N1)A/Kansas/UR06-0085/2007(H1N1)

A/Kentucky/UR06-0425/2007(H1N1)
A/Mississippi/UR06-0047/2007(H1N1)

A/Tennessee/UR06-0119/2007(H1N1)
A/Texas/UR06-0157/2007(H1N1)

A/Virginia/UR06-0332/2007(H1N1)
A/Oklahoma/UR06-0063/2007(H1N1)

A/Illinois/UR06-0146/2007(H1N1)
A/Tennessee/UR06-0080/2007(H1N1)
A/Tennessee/UR06-0277/2007(H1N1)A/California/UR06-0125/2007(H1N1)

A/California/UR06-0232/2007(H1N1)
A/New York/UR06-0386/2007(H1N1)

A/California/UR06-0585/2007(H1N1)
A/Colorado/UR06-0499/2007(H1N1)

A/Kansas/UR06-0191/2007(H1N1)
A/Kentucky/UR06-0042/2007(H1N1)

A/Kentucky/UR06-0161/2007(H1N1)
A/Michigan/UR06-0015/2006(H1N1)

A/Ohio/UR06-0177/2007(H1N1)A/Illinois/UR06-0074/2007(H1N1)
A/Illinois/UR06-0491/2007(H1N1)
A/Kentucky/UR06-0028/2007(H1N1)

A/New York/UR06-0253/2007(H1N1)
A/North Carolina/UR06-0011/2006(H1N1)

A/North Carolina/UR06-0099/2007(H1N1)
A/Virginia/UR06-0254/2007(H1N1)

A/Ohio/UR06-0429/2007(H1N1)
A/Tennessee/UR06-0262/2007(H1N1)

A/Kentucky/UR06-0057/2007(H1N1)A/Kentucky/UR06-0363/2007(H1N1)
A/Texas/UR06-0398/2007(H1N1)
A/Texas/UR06-0133/2007(H1N1)

A/Texas/UR06-0195/2007(H1N1)
A/Texas/UR06-0306/2007(H1N1)

A/Florida/UR06-0049/2007(H1N1)
A/Florida/UR06-0577/2007(H1N1)

A/Vermont/UR06-0050/2007(H1N1)
A/Vermont/UR06-0485/2007(H1N1)A/Vermont/UR06-0511/2007(H1N1)
A/Vermont/UR06-0576/2007(H1N1)

A/Kansas/UR06-0143/2007(H1N1)
A/Colorado/UR06-0498/2007(H1N1)
A/Illinois/UR006-018/2007(H1N1)

A/Kansas/UR06-0192/2007(H1N1)
A/Kentucky/UR06-0128/2007(H1N1)
A/Kentucky/UR06-0328/2007(H1N1)

A/Texas/UR06-0039/2007(H1N1)
A/Vermont/UR06-0035/2007(H1N1)A/Virginia/UR06-0562/2007(H1N1)

A/Tennessee/UR06-0509/2007(H1N1)
A/Colorado/UR06-0110/2007(H1N1)
A/Illinois/UR06-0032/2007(H1N1)

A/Kentucky/UR06-0007/2006(H1N1)
A/Kentucky/UR06-0010/2006(H1N1)
A/Kentucky/UR06-0027/2007(H1N1)

A/Kentucky/UR06-0043/2007(H1N1)
A/Texas/UR06-0563/2007(H1N1)

A/Kentucky/UR06-0081/2007(H1N1)A/Kentucky/UR06-0220/2007(H1N1)
A/Ohio/UR06-0443/2007(H1N1)
A/Virginia/UR06-0594/2007(H1N1)

A/Mississippi/UR06-0048/2007(H1N1)
A/New York/UR06-0134/2007(H1N1)

A/Ohio/UR06-0522/2007(H1N1)
A/Texas/UR06-0025/2007(H1N1)

A/Texas/UR06-0204/2007(H1N1)
A/Texas/UR06-0380/2007(H1N1)
A/Texas/UR06-0582/2007(H1N1)A/Virginia/UR06-0075/2007(H1N1)

A/Virginia/UR06-0244/2007(H1N1)
A/Virginia/UR06-0387/2007(H1N1)

A/Alabama/UR06-0455/2007(H1N1)
A/Alabama/UR06-0536/2007(H1N1)

A/Mississippi/UR06-0014/2006(H1N1)
A/Mississippi/UR06-0145/2007(H1N1)

A/Tennessee/UR06-0151/2007(H1N1)
A/Virginia/UR06-0384/2007(H1N1)A/California/UR06-0321/2007(H1N1)

A/North Carolina/UR06-0364/2007(H1N1)
A/Auckland/619/2005(H1N1)

A/New York/8/2006(H1N1)
A/Otago/5/2005(H1N1)

A/South Australia/51/2005(H1N1)
A/Wellington/14/2005(H1N1)

A/Wellington/10/2005(H1N1)
A/Wellington/11/2005(H1N1)

A/Wellington/12/2005(H1N1)A/Wellington/13/2005(H1N1)
A/South Australia/55/2005(H1N1)

A/South Australia/56/2005(H1N1)
A/South Australia/57/2005(H1N1)

A/Waikato/14/2005(H1N1)
A/Western Australia/77/2005(H1N1)

A/Brisbane/59/2007(H1N1)
A/Kentucky/UR06-0476/2007(H1N1)

A/California/UR06-0393/2007(H1N1)
A/California/UR06-0479/2007(H1N1)A/Stockholm/23/06 H1N1
A/Mississippi/UR06-0378/2007(H1N1)

A/Tennessee/UR06-0045/2007(H1N1))
A/Texas/UR06-0217/2007(H1N1)

A/Thailand/CU57/2006(H1N1)
A/Colorado/UR06-0053/2007(H1N1)

A/St. Petersburg/08/2006 X-163(H1N1)
A/Stockholm/15/06 H1N1

A/Canterbury/106/2004(H1N1)
A/Thailand/CU44/2006(H1N1)A/Thailand/CU68/2006(H1N1)

A/Thailand/CU75/2006(H1N1)
A/New York/UR06-0199/2007(H1N1)
A/New York/UR06-0326/2007(H1N1)

A/Solomon Islands/3/2006(H1N1)
A/Thailand/CU41/2006(H1N1)
A/Thailand/CU53/2006(H1N1)

A/Thailand/CU67/2006(H1N1)
A/Thailand/CU88/2006(H1N1)

A/Thailand/CU51/2006(H1N1)

A

B
C

DE

F G

H

Major Clade

A/Solomon Islands/3/2006

A/New Caledonia/20/1999

A/Brisbane/59/2007

HA

Figure 1. Phylogenetic relationships of the HA gene segment of 100 A/H1N1 influenza viruses sub-sampled from all eight clades
that co-circulated in the United States during the 2006–2007 influenza season, 67 global isolates from 2001–2006, and the A/H1N1
component of the influenza vaccine used from the years 2000–2001 to 2006–2007 (A/New Caledonia/20/1999), the A/H1N1 strain
selected for the 2007–2008 vaccine (A/Solomon Islands/3/2006), and the 2008–2009 A/H1N1 vaccine component, (A/Brisbane/59/
2007), estimated using an ML method. Colored rectangles (labeled A–H) represent eight clades of related viral isolates from the 2006–2007 US
season that are present on phylogenies for all eight viral genome segments (Figures S1, S2, S3, S4, S5, S6). Global background isolates are unshaded
and labeled by season in red font. Vaccine strains are highlighted in olive green. Bootstrap values (.70%) are shown for key nodes. The tree is mid-
point rooted for purposes of clarity only, and all horizontal branch lengths are drawn to scale.
doi:10.1371/journal.ppat.1000133.g001
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10–14 amino acids, 3–5 in antigenic sites for set 2 clades (Figure 5,

Table 3). It is possible that clades C and D represent additional

antigenic variants of New Caledonia-like viruses, given the higher

number of amino acid changes in antigenic sites (2) also observed

in these viruses (Figure 5). However, given the uncertainties

involved in inferring antigenic properties from genetic data alone,

our antigenic assignments should not be considered definitive.

In contrast, set 2 clades F, G, and H appear to be related to two

emerging antigenic variants. Clade H may be antigenically similar

to the A/Solomon Islands/3/2006 vaccine strain selected for

2007–2008, based on their close phylogenetic relationship

(Figure 1) and the low number of amino acid differences in

antigenic sites (1 site, Table 3). Clade F is more phylogenetically

related to the A/Brisbane/59/2007 2008–2009 vaccine strain,

and there are no differences at antigenic sites in these viruses.

Clades F and G differ by nine amino acids in the HA, but only one

difference occurs at an antigenic site, suggesting that, although

phylogenetically distinct, clade G may also be A/Brisbane/59/

2007-like in antigenicity.

Also of note was the observation that of the 284 A/H1N1

influenza viruses sequenced in this study, only one isolate–A/

Colorado/UR06-0053/2007–the sole member of clade G,

contained the S31N amino acid replacement in the M2 protein

that is associated with resistance to the adamantane class of

antivirals (Table 4) [35].

Clade F was generated by intra-subtype reassortment
between antigenic variants

Although clade F was classified as a member of clade set 2 due

to the phylogenetic relatedness of its HA gene segment to clades G

and H, this clade in fact appears to be set 1-set 2 reassortant.

Specifically, on trees inferred for the PB2, PA, HA, and NA

segments, clade F isolates are related to Solomon Islands-like set 2

clades G and H (as exemplified by the phylogeny of the HA gene

segment, Figure 1). However, clade F is more closely related (with

high bootstrap support) to the New Caledonia-like set 1 clades of

A, B, C, and D in segments PB1, NP, M, and NS (as exemplified

by phylogeny of PB1 gene segment, Figure 2; see Figures S1, S2,

S3, S4, S5, and S6 for phylogenies of other segments). As half of

the genome (PB1, NP, M, and NS) of these reassortant viruses was

acquired from set 1-like viruses that began circulating in 2005, this

reassortment event most likely occurred between 2005–2006.

A/New York/291/2002(H1N1)A/New York/494/2002(H1N1)A/New York/497/2003(H1N1)A/Memphis/6/2003(H1N1)A/New York/496/2003(H1N1)A/New York/220/2002(H1N1)A/New York/292/2003(H1N1)
A/New York/348/2003(H1N1)A/New York/484/2003(H1N1)A/New York/483/2003(H1N1) A/New York/221/2003(H1N1)A/New York/230/2003(H1N1)A/New York/493/2003(H1N1)A/New York/222/2003(H1N1)

A/New York/488/2003(H1N1)A/New York/223/2003(H1N1)A/New York/486/2003(H1N1)A/New York/228/2003(H1N1)A/New York/350/2003(H1N1)A/Memphis/5/2003(H1N1)A/New York/227/2003(H1N1)
A/New York/293/2003(H1N1)A/New York/399/2003(H1N1) A/South Australia/58/2005(H1N1)A/Waikato/11/2005(H1N1)A/Waikato/13/2005(H1N1)A/Waikato/17/2005(H1N1)A/Waikato/4/2005(H1N1)

A/Texas/UR06-0026/2007(H1N1)A/Texas/UR06-0420/2007(H1N1)A/Texas/UR06-0467/2007(H1N1)A/Texas/UR06-0542/2007(H1N1)A/Texas/UR06-0468/2007(H1N1)A/Texas/UR06-0503/2007(H1N1)A/Florida/UR06-0208/2007(H1N1)
A/Texas/UR06-0157/2007(H1N1)A/Florida/UR06-0501/2007(H1N1)A/Oregon/UR06-0186/2007(H1N1)A/Texas/UR06-0012/2006(H1N1)A/Kansas/UR06-0085/2007(H1N1)A/Kentucky/UR06-0425/2007(H1N1)A/Tennessee/UR06-0119/2007(H1N1)

A/Mississippi/UR06-0047/2007(H1N1)A/Vermont/UR06-0301/2007(H1N1)A/Virginia/UR06-0332/2007(H1N1)A/Oklahoma/UR06-0063/2007(H1N1)A/Illinois/UR06-0146/2007(H1N1)A/Tennessee/UR06-0080/2007(H1N1)A/Tennessee/UR06-0277/2007(H1N1)
A/California/UR06-0321/2007(H1N1)A/Colorado/UR06-0498/2007(H1N1)A/Illinois/UR006-018/2007(H1N1)A/Kansas/UR06-0192/2007(H1N1)A/Kentucky/UR06-0128/2007(H1N1)A/Kentucky/UR06-0328/2007(H1N1)A/Virginia/UR06-0562/2007(H1N1)

A/Florida/UR06-0049/2007(H1N1)A/Florida/UR06-0577/2007(H1N1)A/Vermont/UR06-0050/2007(H1N1)A/Vermont/UR06-0485/2007(H1N1)A/Vermont/UR06-0511/2007(H1N1)A/Vermont/UR06-0576/2007(H1N1)A/Kansas/UR06-0143/2007(H1N1)
A/North Carolina/UR06-0364/2007(H1N1)A/Texas/UR06-0039/2007(H1N1)A/Vermont/UR06-0035/2007(H1N1)A/Colorado/UR06-0110/2007(H1N1)A/Illinois/UR06-0032/2007(H1N1)A/Kentucky/UR06-0007/2006(H1N1)A/Kentucky/UR06-0010/2006(H1N1)

A/Kentucky/UR06-0027/2007(H1N1)A/Kentucky/UR06-0081/2007(H1N1)A/Kentucky/UR06-0220/2007(H1N1)A/Virginia/UR06-0594/2007(H1N1)A/Kentucky/UR06-0043/2007(H1N1)A/Mississippi/UR06-0048/2007(H1N1)A/New York/UR06-0134/2007(H1N1)
A/Ohio/UR06-0522/2007(H1N1)A/Tennessee/UR06-0509/2007(H1N1)A/Texas/UR06-0582/2007(H1N1)A/Virginia/UR06-0075/2007(H1N1)A/Virginia/UR06-0387/2007(H1N1)A/Ohio/UR06-0443/2007(H1N1)A/Texas/UR06-0025/2007(H1N1)

A/Texas/UR06-0204/2007(H1N1)A/Texas/UR06-0380/2007(H1N1)A/Virginia/UR06-0244/2007(H1N1)A/Texas/UR06-0563/2007(H1N1)A/Alabama/UR06-0455/2007(H1N1)A/Alabama/UR06-0536/2007(H1N1)A/Mississippi/UR06-0014/2006(H1N1)
A/Mississippi/UR06-0145/2007(H1N1)A/Tennessee/UR06-0151/2007(H1N1)A/Virginia/UR06-0384/2007(H1N1)A/Auckland/619/2005(H1N1)A/New York/8/2006(H1N1)A/Otago/5/2005(H1N1)A/South Australia/51/2005(H1N1)

A/South Australia/55/2005(H1N1)A/Western Australia/77/2005(H1N1)A/South Australia/56/2005(H1N1)A/South Australia/57/2005(H1N1)A/Waikato/14/2005(H1N1)A/Wellington/10/2005(H1N1)A/Wellington/13/2005(H1N1)
A/Wellington/11/2005(H1N1)A/Wellington/12/2005(H1N1)A/Wellington/14/2005(H1N1) A/California/UR06-0125/2007(H1N1)A/California/UR06-0232/2007(H1N1)A/California/UR06-0585/2007(H1N1)A/Colorado/UR06-0499/2007(H1N1)

A/Kansas/UR06-0191/2007(H1N1)A/Kentucky/UR06-0042/2007(H1N1)A/Kentucky/UR06-0161/2007(H1N1)A/Michigan/UR06-0015/2006(H1N1)A/Ohio/UR06-0177/2007(H1N1)A/New York/UR06-0386/2007(H1N1)A/Ohio/UR06-0429/2007(H1N1)
A/Illinois/UR06-0074/2007(H1N1)A/Illinois/UR06-0491/2007(H1N1)A/Kentucky/UR06-0028/2007(H1N1)A/New York/UR06-0253/2007(H1N1)A/North Carolina/UR06-0011/2006(H1N1A/North Carolina/UR06-0099/2007(H1N1)A/Virginia/UR06-0254/2007(H1N1)
A/Tennessee/UR06-0262/2007(H1N1)A/Kentucky/UR06-0057/2007(H1N1)A/Kentucky/UR06-0363/2007(H1N1)A/Texas/UR06-0133/2007(H1N1)A/Texas/UR06-0195/2007(H1N1)A/Texas/UR06-0306/2007(H1N1)A/Texas/UR06-0398/2007(H1N1)

A/California/UR06-0393/2007(H1N1)A/California/UR06-0479/2007(H1N1) A/Kentucky/UR06-0476/2007(H1N1)A/Mississippi/UR06-0378/2007(H1N1)A/Tennessee/UR06-0045/2007(H1N1)A/Texas/UR06-0217/2007(H1N1)A/Canterbury/01/2001(H1N1)
A/New York/443/2001(H1N1) A/Canterbury/106/2004(H1N1) A/Colorado/UR06-0053/2007(H1N1)A/New York/UR06-0199/2007(H1N1)A/New York/UR06-0326/2007(H1N1)A/Canterbury/119/2001(H1N1)A/Canterbury/53/2001(H1N1)
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Figure 2. Phylogenetic relationships of the PB1 gene segment of 100 A/H1N1 influenza viruses sampled from the US during the
2006–2007 influenza season and 48 globally from 2001–2006, estimated using an ML method (representative of phylogenies for
NP, M1/2, and NS1/2). Labels, shading, and rooting are the same as for Figure 1. Arrow indicates reassortant clade F.
doi:10.1371/journal.ppat.1000133.g002
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Multiple clades of both adamantane sensitive and
resistant A/H3N2 influenza viruses co-circulated during
the 2006–2007 US epidemic

Although fewer A/H3N2 influenza viruses (n = 69) were

available for study due to the dominance of the A/H1N1 subtype

during the 2006–2007 season, abundant genetic diversity is

evident on all eight segment phylogenies, as exemplified by the

HA tree (Figure 6; see Figures 7–9 and Figures S7, S8, S9, and S10

for trees of remaining segments). To obtain greater resolution, we

also estimated phylogenetic trees that included 104 whole genome

A/H3N2 influenza viruses sampled globally from 2003–2006 [36],

as well as the HA and NA sequences from the A/H3N2

components of influenza vaccines selected for the 2006–2007/

2007–2008 (A/Wisconsin/67/2005) and 2008–2009 (A/Bris-

bane/10/2007) seasons [30,33,34].

The majority (60/69, 87.0%) of the A/H3N2 isolates from the

2006–2007 US epidemic were members of a major clade (denoted

clade ‘a’). On both the HA and NA phylogenies, clade a contains

the antigenically novel A/Brisbane/10/2007 isolate selected for

the 2008–2009 vaccine, whereas only three 2006–2007 singleton

isolates (i.e. isolates that were phylogenetically isolated; described

below) belong to the clade that contains the 2006–2007 influenza

vaccine strain A/Wisconsin/67/2005, confirming prior observa-

tions of a vaccine mismatch (Figure 6) [30]. This A/Wisconsin/

67/2005-like clade first emerged in 2005 and represented a class of

viruses that were adamantane-resistant due to the S31N mutation

in M2; it was termed the ‘N-lineage’ in previous work [36]. This

N-lineage is closely related to some 2003 isolates (previously

termed ‘clade B’ [36]) in 4 of the 8 segment phylogenies (PB1, PA,

NP, and M) (Figures 7, 8, 9, Figure S8), confirming that a 4+4

reassortment event was responsible for the genesis of the N-lineage

[36]. As with the N-lineage, all isolates in clade a contained the

S31N mutation in M2 that confers adamantane resistance

(Figure 6).

In addition to the major clade a, a minor clade of five A/H3N2

viruses, denoted clade b, also circulated during the 2005–2006

Table 1. Number of A/H1N1 influenza viruses sampled per locality, per clade (Figure 1).

Pop* A B C D E F G H TOTAL

Major cities New York City, NY 8214 2 2 2 6

Los Angeles, CA 3849 5 7 2 14

Chicago, IL 2833 12 3 15

Houston, TX 2144 23 1 8 3 6 1 42

Mid-sized cities Detroit, MI 871 1 1

Denver, CO 567 8 1 1 10

Nashville, TN 552 1 1

Oklahoma City, OK 538 2 1 3

Portland, OR 537 6 6

Kansas City, MO 447 9 1 1 11

Cleveland, OH 444 1 1 2

Tampa, FL 333 8 4 12

Cincinnati, OH 332 23 2 4 1 30

Toledo, OH 298 1 1

Birmingham, AL 229 1 1

Akron, OH 210 1 1

Winston-Salem, NC 197 1 1

Richmond, VA 193 13 1 14

Knoxville, TN 182 9 2 11

Minor cities/town Albany, NY 94 12 2 14

Madison, AL 36.8 1 1

Pekin, IL 33.4 2 9 11

Hopkinsville, KY 30.1 15 7 4 26

Tullahoma, TN 18.9 1 2 8 11

Dyersburg, TN 17.4 1 1 2

Washington, OH 13.5 9 3 12

Graham, NC 12.8 2 1 3

Aberdeen, MS 6.4 9 1 1 14

Weber City, VA 1.3 6 3 1 7

Dunlap, IL 0.9 1 1

TOTAL 175 47 12 35 6 6 1 2 284

Localities are listed in order of population size (*per 1,000 persons) and categorized as major cities (population of .1 million), mid-sized cities (population size of
100,000–999,999), or minor cities/towns (population of ,99,999). Total number of isolates per locality listed in far right column.
doi:10.1371/journal.ppat.1000133.t001
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season (Figure 6). Although clades a and b both descend from the

adamantane resistant N-lineage, every isolate in clade b contains

the adamantane-sensitive serine (S) at position 31 of the M2,

indicating that a reversion has occurred. In addition, clades a and

b may vary antigenically, as they differ in numerous amino acids in

HA, five of which occur in antigenic sites A, B, and C (amino acid

sites 50, 140, 142, 157, 173) and one–site 142–in the HA1 domain

that was previously identified as undergoing positive selection [37].

Four singleton A/H3N2 viruses (labeled s1, s2, s3, and s4) also

circulated during this season (Figure 6). Isolates s1, s2, and s3 are

members of the older N-lineage and possess the associated

adamantane-resistance S31N mutation. In contrast, isolate s4 is

adamantane sensitive and clusters with other adamantane sensitive

isolates, including clade b. The HA of isolate s4 differs from that of

the major clade a by 12 amino acids, 8 of which occur at antigenic

sites and 2 at previously identified positively selected sites (amino

acid sites 193 and 275) [37] (Table 5). Similarly, the HA of s4

differs from clade b by 12 amino acids, 7 of which occur at

antigenic sites and 2 at positively selected sites (142 and 193). In

contrast, the HA of isolates s1, s2, and s3 differs from clade a by

only 6, 2, and 4 amino acids in 3, 1, and 2 antigenic sites,

respectively. In sum, as many as four antigenic variants of A/

H3N2 influenza virus may have co-circulated this season (although

this will be to be confirmed experimentally), each of which is likely

to represent a separate introduction event: A/Wisconsin/67/

2005-like (isolates s1, s2, and s3), A/Brisbane/10/2007-like (major

clade a), clade b, and isolate s4 (Table 4).

Multiple reassortment events involving A/H3N2 influenza
viruses from the 2006–2007 US epidemic

Major topological differences between the eight phylogenies of

the A/H3N2 virus genome strongly suggest that several reassort-

ment events took place involving multiple clades from the 2006–

2007 US epidemic. Whereas the adamantane-resistant clade a and

the sensitive clade b both appear to derive from the N-lineage on

the trees for the PB2, PA, HA, NA and NS segments, clade b

instead derives from the adamantane sensitive clades from 2004–

2005 on the M and PB1 trees (Figures 7, 8). This major

phylogenetic incongruity strongly suggests that clade b viruses re-

acquired sensitivity to adamantane by acquiring an older

adamantane-sensitive M segment (with a serine at site 31 of the

M2 gene) through reassortment. The NP segment also has

undergone a major reassortment event, as on the NP phylogeny

both clades a and b descend from adamantane sensitive clades,

rather than from the N-lineage (Figure 9). The varying

phylogenetic positions of the s4 isolate across the genome also

suggest that this singleton virus resulted from multi-segment

reassortment (Figures 6–9, Figures S7, S8, S9, S10). The s4 isolate

is closely related to clade b on phylogenies of the PB2, PB1, NP,

M, and NS segments (having reassorted along with clade b in the

A/Texas/UR06-0026/2007(H1N1)
A/Texas/UR06-0420/2007(H1N1)A/Texas/UR06-0467/2007(H1N1)
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A/Texas/UR06-0542/2007(H1N1)
A/Florida/UR06-0208/2007(H1N1)

A/Vermont/UR06-0301/2007(H1N1)
A/Florida/UR06-0501/2007(H1N1)

A/Oregon/UR06-0186/2007(H1N1)
A/Texas/UR06-0012/2006(H1N1)A/Kansas/UR06-0085/2007(H1N1)

A/Kentucky/UR06-0425/2007(H1N1)
A/Mississippi/UR06-0047/2007(H1N1)

A/Tennessee/UR06-0119/2007(H1N1)
A/Texas/UR06-0157/2007(H1N1)

A/Virginia/UR06-0332/2007(H1N1)
A/Oklahoma/UR06-0063/2007(H1N1)

A/Illinois/UR06-0146/2007(H1N1)
A/Tennessee/UR06-0080/2007(H1N1)
A/Tennessee/UR06-0277/2007(H1N1)A/California/UR06-0125/2007(H1N1)

A/California/UR06-0232/2007(H1N1)
A/New York/UR06-0386/2007(H1N1)

A/California/UR06-0585/2007(H1N1)
A/Colorado/UR06-0499/2007(H1N1)

A/Kansas/UR06-0191/2007(H1N1)
A/Kentucky/UR06-0042/2007(H1N1)

A/Kentucky/UR06-0161/2007(H1N1)
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A/Kentucky/UR06-0328/2007(H1N1)

A/Texas/UR06-0039/2007(H1N1)
A/Vermont/UR06-0035/2007(H1N1)A/Virginia/UR06-0562/2007(H1N1)
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A/Illinois/UR06-0032/2007(H1N1)
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A/Ohio/UR06-0522/2007(H1N1)
A/Texas/UR06-0025/2007(H1N1)

A/Texas/UR06-0204/2007(H1N1)
A/Texas/UR06-0380/2007(H1N1)
A/Texas/UR06-0582/2007(H1N1)A/Virginia/UR06-0075/2007(H1N1)
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A/Colorado/UR06-0053/2007(H1N1)

A/New York/UR06-0199/2007(H1N1)
A/New York/UR06-0326/2007(H1N1)
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Figure 3. Temporal patterning of isolates contained in eight clades of A/H1N1 influenza viruses identified in Figure 1. Colored
rectangles contain individual isolates that were collected during the week associated with that color (see Color Key). Dates for weeks 1–15 are the
same as those used in Table 2. Branches leading to background isolates have been removed for clarity.
doi:10.1371/journal.ppat.1000133.g003
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PB1 and M segments; Figures 7–9, Figures S7, S8, S9, S10). In

contrast, on phylogenies of the PA, HA, and NA segments this

virus is divergent from all other clades (Figure 6, Figures S7, S8,

S9, S10).

Spatial dynamics of A/H3N2 influenza viruses
No clear signal of the geographical spread of A/H3N2 influenza

viruses could be detected due to our small sample size. All clades

were geographically widespread and a secondary parsimony

character mapping analysis again revealed strong population

subdivision and weak migration (results not shown; available from

authors upon request). The major clade a was present in all

thirteen localities in which A/H3N2 viruses were collected, and

the five isolates contained in minor clade b were geographically

dispersed across both urban and remote areas spanning four of five

US regions: Los Angeles, California; Chicago, Illinois; Hopkins-

ville, Kentucky; Madison, Alabama; New York City, New York;

and Houston, Texas (Table 2). New York City exhibited the most

A/H3N2 diversity, as major clade a, minor clade b, and singleton

viruses s3 and s4 all were detected, which is remarkable given that

only six total A/H3N2 isolates were collected from this locality

(Table 2). In some cases, multiple clades of both A/H3N2 and A/

H1N1 viruses co-circulated over restricted spatial-temporal scales.

As a case in point, at least two A/H1N1 clades and two A/H3N2

clades circulated during week 12 in Chicago, Illinois, week 13 in

Houston, Texas, and week 14 in Los Angeles, California (Table 2).

Considering both A/H1N1 and A/H3N2 isolates together, large

amounts of genetic diversity circulated in both urban and remote

areas of the US: a total of 8 clades of influenza A virus circulated

in Houston, Texas during the epidemic, 7 in New York City, New

York, 6 in Los Angeles, California, and 5 clades each in Denver,

Colorado, Cincinnati, Ohio, and Hopkinsville, Kentucky (Table 2).

Discussion

This study utilized whole-genome sequence data from a

surveillance initiative of unprecedented scope and scale that

sampled both A/H1N1 and A/H3N2 influenza viruses across the

US over the course of a single season through the Influenza

Genomics Sequencing Project [38]. Rather than a single viral

lineage spreading across the US, multiple lineages of both A/

H3N2 and A/H1N1 influenza virus were separately introduced

and co-circulated, allowing for reassortment within subtypes and

greatly complicating patterns of spatial-temporal spread. Given the

extent of genetic diversity observed during this season, obtaining a

strong signal for the spatial-temporal pattern of spread of multiple

different lineages clearly would entail a large increase in sampling.
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Substantial antigenic diversity was also observed during the

2006–2007 season in the US, as at least five antigenically distinct

types of influenza A virus co-circulated: three antigenically distinct

variants of A/H1N1 viruses (A/New Caledonia/20/1999-like, A/

Solomon Islands/3/2006-like, and A/Brisbane/59/2007-like),

and at least two antigenically different types of A/H3N2 virus

(A/Wisconsin/67/2005-like and A/Brisbane/10/2007-like), while

clade b and isolate s4 also may represent additional antigenic

variants of A/H3N2 virus (Table 4). However, analyses based on

hemagglutinin-inhibition (HI) tests are required to confirm the

antigenic status of these viruses.

Although A/Solomon Islands/3/2006-like viruses and A/

Brisbane/59/2007-like A/H1N1 viruses were represented only

by minor clades during the 2006–2007 season (H and F,

respectively), Solomon Islands-like viruses achieved global A/

H1N1 dominance by the start of the 2007–2008 season, and the

reassortant clade of Brisbane-like viruses rose to dominance later

during the 2007–2008 season [39]. Given that the antigenic

evolution of A/H1N1 influenza virus is thought to be slower than

the A/H3N2 virus, as reflected by eight consecutive years of

dominance by A/New Caledonia/20/1999-like viruses, the rapid

emergence of two new antigenic variants of A/H1N1 virus in a

single year was particularly notable ([30], for example).

The extensive genetic diversity present in both A/H1N1 and A/

H3N2 viruses suggests that multiple introductions of virus have

taken place during the 2006–2007 season, particularly as our

method of collecting viruses clearly underrepresented areas that

are major ports of international travel. As a case in point, further

sampling in the Los Angeles and New York City regions, where

our study still detected significant diversity even at very low

sampling levels, would likely augment the total number of viral

lineages detected, including those imported from South-East Asia.

By sampling in both metropolitan and relatively isolated areas, our

study yielded important information on the geographic distribu-

tion of viral genetic variation: namely, that extensive viral

diversity, including multiple antigenically distinguishable lineages,

disseminated widely across the entire United States during the

epidemic, even into relatively remote areas, so that it was not

confined to the major cities where the virus is thought to enter. As

a particular case in point, even relatively low-density areas or those
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Figure 5. Number of amino acid changes along main branches of the tree depicting the phylogenetic relationships between the HA
gene segments from A/H1N1 influenza viruses (adapted from Figure 1 with branches within clades collapsed). The first number
represents total number of amino acid changes, with the number following comma referring to the number of amino acid changes occurring in
antigenic or potential glycosylation sites. The number in parentheses next to the clade label represents the total number of amino acid changes and
those changes at antigenic sites between that clade and the A/New Caledonia/20/1999 vaccine component used from 2000–2001 to 2006–2007.
doi:10.1371/journal.ppat.1000133.g005
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distant from major metropolitan areas, such as Hopkinsville,

Kentucky (population size ,30,000), harbor significant amounts

of both genetic and antigenic diversity, suggesting that influenza

viruses of multiple antigenic (and other phenotypic) types

extensively infiltrate the United States over the course of a single

season. However, it is important to note that our analyses cannot

exclude that a single co-infected individual could have introduced

multiple clades of influenza virus into the United States, as the

frequency of co-infection among patients in this study is unknown

and represents a key area for further research.

Importantly, it is also possible that the 2006–2007 US epidemic

was particularly difficult to reconstruct due to the unusual

complexity of its evolutionary dynamics, which likely relates to

the incomplete dominance of either the A/H1N1 or A/H3N2

subtype. The dynamics of influenza virus epidemics vary greatly

on an annual basis, and influenza epidemics that are dominated by

the A/H3N2 virus have been associated with higher disease

transmission and more rapid spread than milder A/H1N1-

dominated seasons, as well as stronger synchrony in timing across

the United States [9]. Hence, epidemics that are dominated by a

single A/H3N2 clade (such as the 2004–2005 season [18]) may

exhibit stronger signals of spatial spread, and repeating this

sampling effort during an A/H3N2-dominated influenza season

potentially could yield a stronger spatial pattern. A sampling

scheme that minimizes geographical biases and maximizes the

number of samples collected early in the epidemic also could

increase the likelihood of obtaining a stronger spatial signal.

Additional sequencing of influenza viruses in areas outside the

United States is also essential to understand the global context of

the diversity that enters the US during a given epidemic. From

this, and previous studies [18,21], it is clear that influenza A virus

is introduced into the United States multiple times during an

epidemic. However, the availability of global sequences, particu-

larly at the genomic scale, is currently inadequate to draw any

conclusions about the geographic origins of each viral introduc-

tion. It has been suggested that US epidemics originate more

frequently in California than other states, due to high inter-

connectivity with Asia and Australia [9], but further whole-

genome sequencing of viruses from Asia is clearly needed to test

this hypothesis. Although the tendency of US epidemics to

originate in the relatively warm state of California suggests that

human movements are more important than climatic factors in the

seasonal onset of influenza virus epidemics, further documentation

of the complex spatial-temporal dissemination of the virus over an

Table 3. Number of amino acid differences in the HA gene segment between clades A–H of A/H1N1 influenza virus sampled from
the 2006–2007 US season.

A B C D E NC99 ‘01 ‘02/03 ‘05 F G H SI06

A - 2 23 34 3 35 2 2 3 1136 1536 131223 12123

B 2 - 43 34 3 35 2 2 3 1136 1536 111223 12123

C 23 43 - 534 53 535 43 43 53 96 156 13122 1212

D 34 34 534 - 44 445 34 34 44 12346 15346 1412234 131234

E 3 3 53 44 - 45 3 3 4 1236 1636 141223 13123

NC99 35 35 535 445 45 - 15 15 45 10356 14356 1212235 111235

‘01 2 2 43 34 3 15 - 0 3 936 1336 111223 10123

‘02/03 2 2 43 34 3 15 0 - 3 936 1336 111223 10123

‘05 3 3 53 44 4 45 3 3 - 1236 1636 141223 13123

F 1136 1136 96 12346 1236 10356 936 936 1236 - 96 81226 7126

G 1536 1536 156 15346 1636 14356 1336 1336 1636 96 - 101226 7126

H 131223 111223 131223 1412234 141223 1212235 111223 111223 141223 81226 101226 - 32

SI06 12123 12123 12123 131234 13123 111235 10123 10123 13123 7126 7126 32 -

As a comparison, isolates used as the A/H1N1 component of the influenza vaccine in 2006–2007 (A/New Caledonia/20/1999(H1N1) (NC99)) and 2007–2008 (A/Solomon
Islands/3/2006(H1N1) (SI06)) are included, as well as representative isolates from the 2001 (‘01), 2002–2003 (‘02/03) and 2005 (‘05) seasons. Amino acid differences
between clades in set 1 (clades A, B, C, D, E, NC99, ‘01, ‘02/03, and ‘05) and clades in set 2 (clades F, G, H, and SI06) are in bold. Amino acid changes in antigenic sites are
denoted by superscripts as follows: 1–Cb antigenic site; 2–potential glycosylation site; 3–Ca2 antigenic site; 4–Sa antigenic site; 5–Ca1 antigenic site; 6–Sb antigenic site.
For a complete list of amino acid changes at specific sites, see Table S1.
doi:10.1371/journal.ppat.1000133.t003

Table 4. Summary of antigenic characterizations (based on
phylogeny and amino acid comparisons with influenza A
vaccine strains) and adamantane sensitivity (S31N) of all A/
H1N1 and A/H3N2 clades detected in the United States during
the 2006–2007 epidemic.

Clade Subtype Antigenic characterization
Adamantane
sensitivity

A A/H1N1 A/New Caledonia/20/1999-like Sensitive

B A/H1N1 A/New Caledonia/20/1999-like Sensitive

C A/H1N1 A/New Caledonia/20/1999-like Sensitive

D A/H1N1 A/New Caledonia/20/1999-like Sensitive

E A/H1N1 A/New Caledonia/20/1999-like Sensitive

F A/H1N1 A/Brisbane/59/2007-like Sensitive

G A/H1N1 A/Brisbane/59/2007-like Resistant

H A/H1N1 A/Solomon Islands/3/2006-like Sensitive

a A/H3N2 A/Brisbane/10/2007-like Resistant

b A/H3N2 Unknown Sensitive

s1,s2,s3 A/H3N2 A/Wisconsin/67/2005-like Resistant

s4 A/H3N2 Unknown Sensitive

Antigenic characterizations inferred from phylogenetic relationships and
differences in amino acids in antigenic sites of HA.
doi:10.1371/journal.ppat.1000133.t004
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epidemic is required to elucidate the seasonality of influenza.

Additionally, the extent of viral and antigenic diversity and the

frequent circulation of minor clades that is detected by intensified

surveillance efforts, such as the present study, suggest that much

more diversity circulates at a global scale than is identified by

routine surveillance. In particular, early detection of minor clades,

particularly in the source populations of East and South-East Asia

[21], could improve recognition of emerging lineages and

prediction of future dominant strains for vaccine design. Indeed,

the antigenically variant A/Brisbane/59/2007(H1N1)-like reas-

sortant clade F detected in this study may not have been picked up

by routine global surveillance until later, as no other publicly

available global isolates from 2006 were found within this clade.

Our findings also suggest that the genetic diversity of the A/

H3N2 virus is substantial even when A/H3N2 is not the dominant

subtype, as was the case for most of the 2006–2007 epidemic. A

major clade (a), a minor clade (b), a reassortant singleton (s4), and

three singletons (s1, s2, s3) that appear to be descendents of the N-

lineage [36] all co-circulated during this epidemic. All these clades

differed in numerous amino acids in the HA, including those in

antigenic and positively selected sites [37]. Both clades a and b, as

well as the s4 singleton, were involved in at least three separate

reassortment events: (a) clade b and singleton s4 (PB1 and M

segments), (b) clades a and b (NP segment), and (c) singleton s4

only (PA, HA, and NA). As a caveat, because our study does not

involve plaque-purified viruses, it is theoretically possible that the

amplification of segments from different viruses co-infecting a

single patient could produce a false signal for reassortment,

particularly for those putative reassortment events that involve a

single virus (for example, the s4 singleton). However, even with this

potential source of bias, the frequency of definitive reassortment

events among A/H3N2 clades is striking, especially compared to

the single reassortment event observed among the A/H1N1

viruses that dominated this season. This most likely reflects the

usually lower prevalence of A/H1N1, which in turn means a

reduced likelihood of mixed infection and hence reassortment. In

addition, given the importance of other geographical regions,

particularly South-East Asia, in the evolution of the influenza A
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Figure 6. Phylogenetic relationships of the HA gene segment of 69 A/H3N2 influenza viruses sampled from the US during the
2006–2007 influenza season, 104 background global A/H3N2 viruses sampled from 2003–2006, and the A/H3N2 component of the
influenza vaccines from the 2006–2007 and 2007–2008 seasons (A/Wisconsin/67/2005) and the component selected for the 2008–
2009 influenza vaccine (A/Brisbane/10/2007). Isolates that are adamantane sensitive (have a serine at position 31 of the M2 gene) are shaded in
blue, while isolates that are resistant to adamantane are shaded in red. Clades of related viral isolates are denoted by rectangles. Clades from the
2006–2007 US epidemic are labeled as follows: major clade (a), minor clade (b), and four singleton isolates (s1, s2, s3, and s4). Clades from previous
global epidemics include the ‘N-lineage’ (adamantane-resistant isolates from 2005–2006). The A/Wisconsin/67/2005 vaccine strain, contained within
the N-lineage, is shaded in olive, and the A/Brisbane/10/2007 vaccine strain, contained within clade a, is shaded in yellow. Bootstrap values (.70%)
are shown for key nodes. The tree is mid-point rooted for purposes of clarity only, and all horizontal branch lengths are drawn to scale.
doi:10.1371/journal.ppat.1000133.g006
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virus [21], as well as the fact that A/H3N2 was the dominant

subtype in Canada and Europe during this season [33], the A/

H3N2 virus likely circulated at higher levels outside the US,

providing greater opportunity for reassortment. Of further interest

is why inter-subtype reassortment between A/H1N1 and A/H3N2

viruses is not observed more commonly, despite the apparent co-

circulation of both subtypes over both time and space (Table 2). In

this case, it is possible that a virus produced by inter-subtype

reassortment has a lower fitness, because the greater genetic

distance between the A/H1N1 and A/H3N2 subtypes means that

reassortment events are more likely to disrupt essential functional

interactions among segments.

Finally, the existence of the adamantane-sensitive clade b (A/

H3N2) during this epidemic was surprising, given that global

resistance to adamantanes among influenza A/H3N2 viruses has

increased dramatically in recent years, with more than 95% of A/

H3N2 influenza viruses classified as resistant in the previous 2005–

2006 season in the US [32]. Even more striking was that most of

the genome of clade b isolates was more closely related to the

adamantane-resistant clade a than to older adamantane-sensitive

clades, indicating that this clade did not evolve directly from

adamantane-sensitive viruses as may have been presumed. Rather,

clade b viruses re-acquired sensitivity to adamantane by acquiring

two segments (PB1 and M) from older adamantane-sensitive

viruses through reassortment. This finding supports prior conclu-

sions that sensitivity and resistance to adamantane can be acquired

through genomic reassortment, rather than by direct selection on

the M2 gene for drug resistant mutations [36].

Methods

Phylogenetic analysis of influenza A viruses from the
2006–2007 US epidemic

All viruses were collected as part of a larger 2006–2007 US

surveillance effort conducted by Surveillance Data Inc., in which a

total of 610 influenza virus specimens of both type A and type B

were obtained from nasal and nasopharyngeal swabs from patients

seen with influenza-like illness. At the time of this study, 353 type

A influenza virus genomes had been sequenced and were available

for study. Fifty-six participating physicians, primarily located at

family practices, were recruited from 21 states that were

geographically distributed across the US (AL, CA, CO, FL, IL,

KS, KY, MI, MS, NJ, NY, NC, OH, OK, OR, PA, TN, TX, VT,

VA, WA). Doctors swabbed all patients $ one year of age who

presented with fever and upper respiratory symptoms from

December 1, 2006 to April 1, 2007. An in-office immunoassay

rapid test (Quidel QuickVue Influenza A+B Test) was used to

identify positive influenza samples (A or B), and positive swabs

were sent to a reference laboratory in Rochester, New York, to be

typed as AH1N1, A/H3N2, or influenza B, following growth in
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Figure 7. Phylogenetic relationships of the M gene segment of 69 A/H3N2 influenza viruses sampled from the US during the 2006–
2007 influenza season and 104 background global A/H3N2 viruses sampled from 2003–2006. Clades, shading, labeling, and rooting are
the same as in Figure 6.
doi:10.1371/journal.ppat.1000133.g007
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Primary Rhesus Monkey Kidney Cells (RhMK) culture. RNA was

extracted from viruses via automated nucleic acid extraction using

the Roche MagNA Pure instrument and was shipped to the J.

Craig Venter Institute in Rockville, Maryland, for whole virus

sequencing (methods described previously [38]).

A/H1N1 influenza viruses. A total of 284 whole-genome

sequences of A/H1N1 influenza virus sampled from the 2006–

2007 season in the continental United States were used in this

study (Table S2). A/H1N1 influenza viruses were collected from

December 6, 2006 (which we regard as week 1 of the epidemic) to

March 13, 2007, covering 15 weeks of the 2006–2007 epidemic.

Isolates came from 33 localities within 18 US states, many of

which are located within the greater metropolitan areas of larger

cities (,50 miles away, listed in parentheses, when applicable):

Columbiana, AL (Birmingham, AL), Madison, AL; Granada Hills,

CA (Los Angeles, CA), Hacienda Heights, CA (Los Angeles, CA);

Louisville, CO (Denver, CO); St. Petersburg, FL (Tampa, FL);

Dunlap, IL, Naperville, IL (Chicago, IL), Pekin, IL; Overland

Park, KS (Kansas City, MO); Florence, KY (Cincinnati, OH),

Hopkinsville, KY; Royal Oak, MI (Detroit, MI); Aberdeen, MS;

Bronx, NY (New York City, NY); Graham, NC (Durham, NC),

Winston-Salem, NC; Fairfield, OH (Cincinnati, OH), North

Canton, OH (Akron, OH), Oberlin, OH (Cleveland, OH),

Toledo, OH, Washington, OH; Choctaw, OK (Oklahoma City,

OK), Norman, OK (Oklahoma City, OK); Newberg, OR

(Portland, OR); Dyersburg, TN, Knoxville, TN, Lebanon, TN

(Nashville, TN) , Tullahoma, TN; Conroe, TX (Houston, TX);

Richmond, VA, Weber City, VA; Bennington, VT (Albany, NY).

Population sizes and longitudinal positions of these localities were

determined using 2006 US Census data [40].

A/H3N2 influenza viruses. As A/H1N1 was dominant for

most of the 2006–2007 US influenza season, fewer whole-genome

sequences of A/H3N2 viruses were available for this study (69

isolates). However, as A/H3N2 replaced A/H1N1 as the

dominant subtype towards the end of the 2006–2007 season in

March, the majority (38/69, 55.1%) of A/H3N2 isolates used in

this study were collected between February 25, 2007–March 10,

2007. These 69 A/H3N2 isolates came from 13 states representing

all six US regions. Within these 13 states, isolates were sampled

from 20 localities (those within the greater metropolitan areas of

larger cities listed in parentheses, when applicable): Columbiana,

AL (Birmingham, AL), Madison, AL; Hacienda Heights, CA (Los

Angeles, CA); Louisville, CO (Denver, CO); St. Petersburg, FL

(Tampa, FL); Bloomingdale, IL (Chicago, IL), Lake Zurich, IL

(Chicago, IL), Naperville, IL (Chicago, IL); Florence, KY

(Cincinnati, OH), Hopkinsville, KY; Bronx, NY (New York

City, NY), Glendale, NY; Akron, OH, Washington, OH;

Newberg, OR (Portland, OR); Conroe, TX (Houston, TX);
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Figure 8. Phylogenetic relationships of the PB1 gene segment of 69 A/H3N2 influenza viruses sampled from the US during the
2006–2007 influenza season and 104 background global A/H3N2 influenza viruses sampled from 2003–2006. Clades, shading,
labeling, and rooting are the same as in Figure 6.
doi:10.1371/journal.ppat.1000133.g008
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Dale City, VA (Washington, DC), Richmond, VA; Bennington,

VT (Albany, NY); Woodinville, WA (Seattle, WA).

Phylogenetic analysis. Genome sequences were

downloaded from the NCBI Influenza Virus Resource [41].

Sequence alignments were manually constructed for the major

coding regions of each of the eight genomic segments for both A/

H1N1 and A/H3N2 viruses (with regions of overlapping reading

frame deleted in the case of M1/2 and NS1/2): PB2 (2,277 nt),

PB1 (2,271 nt), PA (2,148 nt), HA (1,698 nt), NP (1,494 nt), NA

(1,407 nt), M1/2 (979 nt), NS1/2 (835 nt). Phylogenetic trees for

the following A/H1N1 data sets were inferred using the maximum

likelihood method available in PAUP* [42]: (a) each genome

segment from all 284 A/H1N1 viruses available from the 2006–

2007 US season; (b) a representative sub-set of 100 A/H1N1

viruses taken from all eight clades from the 2006–2007 season

(Table S2), along with 48 global background sequences from

2001–2006 (largely from New York State, Australia, and New

Zealand) for each genome segment (Table S3); (c) the sub-sample

of 100 A/H1N1 and 48 global background HA sequences, plus 19

additional global HA sequences from 2006–2007, including the

A/H1N1 isolates selected for the 2006–2007 (A/New Caledonia/

20/1999), 2007–2008 (A/Solomon Islands/3/2006), and 2008–

2009 (A/Brisbane/59/2007) vaccine strains [30,33,34] (total of

167 sequences) (Table S4); and (d) the sub-sample of 100 A/H1N1

NA and 48 global background NA sequences, plus 18 additional

global NA sequences from 2006–2007, including the three

influenza vaccine strains (A/New Caledonia/20/1999, A/

Solomon Islands/3/2006, and A/Brisbane/59/2007) (total of

166 sequences) (Table S5). The only function of the background

sequences was to put the phylogenetic relationships of the US

sequences in a more global context.

For the A/H3N2 viruses, phylogenetic trees were inferred using

the maximum likelihood method available in PAUP* [42] for each

of the eight genome segments from 69 A/H3N2 viruses available

sampled during the 2006–2007 US season (Table S6), and 104

whole genome A/H3N2 influenza viruses sampled globally from

2003–2006 that were studied previously [36] (total of 173 viruses)

(Table S7). In addition, phylogenetic trees were estimated that

included the HA and NA gene segments from the original 69

influenza viruses from 2006–2007 and the 104 viruses from 2003–

2006, as well as HA and NA sequences from the A/H3N2

components of influenza vaccines produced for the 2006–2007/

2007–2008 (A/Wisconsin/67/2005) and 2008–2009 (A/Brisbane/

10/2007) seasons [30,33,34] (total of 175 sequences) (Table S8).

In each case, the best-fit model of nucleotide substitution was

identified by MODELTEST [43] as the general reversible

(GTR+I+C4) model, with the frequency of each substitution type,

proportion of invariant sites (I), and the gamma distribution of
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Figure 9. Phylogenetic relationships of the NP gene segment of 69 A/H3N2 influenza viruses sampled from the US during the 2006–
2007 influenza season and 104 background global A/H3N2 influenza viruses sampled from 2003–2006. Clades, shading, labeling, and
rooting are the same as in Figure 6.
doi:10.1371/journal.ppat.1000133.g009
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among-site rate variation with four rate categories (C4) estimated

from the empirical data (parameter values available upon request).

In all cases tree bisection-reconnection (TBR) branch-swapping

was utilized to determine the globally optimal tree. To assess the

robustness of each node on the phylogenetic tree, a bootstrap

resampling process (1,000 replications) using the neighbor-joining

(NJ) method was used, incorporating the ML substitution model.

Clades of related isolates were identified by high bootstrap values

(.70) and exceptionally long branch lengths.

Amino acid comparisons between clades of A/H1N1 and
A/H3N2 influenza viruses

The parsimony-based MacClade program [44] was used to

determine those amino acid changes in both the HA and NA gene

segments (Table S9) that occurred between each of the eight clades

of A/H1N1 virus from the US, as well as global background viruses

from 2001–2005 and A/H1N1 vaccine strains. Changes were also

identified in potential glycosylation sites, antigenic regions (Sa, Sb,

Cb, Ca1, Ca2) [45], and the receptor-binding site [46]. The

MacClade program also was employed to identify amino acid

changes between clades of A/H3N2 and influenza virus vaccine

strains, including those in antigenic sites and at eighteen sites

previously identified as undergoing positive selection [37].

Supporting Information

Figure S1 Phylogenetic relationships of the PB2 gene segment of

A/H1N1 influenza viruses sampled from the United States during

the 2006–2007 influenza season and globally from 2001–2006,

estimated using an ML method. Colored rectangles (labeled A–H)

represent eight clades of related viral isolates from the 2006–2007

U.S. season that are present on phylogenies for all genome

segments (Figures S1, S2, S3, S4, S5, S6). Clade A represents the

major clade from this season. Global background isolates are

unshaded and labeled by season in red font. Bootstrap values

(.70%) are shown for key nodes. The tree is mid-point rooted for

clarity only, and all horizontal branch lengths are drawn to scale.

Found at: doi:10.1371/journal.ppat.1000133.s001 (0.50 MB EPS)

Figure S2 Phylogenetic relationships of the PA gene segment of

A/H1N1 influenza viruses sampled from the United States during

the 2006–2007 influenza season and globally from 2001–2006,

estimated using an ML method. Color schemes and rooting are

same as in Figure S1.

Found at: doi:10.1371/journal.ppat.1000133.s002 (0.45 MB EPS)

Figure S3 Phylogenetic relationships of the NP gene segment of

A/H1N1 influenza viruses sampled from the United States during

the 2006–2007 influenza season and globally from 2001–2006,

estimated using an ML method. Color schemes and rooting are

same as in Figure S1.

Found at: doi:10.1371/journal.ppat.1000133.s003 (0.49 MB EPS)

Figure S4 Phylogenetic relationships of the NA gene segment of

A/H1N1 influenza viruses sampled from the United States during

the 2006–2007 influenza season and globally from 2001–2006,

estimated using an ML method. Color schemes and rooting are

same as in Figure S1.

Found at: doi:10.1371/journal.ppat.1000133.s004 (0.49 MB EPS)

Figure S5 Phylogenetic relationships of the M gene segment of

A/H1N1 influenza viruses sampled from the United States during

the 2006–2007 influenza season and globally from 2001–2006,

estimated using an ML method. Color schemes and rooting are

same as in Figure S1.

Found at: doi:10.1371/journal.ppat.1000133.s005 (0.44 MB EPS)

Figure S6 Phylogenetic relationships of the NS gene segment of

A/H1N1 influenza viruses sampled from the United States during

the 2006–2007 influenza season and globally from 2001–2006,

estimated using an ML method. Color schemes and rooting are

same as in Figure S1.

Found at: doi:10.1371/journal.ppat.1000133.s006 (0.45 MB EPS)

Figure S7 Phylogenetic relationships of the PB2 gene segment of

69 A/H3N2 influenza viruses sampled from the United States

during the 2006–2007 influenza season and 104 background

global A/H3N2 influenza viruses sampled from 2003–2006.

Isolates that are adamantane sensitive (have a serine at position

31 of the M2 gene) are shaded in blue, while isolates that are

adamantane resistant are shaded in red. Clades of related viral

isolates are denoted by rectangles. Clades from the 2006–2007

U.S. epidemic are labeled as follows: major clade (a), minor clade

(b), and four singleton isolates (s1, s2, s3, and s4). Clades from

previous global epidemics include the ‘N-lineage’ (adamantane-

resistant isolates from 2005–2006). Bootstrap values (.70%) are

shown for key nodes. The tree is mid-point rooted for purposes of

clarity only, and all horizontal branch lengths are drawn to scale.

Found at: doi:10.1371/journal.ppat.1000133.s007 (0.43 MB EPS)

Figure S8 Phylogenetic relationships of the PA gene segment of

69 A/H3N2 influenza A viruses sampled from the United States

during the 2006–2007 influenza season and 104 viruses sampled

globally from 2003–2006. Labeling, color scheme, and rooting are

identical as Figure S7.

Found at: doi:10.1371/journal.ppat.1000133.s008 (0.43 MB EPS)

Figure S9 Phylogenetic relationships of the NA gene segment of

69 A/H3N2 influenza A viruses sampled from the United States

during the 2006–2007 influenza season and 104 viruses sampled

Table 5. Amino acids at variable sites of the HA gene
segment of A/H3N2 influenza viruses from the ‘N-lineage’,
clade a, clade b, and singleton isolates s1, s2, s3, and s4
(Figure 6), with differing amino acids in bold.

HA site N-lineage s1 s2 s3 s4 Clade a Clade b

6 N N N N N N I

45 (C) S S S S N S S

48 (C) T T T T I T T

50 (C) G G E G G E G

53 (C) D D D D N D D

112 V V V V I V V

140 (A) K K K K K I K

142 (A*) R G R R R R G

144 (A) N D N N N N N

157 (B) L L L L L L S

173 (D) K K K K E K E

193 (B*) F F F F S F F

199 S S S S P S S

225 N N N N D N N

275 (C*) G G G G D G G

375 N N D N D D D

450 R R R R R K K

Antigenic sites are specified A–E (listed in parentheses) and sites that have been
identified as undergoing positive selection denoted by an asterisk (*) [37].
doi:10.1371/journal.ppat.1000133.t005
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globally from 2003–2006. Labeling, color scheme, and rooting are

identical as Figure S7.

Found at: doi:10.1371/journal.ppat.1000133.s009 (0.47 MB EPS)

Figure S10 Phylogenetic relationships of the NS1/2 gene

segment of 69 A/H3N2 influenza A viruses sampled from the

United States during the 2006–2007 influenza season and 104

viruses sampled globally from 2003–2006. Labeling, color scheme,

and rooting are identical as Figure S7.

Found at: doi:10.1371/journal.ppat.1000133.s010 (0.46 MB EPS)

Table S1 Amino acids at variable sites of the HA gene segment

of A/H1N1 influenza viruses from clades A–H, the A/New

Caledonia/20/1999(H1N1) and A/Solomon Islands/3/

2006(H1N1) vaccine strains, and isolates from 2002/2003 and

2005 (Figure 1), with differing amino acids highlighted in bold.

Antigenic sites Cb, Ca2, Sa, Ca1, Sb and potential glycosylation

sites (Gly) listed in parentheses.

Found at: doi:10.1371/journal.ppat.1000133.s011 (0.10 MB

DOC)

Table S2 Influenza A viruses used in Figures 1–5, and S1, S2,

S3, S4, S5, S6. GenBank accession number, isolate name, subset

membership, clade membership, date of collection, week of

collection, age and sex of patient from whom isolate was collected,

and county in which isolate was assembled for 284 A/H1N1

influenza A viruses collected from December 6, 2006–March 13,

2007 from 19 U.S. states. Subset 1 refers to those isolates included

in the 100-isolate subset sampled from all clades; subset 2 refers to

those isolates included in the 100-isolate subset sampled from the

major clade. Week 1 denotes the first week that isolates in this

study were sampled (week of December 2, 2006). GenBank

accession numbers from the Influenza Virus Resource refer to the

PB2 gene segment (http://www.ncbi.nlm.nih.gov/genomes/

FLU/FLU.html). Clade membership corresponds to the HA

phylogeny (Figure 1).

Found at: doi:10.1371/journal.ppat.1000133.s012 (0.49 MB

DOC)

Table S3 Influenza A viruses used in Figures 1–5, and S1, S2,

S3, S4, S5, S6. GenBank accession numbers, collection dates, and

age and sex of patient from whom isolate were assembled for 48

A/H1N1 influenza viruses sampled globally from 2001–2006.

GenBank accession numbers from the Influenza Virus Resource

refer to the PB2 gene segment (http://www.ncbi.nlm.nih.gov/

genomes/FLU/FLU.html).

Found at: doi:10.1371/journal.ppat.1000133.s013 (0.09 MB

DOC)

Table S4 Influenza A viruses used in Figure 1. GenBank

accession numbers and collection dates for the HA gene segment

of 21 A/H1N1 influenza viruses sampled globally from 2006,

including the A/H1N1 components of the influenza vaccines for

2006–2007 (A/New Caledonia/20.1999), 2007–2008 (A/Solo-

mon Islands/3/2006), and 2008–2009 (A/Brisbane/59/2007).

GenBank accession numbers from the Influenza Virus Resource

refer to the PB2 gene segment (http://www.ncbi.nlm.nih.gov/

genomes/FLU/FLU.html), and accession numbers starting with

ISD are from the Los Alamos National Laboratory’s Influenza

Sequence Database (www.flu.lanl.gov).

Found at: doi:10.1371/journal.ppat.1000133.s014 (0.05 MB

DOC)

Table S5 Influenza A viruses used in Figure S4. GenBank

accession numbers and collection dates for the NA gene of 17 A/

H1N1 influenza viruses sampled globally from 2006, including the

A/H1N1 components of the influenza vaccines for 2006–2007 (A/

New Caledonia/20/1999) and 2007–2008 (A/Solomon Islands/

3/2006). GenBank accession numbers from the Influenza Virus

Resource refer to the NA gene segment (http://www.ncbi.nlm.

nih.gov/genomes/FLU/FLU.html).

Found at: doi:10.1371/journal.ppat.1000133.s015 (0.04 MB

DOC)

Table S6 Influenza A viruses used in Figures 6–9 and Figures

S7, S8, S9, S10. GenBank accession number, isolate name, subset

membership, clade membership, date of collection, week of

collection, age and sex of patient from whom isolate was collected,

and county in which isolate were assembled for 69 A/H3N2

influenza A viruses collected from December 6, 2006–March 14,

2007 from 16 U.S. states. Week 1 denotes the first week that

isolates in this study were sampled (week of December 2, 2006).

GenBank accession numbers from the Influenza Virus Resource

refer to the PB2 gene segment (http://www.ncbi.nlm.nih.gov/

genomes/FLU/FLU.html).

Found at: doi:10.1371/journal.ppat.1000133.s016 (0.16 MB

DOC)

Table S7 Influenza A viruses used in Figures 6–9 and Figures

S7, S8, S9, S10. GenBank accession numbers, collection dates,

and age and sex of patients from whom influenza viruses were

assembled for 104 A/H3N2 influenza viruses sampled globally

from 2003–2006. GenBank accession numbers from the Influenza

Virus Resource refer to the PB2 gene segment (http://www.ncbi.

nlm.nih.gov/genomes/FLU/FLU.html).

Found at: doi:10.1371/journal.ppat.1000133.s017 (0.17 MB

DOC)

Table S8 A/H3N2 influenza viruses used in the 2006–2007/

2007–2008 (A/Wisconsin/67/2005) and 2008–2009 (A/Bris-

bane/10/2007) influenza vaccines, the HA and NA gene segments

of which are included in Figure 6. GenBank accession numbers

from the Influenza Virus Resource refer to the PB2 gene segment

(http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html).

Found at: doi:10.1371/journal.ppat.1000133.s018 (0.03 MB

DOC)

Table S9 Number of amino acid differences in the NA gene

between clades A–H of A/H1N1 influenza virus from the 2006–

2007 U.S. season. As comparison, isolates used as the H1N1

component of the influenza vaccine in 2006–2007 (A/New

Caledonia/20/1999(H1N1) (NC99)) and 2007–2008 (A/Solomon

Islands/3/2006(H1N1) (SI06)) are included. Amino acid differ-

ences between clades that cluster phylogenetically into set 1 (clades

A–E and NC99) and clades that cluster phylogenetically into set 2

(clades F–H and SI06) are in bold.

Found at: doi:10.1371/journal.ppat.1000133.s019 (0.05 MB

DOC)
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